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Abstract

The primary objective of this paper is to make a case that R.A. Fisher’s objections to the
decision-theoretic framing of frequentist inference are not without merit. It is argued
that this framing is congruent with the Bayesian but incongruent with the frequentist
approach; it provides the former with a theory of optimal inference but misrepresents
the optimality theory of the latter. Decision-theoretic and Bayesian rules are considered
optimal when they minimize the expected loss “for all possible values of θ in Θ”
½∀θ∈Θ�; irrespective of what the true value θ∗ [state of Nature] happens to be; the value
that gave rise to the data. In contrast, the theory of optimal frequentist inference is
framed entirely in terms of the capacity of the procedure to pinpoint θ∗

: The inappro-
priateness of the quantifier ∀θ∈Θ calls into question the relevance of admissibility as a
minimal property for frequentist estimators. As a result, the pertinence of Stein’s para-
dox, as it relates to the capacity of frequentist estimators to pinpoint θ∗

; needs to be
reassessed. The paper also contrasts loss-based errors with traditional frequentist errors,
arguing that the former are attached to θ; but the latter to the inference procedure itself.

Keywords: decision theoretic inference, Bayesian vs. frequentist inference, Stein’s
paradox, James-Stein estimator, loss functions, admissibility, error probabilities, loss
functions, risk functions, complete class theorem

1. Introduction

Wald’s [1] decision-theoretic framework is widely viewed as providing a broad enough per-

spective to accommodate and compare the frequentist and Bayesian approaches to inference,

despite their well-known differences. It is perceived as offering a neutral framing of inference

that brings into focus their common features and tones down their differences; see Refs. [2–4].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Historically, Wald [5] proposed the original variant of the decision-theoretic framework with a

view to unify Neyman’s [6] rendering of frequentist interval estimation and testing:

“The problem in this formulation is very general. It contains the problems of testing hypothe-

ses and of statistical estimation treated in the literature.” (p. 340)

Among the frequentist pioneers, Jerzy Neyman accepted enthusiastically this broader perspec-

tive, primarily because the concepts of decision rules and action spaces seemed to provide a

better framing for his behavioristic interpretation of Neyman-Pearson (N-P) testing based on the

accept/reject rules; see Refs. [7, 8]. Neyman’s attitude towards Wald’s [1] framing was also

adopted wholeheartedly by some of his most influential students/colleagues at Berkeley,

including [9, 10]. In a foreword of a collection of Neyman’s early papers, his students/editors

described the Wald’s framing as ([11], p. vii):

“A natural but far reaching extension of their [N-P formulation] scope can be found in Abra-

ham Wald’s theory of statistical decision functions.”

At the other end of the argument, Fisher [12] rejected Wald’s framing on the grounds that it

seriously distorts his rendering of frequentist statistics:

“The attempt to reinterpret the common tests of significance used in scientific research as

though they constituted some kind of acceptance procedure and led to “decisions” in Wald’s

sense, originated in several misapprehensions and has led, apparently, to several more.” (p. 69)

With a few exceptions, such as Refs. [13–15], Fisher’s [12] viewpoint has been inadequately

discussed and evaluated by the subsequent statistics literature. The primary aim of this paper is

to revisit Fisher’s minority view by taking a closer look at the decision-theoretic framework with

a view to reevaluate the claim that it provides a neutral framework for comparing the frequentist

and Bayesian approaches. It is argued that Fisher’s view that the decision theoretic framing is

germane to “acceptance sampling,” but misrepresents frequentist inference, is not without merit.

The key argument of the discussion that follows is that the decision-theoretic notions of loss

function and admissibility are congruent with the Bayesian approach, but incongruent with both

the primary objective and the underlying reasoning of the frequentist approach.

Section 2 introduces the basic elements of the decision theoretic set-up with a view to bring out

its links to the Bayesian and frequentist approaches, calling into question the conventional

wisdom concerning its neutrality. Section 3 takes a closer look at the Bayesian approach and

argues that had the decision-theoretic apparatus not exist, Bayesians would have been forced to

invent it in order to establish a theory of optimal Bayesian inference. Section 4 discusses critically

the notions of loss functions and admissibility, focusing primarily on their role in giving rise to

Stein’s paradox and their incompatibility with the frequentist approach. It is argued that the

frequentist dimension of the notions of a loss function and admissibility is more apparent than

real. Section 5 makes a case that the decision-theoretic framework misrepresents both the pri-

mary objective and the underlying reasoning of the frequentist approach. Section 6 revisits the

notion of a loss function and its dependence on “information other than the data.” It is argued

that loss-based errors are both different and incompatible with the traditional frequentist errors

because they are attached to the unknown parameters instead of the inference procedures

themselves, as the traditional frequentist errors (Type I, II and coverage).

Advances in Statistical Methodologies and Their Application to Real Problems4



2. The decision theoretic set-up

2.1. Basic elements of the decision-theoretic framing

The current decision-theoretic set-up has three basic elements:

1. A prespecified (parametric) statistical modelMθðxÞ, generically specified by

MθðxÞ¼{f ðx;θÞ; θ∈Θ}; x∈Rn
X; for θ∈Θ⊂R

m
; m≪ n; ð1Þ

where f ðx;θÞ denotes the (joint) distribution of the sample X : ¼ðX1;…;XnÞ, R
n
X denotes the sample

space and Θ the parameter space. This model represents the stochastic mechanism assumed to

have given rise to data x0 : ¼ðx1;…; xnÞ:

2. A decision space D containing all mappings dð:Þ : R
n
X ! A; where A denotes the set of all

actions available to the statistician.

3. A loss function Lð:; :Þ : ½D�Θ� ! R; representing the numerical loss if the statistician takes

action a∈A when the state of Nature is θ∈Θ; see Refs. [2, 16–18].

The basic idea is that when the decision-maker selects action a, he/she does not know the “true”

state of Nature, represented by θ
∗
:However, contingent on each action a∈A; the decision maker

“knows” the losses (gains and utilities) resulting from different choices ðd;θÞ∈ ½D�Θ�: The

decision maker observes data x0; which provides some information about θ∗ and then maps

each x∈Rn
X to a certain action a∈A guided solely by Lðd;θÞ:

2.2. The original Wald framing

It is important to bring out the fact that the original Wald [5] framing was much narrower than

the above basic elements 2 and 3, due to its original objective to formalize the Neyman-Pearson

(N-P) approach; see [19]. What were the key differences?

i. The decision (action) space D was defined exclusively in terms of subsets of the param-

eter space Θ. For estimation purposes D :¼ {θ : θ∈Θ} is the set of all singleton points of

Θ and for testing D :¼ ðΘ0;Θ1Þ, the null and alternative regions, respectively.

ii. The original loss (weight) was a zero-positive function, with zero loss at:

L0�cðθ;bθðXÞÞ¼
0 if bθðXÞ ¼ θ

∗

cθ > 0 if bθðXÞ ¼ θ 6¼ θ
∗
; θ∈Θ;

(

ð2Þ

where θ∗ is the true value of θ in Θ: For the discussion that follows, it is important to note that

Eq. (2) is nonoperational in practice because θ∗ is unknown.

The more general framing, introduced by Wald ([1, 20]) and broadened by Le Cam [21],

extended the scope of the original set-up by generalizing the notions of loss functions and

decision spaces. In what follows it is argued that these extensions created serious incompati-

bilities with both the objective and the underlying reasoning of frequentist inference.

Why the Decision‐Theoretic Perspective Misrepresents Frequentist Inference: Revisiting Stein’s…
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In addition, it is both of historical and methodological interest to note that Wald [5] introduced

the notion of a prior distribution, πðθÞ; ∀θ∈Θ; into the original decision-theoretic machinery

reluctantly, and justified it on being a useful tool for proving certain technical results:

“The situation regarding the introduction of an a priori probability distribution of θ is entirely

different. First, the objection can be made against it, as Neyman has pointed out, that θ is

merely an unknown constant and not a variate, hence it makes no sense to speak of the

probability distribution of θ. Second, even if we may assume that θ is a variate, we have in

general no possibility of determining the distribution of θ and any assumptions regarding this

distribution are of hypothetical character. The reason why we introduce here a hypothetical

probability distribution of θ is simply that it proves to be useful in deducing certain theorems

and in the calculation of the best system of regions of acceptance.” (p. 302)

2.3. A shared neutral framework?

The frequentist, Bayesian, and the decision-theoretic approaches share the notion of a statistical

model by viewing data x0 :¼ ðx1;…; xnÞ as a realization of a sampleX :¼ ðX1;…;XnÞ fromEq. (1).

The key differences between the three approaches are as follows:

a. The frequentist approach relies exclusively onMθðxÞ

b. The Bayesian approach adds a prior distribution, πðθÞ; ∀θ∈Θ (for all θ∈Θ)

c. The decision-theoretic framing revolves around a loss (gain or utility) function:

LðdðxÞ;θÞ;∀θ∈Θ; ∀x∈Rn
X: ð3Þ

The loss function is often assumed to be an even, differentiable and convex function of

ðdðxÞ � θÞ and can take numerous functional forms; see Refs. [17, 18] inter alia.

The claim that the decision-theoretic perspective provides a neutral ground is often justified [3]

on account of the loss function being a function of the sample and parameter spaces through

the two universal quantifiers:

(i) “∀x∈Rn
X,” associated with the distribution of the sample:

frequentist : f ðx;θÞ; ∀x∈Rn
X; ð4Þ

(ii)“∀θ∈Θ” associated with the posterior distribution:

Bayesian : πðθjx0Þ ¼
πðθÞ � f ðx0jθÞð

θ∈Θ

πðθÞ � f ðx0jθÞdθ

; ∀θ∈Θ:

ð5Þ

The idea is that allowing for all values of x in Rn
X goes beyond the Bayesian perspective, which

relies exclusively on a single point x0. What is not obvious is whether that is sufficient to do

justice to the frequentist approach. A closer scrutiny suggests that frequentist inference is

misrepresented by the way both quantifiers are employed in the decision-theoretic framing of

inference.

Advances in Statistical Methodologies and Their Application to Real Problems6



First, the quantifier ∀x∈R
n
X plays only a minor role in transforming a loss function, say

Lðθ;θ̂ðxÞÞ; into a risk function:

Rðθ;θ̂Þ¼EX½Lðθ;θ̂ðXÞÞ�¼

ð

x∈R
n
X

Lðθ;θ̂ðxÞÞf ðx;θÞdx, ∀θ∈Θ: ð6Þ

This is the only place where the distribution of the sample, f ðx;θÞ; ∀x∈R
n
X enters the decision-

theoretic framing, and the only relevant part of the behavior of θ̂ðXÞ is how it affects the risk

function for different values of θ in Θ: In frequentist inference, however, the distribution of the

sample takes center stage for the theory of optimal frequentist inference. It determines the

sampling distribution of any statistic Yn¼gðXÞ (estimator, test, and predictor) through:

Fðy;θÞ :¼ PðYn ≤ y;θÞ ¼

ð ð

� � �

ð

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

{x: gðxÞ ≤ t; x∈R
n
X}

f ðx;θÞdx;

ð7Þ

and that, in turn, yields the relevant error probabilities that determine optimal inference pro-

cedures.

Second, the decision-theoretic notion of optimality revolves around the universal quantifier

“∀θ∈Θ,” rendering it congruent with the Bayesian but incongruent with the frequentist

approach. To be more specific, since different risk functions often intersect over Θ; an optimal

rule is usually selected after the risk function is reduced to a scalar. Two such choices of risk are:

Maximum risk : Rmaxðθ̂Þ¼ sup
θ∈Θ

Rðθ;θ̂Þ;

Bayes risk : RBðθ̂Þ¼

ð

θ∈Θ

Rðθ;θ̂ÞπðθÞdθ:

ð8Þ

Hence, an obvious way to choose among different rules is to find the one that minimizes the

relevant risk with respect to all possible estimates ~θðxÞ. In the case of Eq. (8), this gives rise to

two corresponding decision rules:

Minimax rule : inf
θðxÞ

Rmaxðθ̂Þ¼ inf
θðxÞ

½sup
θ∈Θ

Rðθ;θ̂Þ�;

Bayes rule : inf
~θðxÞ

RBðθ̂Þ¼ inf
~θðxÞ

ð

θ∈Θ

Rðθ;θ̂ÞπðθÞdθ:

ð9Þ

In this sense, a decision or a Bayes rule ~θðxÞ will be considered optimal when it minimizes the

relevant risk, no matter what the true state of Nature θ
∗ happens to be. The last clause,

“irrespective of θ∗
” constitutes a crucial caveat that is often ignored in discussions of these

approaches. When viewed as a game against Nature, the decision maker selects action a from A;

irrespective of what value θ∗ Nature has chosen. That is, θ∗ plays no role in selecting the optimal

rules since the latter have nothing to dowith the true valueθ∗ ofθ. To avoid anymisreading of this

line of reasoning, it is important to emphasize that “the true value θ∗
” is shorthand for saying that

“data x0 constitute a typical realization of the sampleXwith distribution f ðx;θ∗Þ”; see Ref. [22].

Why the Decision‐Theoretic Perspective Misrepresents Frequentist Inference: Revisiting Stein’s…
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This should be contrasted with the notion of optimality in frequentist inference that gives θ∗

center stage, in the sense that it evaluates the capacity of the inference procedure to inform the

modeler about θ∗; no other value is relevant. According to Reid [23]:

“A statistical model is a family of probability distributions [MθðxÞ], the central problem of

statistical inference being to identify which member of the family [θ∗] generated the data of

interest.” (p. 418)

3. The Bayesian approach

To shed further light on the affinity between the decision-theoretic framework and the Bayes-

ian approach, let us take a closer look at the latter.

3.1. Bayesian inference and its primary objective

A key argument in favor of the Bayesian approach is often its simplicity in the sense that

all forms of inference revolve around a single function, the posterior distribution:

πðθjx0Þ∝πðθÞ � f ðx0jθÞ; ∀θ∈Θ: Hence, an outsider looking at Bayesian approach might natu-

rally surmise that its primary objective is to yield “a probabilistic ranking” (ordering) of all

values of θ in Θ. According to O’Hagan [4]:

“Having obtained the posterior density πðθjx0Þ, the final step of the Bayesian method is to

derive from it suitable inference statements. The most usual inference question is this: After

seeing the data x0, what do we now know about the parameter θ. The only answer to this

question is to present the entire posterior distribution.” (p. 6)

The idea is that the modeling begins with an a priori probabilistic ranking based on

πðθÞ; ∀θ∈Θ; which is revised after observing x0 to derive πðθjx0Þ; ∀θ∈Θ; hence the key role

of the quantifier ∀θ∈Θ. O’Hagan [4], echoing earlier views in [24, 25], contrast the frequentist

(classical) inferences with the Bayesian inference arguing:

“Classical inference theory is very concerned with constructing good inference rules. The

primary concern of Bayesian inference, …, is entirely different. The objective is to extract

information concerning θ from the posterior distribution, and to present it helpfully via

effective summaries. There are two criteria in this process. The first is to identify interesting

features of the posterior distribution. … The second criterion is good communication. Summa-

ries should be chosen to convey clearly and succinctly all the features of interest.… In Bayesian

terms, therefore, a good inference is one which contributes effectively to appropriating the

information about θ which is conveyed by the posterior distribution.” (p. 14)

Clearly, O’Hagan’s [4] attempt to define what is a “good” Bayesian inference begs the question:

what does constitute “effective appropriation of information about θ” mean, beyond the

probabilistic ranking? That is, the issue of optimality is inextricably bound up with what the

primary objective of Bayesian inference is. If the primary objective of Bayesian inference is not

the revised probabilistic ranking, what is it? The answer is that the ranking is only half the

story. The other half is concerned with the optimality for Bayesian inference which cannot be

Advances in Statistical Methodologies and Their Application to Real Problems8



framed exclusively in terms of the posterior distribution. The decision-theoretic perspective

provides the Bayesian approach with a theory of optimal inference as well as a primary

objective: minimize expected losses for all values of θ in Θ.

In his attempt to defend his stance that the entire posterior distribution is the inference,

O’Hagan [4] argues that criteria for “optimal” Bayesian inferences are only parasitical on the

Bayesian approach and enter the picture through the decision theoretic perspective:

“… a study of decision theory has two potential benefits. First, it provides a link to classical

inference. It thereby shows to what extent classical estimators, confidence intervals and

hypotheses tests can be given a Bayesian interpretation or motivation. Second, it helps identify

suitable summaries to give Bayesian answers to stylized inference questions which classical

theory addresses.” (p. 14)

Both of the above mentioned potential benefits to the Bayesian approach, are questionable for

two reasons. First, the link between the decision-theoretic and the classical (frequentist) infer-

ence is more apparent than real because it is fraught with misleading definitions and unclari-

ties pertaining to the reasoning and objectives of the latter. As argued in the sequel, the

quantifier “∀θ∈Θ” used to define “optimal” decision-theoretic or Bayes rules is at odds with

and misrepresents frequentist inference. Second, the claim concerning Bayesian answers to

frequentist questions of interest is misplaced because the former provides no real answers to

the frequentist primary question of interest which pertains to learning about θ∗
: An optimal

Bayes rule offers very little, if anything, relevant for learning about the value θ∗ that gave rise

to x0. Let us unpack this answer in some more detail.

3.2. Optimality for Bayesian inference

What does minimizing the Bayes risk amount to? Substituting the risk function in Eq. (6) into

the Bayes risk in Eq. (8), one can show that:

RBðθ̂Þ ¼

ð

θ∈Θ

�

ð

x∈Rn
X

Lðθ;θ̂ðxÞÞf ðx;θÞdx
�

πðθÞdθ

¼

ð

x∈Rn
X

ð

θ∈Θ

Lðθ;θðxÞÞf ðxjθÞπðθÞdθdx

¼

ð

x∈Rn
X

ð

θ∈Θ

Lðθ;θðxÞÞπðθjxÞdθ

� �

mðxÞdx,

ð10Þ

where mðxÞ ¼

ð

θ∈Θ

f ðx;θÞdθ; see Ref. [18]. The second and third equalities presume that one

can reverse the order of integration (a technical issue), and treat f ðx;θÞ as the joint distribution

of X and θ so that the following equalities hold:

f ðx;θÞ ¼ f ðxjθÞπðθÞ ¼ πðθjxÞmðxÞ: ð11Þ

In this case, these equalities are questionable due to the blurring of the distinction between x; a

generic value of Rn
X; and the particular value x0; see Ref. [26].

Why the Decision‐Theoretic Perspective Misrepresents Frequentist Inference: Revisiting Stein’s…
http://dx.doi.org/10.5772/65720

9



In light of Eq. (10), a Bayesian estimate is “optimal” relative to a particular loss function

Lðθ̂ðXÞ;θÞ; when it minimizes RBðθ̂Þ, or equivalently

ð

θ∈Θ

Lðθ; θ̂ðxÞÞπðθjxÞdθ: This makes it

clear that what constitutes an “optimal” Bayesian estimate is primarily determined by

Lðθ̂ðXÞ;θÞ [27]:

i. When L2ðθ̂;θÞ¼ðθ̂ � θÞ2, the Bayes estimate θ̂ is the mean of πðθjx0Þ.

ii. When L1ð~θ;θÞ¼j~θ � θj, the Bayes estimate θ̂ is the median of πðθjx0Þ.

iii. When L0�1ðθ;θÞ¼δðθ;θÞ¼
0 forjθ� θj < ε

1 forjθ� θj ≥ ε
;

�

for ε > 0; the Bayes estimate θ is the mode

of πðθjx0Þ.

In practice, the most widely used loss function is the square:

L2ðθ̂ðXÞ;θÞ¼ðθ̂ðXÞ � θÞ2; ∀θ∈Θ; ð12Þ

whose risk function is the decision-theoretic Mean Square Error (MSE1):

Rðθ; θ̂Þ¼Eðθ̂ðXÞ � θÞ2¼MSE1ðθ̂ðXÞ;θÞ; ∀θ∈Θ: ð13Þ

Surprising, however, this definition of the MSE, denoted by MSE1, is different from the

frequentist MSE, which is defined by:

MSEðθ̂nðXÞ;θ
∗Þ¼Eðθ̂nðXÞ � θ

∗Þ2: ð14Þ

The key difference is that Eq. (14) is defined at the point θ ¼ θ
∗
; as opposed to ∀θ∈Θ.

Unfortunately, statistics textbooks adopt one of the two definitions of the MSE— either at

θ¼θ
∗ or ∀θ∈Θ—and ignore (or seem unaware) of the other. At first sight, his difference might

appear pedantic, but it turns out that it has very serious implications for the relevant theory of

optimality for the frequentist vs. Bayesian inference procedures. Indeed, reliance on ∀θ∈Θ

undermines completely the relevance of admissibility as a minimal property for estimators in

frequentist inference.

Admissibility. An estimator ~θðXÞ is inadmissible if there exists another estimator θ̂ðXÞ such that:

Rðθ;θ̂Þ ≤Rðθ;~θÞ;∀θ∈Θ; ð15Þ

and the strict inequality (<) holds for at least one value of θ. Otherwise, ~θðXÞ is said to be

admissible with respect to the loss function Lðθ;θ̂Þ:

The objective of minimizing losses weighted by πðθjx0Þ for all value of θ in Θ; is in direct

contrast to the frequentist primary objective, which is to learn from data about the true value

θ
∗ underlying the generation of x0: Hence, the question that naturally arises is: what does an

optimal Bayes rule, stemming from Eq. (17) convey about the underlying data generating

mechanism in Eq. (1)? It is not obvious why the highest ranked value ~θðx0Þ (mode), or some

Advances in Statistical Methodologies and Their Application to Real Problems10



other feature of the posterior distribution, has any value in pinpointing θ
∗ knowing that ~θðx0Þ

is selected irrespective of θ∗ the true state of Nature.

3.3. The duality between loss functions and priors

The derivation in Eq. (10) brings out the built-in affinity between the decision-theoretic fram-

ing of inference and the Bayesian approach. As shown above, minimizing the Bayes risk:

RBðθ̂Þ ¼

ð
θ∈Θ

Rðθ̂;θÞπðθÞdθ; ð16Þ

is equivalent to minimizing the integral:
ð
θ∈Θ

Lðθ̂ðXÞ;θÞπðθjxÞdθ: ð17Þ

This result brings out two important features of optimal Bayesian inference.

First, it confirms the minor role played by the quantifier x∈Rn

X
in both the Bayesian and

decision-theoretic optimality theory of inference.

Second, it indicates that Lðθ;θ̂Þ and πðθÞ are perfect substitutes with respect to any weight

function wðθÞ > 0; ∀θ∈Θ, in the derivation of Bayes rules. Modifying the loss function or the

prior yields the same result:

“… the problem of estimating θ with a modified (weighted) loss function is identical to the

problem with a simple loss but with modified hyperparameters of the prior distribution while

the form of the prior distribution does not change.” ([28], p. 522)

This implies that in practice a Bayesian could derive a particular Bayes rule by attaching the

weight to the loss function or to the prior distribution depending on which derivation is easier;

see Refs. [18, 28].

3.4. Revisiting the complete class theorem

The issue of contrasting objectives highlights the key built-in tension between the frequentist

and Bayesian approaches to optimality, which in turn undermines several important results,

including the complete class theorem, first proved in Ref. [20]:

“Wald showed that under fairly general conditions the class of Bayes decision functions forms

an essentially complete class; in other words, for any decision function that is not Bayesian,

there exists one that is Bayes and is at least as good no matter what the true state of Nature

may be.” ([19], p. 341)

As argued in the sequel, it should come as no surprise to learn that Bayes rules dominate all

other rules when admissibility is given center stage. The key result is that a Bayes rule θ̂
B
ðxÞ

with respect to a prior distribution πðθÞ is:

Why the Decision‐Theoretic Perspective Misrepresents Frequentist Inference: Revisiting Stein’s…
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i. Admissible, under certain regularity conditions, including when θ̂BðxÞ is unique up to

equivalence relative to the same risk function Rðθ;θ̂BÞ.

ii. Minimax when Rðθ;θ̂BÞ ¼ c < ∞:

iii. An admissible, relative to a risk function Rðθ;θ̂BÞ; estimate θ̂ðxÞ is either Bayes θ̂BðxÞ or

the limit of a sequence of Bayes rules; see Refs. [2, 17, 28].

Ignoring the contrasting objectives, these results have been interpreted as evidence for the

superiority of the Bayesian perspective, and led to the intimation that an effective way to

generate optimal frequentist procedures is to find the Bayes solution using a reasonable prior

and then examine their frequentist properties to see whether it is satisfactory from the latter

viewpoint; see Refs. [29, 30].

As argued next, even if one were to agree that Bayes rules and admissible estimators largely

coincide, the importance of such a result hinges on the relevance of admissibility as a key

property for frequentist estimators.

4. Loss functions and admissibility revisited

The claim to be discussed in this section is that the notions of a “loss function” and “admissibil-

ity” are incompatible with the optimal theory of frequentist estimation as framed by Fisher; see

Ref. [31].

4.1. Admissibility as a minimal property

The following example brings out the inappropriateness of admissibility as a minimal property

for optimal frequentist estimators.

Example. In the context of the simple Normal model:

Xk eNIIDðθ; 1Þ; k¼1; 2;…; n; for n > 2 , ð18Þ

consider the decision-theoretic notion of MSE1 in Eq. (13) to compare two estimators of θ:

i. The maximum likelihood estimator (MLE): Xn¼
1
n

Xn

k¼1
Xk

ii. The “crystalball” estimator: θcb¼7405926; ∀x∈Rn
X

When compared on admissibility grounds, both estimators are admissible and thus equally

acceptable. Common sense, however, suggests that if a particular criterion of optimality cannot

distinguish between Xn [a strongly consistent, unbiased, fully efficient and sufficient estimator]

and θcb; an arbitrarily chosen real number that ignores the data altogether, is not much of a

minimal property.

A moment’s reflection suggests that the inappropriateness of admissibility stems from its

reliance on the quantifier “∀θ∈Θ.” The admissibility of θcb arises from the fact that for certain
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values of θ close enough to θcb, say θ∈ ðθcb � λffiffi
n

p Þ; for 0 < λ < 1; θcb is “better” than Xn on

MSE1 grounds:

MSE1

�
Xn;θ

�
¼ 1

n
> MSE1ðθcb;θ Þ ≤ λ

2

n
for θ∈ θcb �

λffiffiffi
n

p
� 	

: ð19Þ

Given that the primary objective of a frequentist estimator is to pin-point θ∗
; the result in

Eq. (19) seems totally irrelevant as a gauge of its capacity to achieve that!

This example indicates that admissibility is totally ineffective as a minimal property because it

does not filter out θcb; the worst possible estimator! Instead, it excludes potentially good

estimators like the sample median; see Ref. [32]. This highlights the “extreme relativism” of

admissibility to the particular loss function, L2ðθ̂ðXÞ;θÞ, in this case. For the absolute loss

function L1ðθ̂ðXÞ;θÞ¼jθ̂ðXÞ � θj, however, the sample median would have been the optimal

estimator. Despite his wholehearted embrace of the decision-theoretic framing, Lehmann [33]

warned statisticians about the perils of arbitrary loss functions:

“It is argued that the choice of a loss function, while less crucial than that of the model, exerts

an important influence on the nature of the solution of a statistical decision problem, and that

an arbitrary choice such as squared error may be baldly misleading as to the relative desirabil-

ity of the competing procedures.” (p. 425)

A strong case can be made that the key minimal property (necessary but not sufficient) for

frequentist estimation is consistency, an extension of the Law of Large Numbers (LLN) to

estimators, more generally. For instance, consistency would have eliminated θcb from consid-

eration because it is inconsistent. This makes intuitive sense because if an estimator θ̂ðXÞ
cannot pinpoint θ∗ with an infinite data information, it should be considered irrelevant for

learning about θ∗. Indeed, there is nothing in the notion of admissibility that advances learning

from data about θ∗.

Further to relative (to particular loss functions) efficiency being a dubious property for

frequentist estimators, the pertinent measure of finite sample precision for frequentist estima-

tors is full efficiency, which is defined relative to the assumed statistical model (1).

4.2. Stein’s paradox and admissibility

The quintessential example that has bolstered the appeal of the Bayesian claims concerning

admissibility is the James-Stein estimator [34], which gave rise to an extensive literature on

shrinkage estimators, see Ref. [35].

Let X :¼ ðX1;X2;…;XmÞ be independent sample from a Normal distribution:

Xk eNIðθk; σ
2Þ; k¼1; 2;…;m; ð20Þ

where σ
2 is known. Using the notation θ:¼ðθ1;θ2;…;θmÞ and Im:¼diag(1; 1;…; 1), this can be

denoted by:
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X eNðθ; σ2ImÞ:

Find an optimal estimator ~θðXÞ of θ with respect to the square “overall” loss function:

L2ðθ;θ̂ðXÞÞ¼ð∥θ̂ðXÞ � θ∥2Þ ¼
Xm

k¼1

ðθ̂kðXÞ � θkÞ
2
: ð21Þ

Stein [36] astounded the statistical world by showing that for m¼2 the least-squares (LS)

estimator θ̂LSðXÞ ¼ X is admissible, but for m > 2 θ̂LSðXÞ is inadmissible. Indeed, James and

Stein [37] were able to come up with a nonlinear estimator:

θ̂JSðXÞ¼ 1�
ðm� 2Þσ2

∥X∥2

� 	
X, ð22Þ

that became known as the James-Stein estimator, which dominates θ̂LSðXÞ ¼ X in MSE1 terms

by demonstrating that:

MSE1ðθ̂JSðXÞ;θÞ < MSE1ðθ̂LSðXÞ;θÞ;∀θ∈Rm
: ð23Þ

It turns out that θ̂JMðXÞ is also inadmissible for m > 2 and dominated by the modified James-

Stein estimator that is admissible:

θ̂JS

þ
ðXÞ¼ 1� ðm�2Þσ2

∥X∥2

� �þ
X, ð24Þ

where ðzÞþ ¼ maxð0; zÞ; see Ref. [17].

The traditional interpretation of this result is that for the Normal, Independent model in Eq. (20),

the James-Stein estimator (15) of θ :¼ ðθ1;θ2;…;θmÞ; for m > 2; reduces the overall MSE1 in

Eq. (21). This result seems to imply that one will “do better” (in overall MSE1 terms) by using a

combined nonlinear (shrinkage) estimator, instead of estimating these means separately. What is

surprising about this result is that there is no statistical reason (due to independence) to connect

the inferences pertaining to the different individual means, and yet the obvious estimator (LS) is

inadmissible.

As argued next, this result calls into question the appropriateness of the notion of admissibility

with respect to a particular loss function, and not the judiciousness of frequentist estimation.

5. Frequentist inference and learning from data

The objectives and underlying reasoning of frequentist inference are inadequately discussed in

the statistics literature. As a result, some of its key differences with Bayesian inference remain

beclouded.
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5.1. Frequentist approach: primary objective and reasoning

All forms of parametric frequentist inference begin with a prespecified statistical model

MθðxÞ¼{f ðx;θÞ; θ∈Θ}; x∈Rn
X: This model is chosen from the set of all possible models that

could have given rise to data x0 : ¼ðx1;…;xnÞ; by selecting the probabilistic structure for the

underlying stochastic process {Xt; t∈N :¼ ð1; 2;…;n;…Þ} in such a way so as to render the

observed data x0 a “typical” realization thereof. In light of the fact that each value of θ∈Θ

represents a different element of the family of models represented by MθðxÞ; the primary

objective of frequentist inference is to learn from data about the “true” model:

M
∗ðxÞ¼{f ðx;θ∗Þ}; x∈Rn

X; ð25Þ

where θ
∗ denotes the true value of θ in Θ. The “typicality” is testable vis-a-vis the data x0

using misspecification testing; see Ref. [38].

The frequentist approach relies on two modes of reasoning for inference purposes:

Factual ðestimation;predictionÞ : f ðx;θ∗Þ; ∀x∈Rn
X;

Hypothetical ðhypothesistestingÞ : f ðx;θ0Þ; fðx;θ1Þ; ∀x∈R
n
X;

ð26Þ

where θ
∗ denotes the true value of θ in Θ, and θi; i ¼ 0; 1 denote hypothesized values of θ

associated with the hypotheses, H0: θ0 ∈Θ0, H1: θ1 ∈Θ1; where Θ0 and Θ1 constitute a

partition of Θ:

A frequentist estimator θ̂ aims to pinpoint θ∗, and its optimality is evaluated by how effec-

tively it achieves that. Similarly, a test statistic usually compares a good estimator θ̂ of θwith a

prespecified value θ0; but behind θ̂ is the value θ∗ assumed to have generated data x0: Hence,

the hypothetical reasoning is used in testing to learn about θ∗
; and has nothing to do with all

possible values of θ in Θ:

This contradicts misleading claims by Bayesian textbooks ([3], p. 61):

“The frequentist paradigm relies on this criterion [risk function] to compare estimators and, if

possible, to select the best estimator, the reasoning being that estimators are evaluated on their

long-run performance for all possible values of the parameter θ:”

Contrary to this claim, the only relevant value of θ in evaluating the “optimality” of θ̂ is θ∗
:

Such misleading claims stem from an apparent confusion between the existential and universal

quantifiers in framing certain inferential assertions.

The existence of θ∗ can be formally defined using the existential quantifier:

∃θ
∗
∈Θ : there exists a θ

∗
∈Θ such that: ð27Þ

This introduces a potential conflict between the existential and the universal quantifier “∀θ∈Θ”

because neither the decision theoretic nor the Bayesian approach explicitly invoke θ
∗. Deci-

sion-theoretic and Bayesian rules are considered optimal when they minimize the expected

loss ∀θ∈Θ; no matter what θ∗ happens to be.
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Any attempt to explain away the crucial differences between the two quantifiers can be easily

scotched using elementary logic. The two quantifiers could not be more different since, using

the logical connective for negation (¬), the equivalence between the two involves double

negations:

ðiÞ ∃θ∗
∈ Θ⇔ ¬∀θ∉Θ; ðiiÞ∀θ∈Θ⇔ ¬∃θ∗

∉Θ: ð28Þ

Similarly, invoking intuition to justify the quantifier ∀θ∈Θ as innocuous and natural on the

grounds that one should care about the behavior of an estimator θ̂ for all possible values of θ;

is highly misleading. The behavior of θ̂; for all θ∈Θ, although relevant, is not what deter-

mines how effective a frequentist estimator is at pinpointing θ
∗; what matters is its sampling

behavior around θ
∗. Assessing its effectiveness calls for evaluating (deductively) the sampling

distribution of θ̂ under factual θ ¼ θ
∗
; or hypothetical values θ0 and θ1; and not for all

possible values of θ in Θ: Let’s unpack the details of this claim.

5.2. Frequentist estimation

The underlying reasoning for frequentist estimation is factual, in the sense the optimality of an

estimator is appraised in terms of its generic capacity of θ̂nðXÞ to zero-in on (pinpoint) the true

value θ
∗, whatever the sample realization X ¼ x0. Optimal properties like consistency, unbi-

asedness, full efficiency, sufficiency, etc., calibrate this generic capacity using its sampling

distribution of θ̂nðXÞ evaluated under θ¼θ
∗ i.e., in terms of f ðθ̂nðxÞ;θ

∗Þ; for x∈R
n
X: For

instance, strong consistency asserts that as n ! ∞; θ̂nðXÞ will zero-in on θ
∗ almost surely:

Pðlim
n!∞

θ̂nðXÞ¼θ
∗Þ¼1: ð29Þ

Similarly, unbiasedness asserts that the mean of θ̂nðXÞ is the true value θ
∗
:

Eðθ̂nðXÞÞ¼θ
∗
: ð30Þ

In this sense, both of these optimal properties are defined at the point θ¼θ
∗. This is achieved

by using factual reasoning, i.e., evaluating the sampling distribution of θ̂nðXÞ under the true

state of Nature (θ¼θ
∗), without having to know θ

∗
: This is in contrast to using loss functions,

such as Eq. (2), which are defined in terms of θ∗ but are rendered nonoperational without

knowing θ
∗.

Example. In the case of the simple Normal model in Eq. (18), the point estimator, Xn, is

consistent, unbiased, fully efficient, sufficient, with a sampling distribution:

Xn eN θ;

1

n

� 	
: ð31Þ

What is not usually appreciated sufficiently is that the evaluation of that distribution is factual,

i.e., θ¼θ
∗, and should formally be denoted by:
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Xn e
θ¼θ

∗

N θ
∗
;

1

n

� 	
: ð32Þ

When Xn is standardized, it yields the pivotal function:

dðX;θÞ :¼ ffiffiffi
n

p ðXn � θ
∗Þ e

θ¼θ
∗

Nð0; 1Þ; ð33Þ

whose distribution only holds for the true θ
∗
; and no other value. This provides the basis for

constructing a ð1� αÞ confidence interval (CI):

P Xm � cα
2
ð 1ffiffiffi

n
p Þ ≤θ ≤Xn þ cα

2
ð 1ffiffiffi

n
p Þ;θ¼θ

∗

� 	
¼1� α; ð34Þ

which asserts that the random interval Xn � cα
2

sffiffi
n

p
� �

; Xn þ cα
2

sffiffi
n

p
� �h i

will cover (overlay) the

true mean θ
∗, whatever that happens to be, with probability ð1� αÞ; or equivalently, the error of

coverage is α: Hence, frequentist evaluation of the coverage error probability depends only on

the sampling distribution of Xn and is attached to random interval for all values θ 6¼ θ
∗

without requiring one to know θ
∗
:

The evaluation at θ¼θ
∗ calls into question the decision-theoretic definition of unbiasedness:

E1ðθ̂nðXÞÞ¼θ;∀θ∈Θ; ð35Þ

in the context of frequentist estimation since this assertion makes sense only when defined at

θ¼θ
∗
: Similarly, the appropriate frequentist definition of the MSE for an estimator, initially

proposed by Fisher [39], is defined at the point θ¼θ
∗:

MSEðθ̂nðXÞ;θ∗Þ¼Eðθ̂nðXÞ � θ
∗Þ2; for θ∗ in Θ: ð36Þ

Indeed, the well-known decomposition:

MSEðθ̂ðXÞ;θ∗Þ¼Varðθ̂ðXÞÞ þ ½Eðθ̂nðXÞÞ � θ
∗�2; for θ∗ in Θ; ð37Þ

is meaningful only when defined at the point θ¼θ
∗ (true mean) since by definition:

Varðθ̂ðXÞÞ ¼ E½θ̂nðXÞ � θm�2; θm ¼ Eðθ̂nðXÞÞ
Biasðθ̂nðXÞ;θ∗Þ¼Eðθ̂nðXÞÞ � θ

∗
;

ð38Þ

and thus, the variance and the bias involve only two values of θ in Θ; θm and θ
∗
; and when

θm ¼ θ
∗ the estimator is unbiased. This implies that the apparent affinity between the MSE1

defined in Eq. (13) and the variance of an estimator is more apparent than real because the

latter makes frequentist sense only when θm ¼ Eðθ̂nðXÞÞ is a single point.
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5.3. James-Stein estimator from a frequentist perspective

For a proper frequentist evaluation of the above James-Stein result, it is important to bring out

the conflict between the overall MSE (14) and the factual reasoning underlying frequentist

estimation. From the latter perspective, the James-Stein estimator raises several issues of

concern.

First, both the least-squares θ̂LSðXÞ and the James-Stein θ̂JSðXÞ estimators are inconsistent

estimators of θ since the underlying model suffers from the incidental parameter problem:

there is essentially one observation (Xk) for each unknown parameter (θk), and as m ! ∞ the

number of unknown parameters increases at the same rate. To bring out the futility of com-

paring these two estimators more clearly, consider the following simpler example.

Example. Let X :¼ ðX1;X2;…;XnÞ be a sample from the simple Normal model in Eq. (18).

Comparing the two estimators θ̂1¼Xn and θ̂2¼
1
2 ðX1 þ XnÞ and inferring that θ̂2 is relatively

more efficient than θ̂1 relative to a square loss function, i.e.,

MSEðθ̂2ðXÞ;θÞ¼1 < MSEðθ̂1ðXÞ;θÞ¼
1

2
; ∀θ∈R; ð39Þ

is totally uninteresting because both estimators are inconsistent!

Second, to be able to discuss the role of admissibility in the Stein [37] result, we need to consider

a consistent James-Stein estimator, by extending the original data to a panel (longitudinal) data

where the sample is:

Xt:¼ðX1t;X2t;…;XmtÞ; t¼1; 2;…;n: In this case, the consistent least-squares and James-Stein

estimators are:

θ̂LSðXÞ¼ðX1;X2;…;XmÞ;where Xk¼
1

n

X

n

t¼1

Xkt; k¼1; 2;…;m;

θ̂JS

þ
ðXÞ¼ 1� ðm�2Þσ2

∥X∥2

� �þ
X; where X:¼ðX1;X2;…;XmÞ:

ð40Þ

This enables us to evaluate the notion of “relatively better” more objectively.

Admissibility relative to the overall loss function in Eq. (21) introduces a trade-off between the

accuracy of the estimators for individual parameters θ :¼ ðθ1;θ2;…;θmÞ and the “overall”

expected loss. The question is: “In what sense the overall MSE among a group of mean

estimates provides a better measure of “error” in learning about the true values

θ
∗
:¼ ðθ∗

1;θ
∗
2;…;θ

∗
mÞ?” The short answer is: it does not. Indeed, the overall MSE will be irrele-

vant when the primary objective of estimation is to learn from data about θ∗. This is because

the particular loss function penalizes the estimator’s capacity to pin-point θ∗ by trading an

increase in bias for a decrease in the overall MSE in Eq. (21), when the latter is misleadingly

evaluated over all θ in Θ :¼ R
m. That is, the James-Stein estimator flouts the primary objective

of pinpointing θ
∗ in favor of reducing the overall MSE ∀θ∈Θ.

In summary, the above discussion suggests that there is nothing paradoxical about Stein’s [37]

original result. What is problematic is not the least-squares estimator, but the choice of “better”
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in terms of admissibility relative to an overall MSE in evaluating the accuracy of the estimators

of θ.

5.4. Frequentist hypothesis testing

Another frequentist inference procedure one can employ to learn from data about θ∗ is

hypothesis testing, where the question posed is whether θ∗ is close enough to some

prespecified value θ0. In contrast to estimation, the reasoning underlying frequentist testing is

hypothetical in nature.

5.4.1. Legitimate frequentist error probabilities

For testing the hypotheses:

H0:θ ≤θ0vs:H1:θ > θ0; where θ0 is a prespecified value;

one utilizes the same sampling distribution XneN θ; 1n

 �

, but transforms the pivot

dðX;θÞ :¼ ffiffiffi
n

p ðXn � θ∗Þ into the test statistic by replacing θ∗ with the prespecified value θ0;

yielding dðXÞ :¼ ffiffiffi
n

p ðXn � θ0Þ: However, instead of evaluating it under the factual θ ¼ θ∗, it is

now evaluated under various hypothetical scenarios associated with H0 and H1 to yield two

types of (hypothetical) sampling distributions:

(I) dðXÞ :¼ ffiffiffi
n

p ðXn � θ0Þeθ¼θ∗

Nð0; 1Þ;

(II) dðXÞ :¼ ffiffiffi
n

p ðXn � θ0Þeθ¼θ∗

Nðδ1; 1Þ; δ1 ¼
ffiffiffi
n

p ðθ1 � θ0Þfor θ1 > θ0:

In both cases, (I) and (II), the underlying reasoning is hypothetical in the sense that the factual

in Eq. (33) is replaced by hypothesized values of θ; and the test statistic dðXÞ provides a

standardized distance between the hypothesized values (θ0 or θ1) and θ∗ the true θ; assumed

to underlie the generation of the data x0; yielding dðx0Þ: Using the sampling distribution in (I),

one can define the following legitimate error probabilities:

significance level : PðdðXÞ > cα; H0Þ ¼ α;

p-value : PðdðXÞ > dðx0Þ; H0Þ¼pðx0Þ:
ð41Þ

Using the sampling distribution in (II), one can define:

type II error prob: : PðdðXÞ ≤ cα;θ¼θ1Þ¼βðθ1Þ; for θ1 > θ0;

power : PðdðXÞ > cα;θ¼θ1Þ¼ρðθ1Þ; for θ1 > θ0:
ð42Þ

It can be shown that the test Tα; defined by the test statistic dðXÞ and the rejection region

C1ðαÞ¼{x :dðxÞ > cα}; constitutes a uniformly most powerful (UMP) test for significance level

α; see Ref. [9]. The type I [II] error probability is associated with test Tα erroneously rejecting

[accepting] H0. The type I and II error probabilities evaluate the generic capacity [whatever the

sample realization x∈R
n] of a test to reach correct inferences. Contrary to Bayesian claims,

these error probabilities have nothing to do with the temporal or the physical dimension of the

long-run metaphor associated with repeated samples. The relevant feature of the long-run
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metaphor is the repeatability (in principle) of the DGM represented byMθðxÞ; this feature can
be easily operationalized using computer simulation; see Ref. [40].

The key difference between the significance level α and the p-value is that the former is a pre-

data and the latter a post-data error probability. Indeed, the p-value can be viewed as the

smallest significance level α at whichH0 would have been rejected with data x0. The legitimacy

of postdata error probabilities underlying the hypothetical reasoning can be used to go beyond

the N-P accept/reject rules and provide an evidential interpretation pertaining to the discrep-

ancy γ from the null warranted by data x0; see Ref. [41].

Despite the fact that frequentist testing uses hypothetical reasoning, its main objective is also to

learn from data about the true modelM∗ðxÞ¼{f ðx;θ∗Þ}; x∈Rn
X: This is because a test statistic

like dðXÞ:¼ ffiffiffi

n
p ðXn � θ0Þ constitutes nothing more than a scaled distance between θ∗ ½the value

behind the generation of xn�; and a hypothesized value θ0; with θ∗ being replaced by its “best”

estimator Xn:

6. Revisiting loss and risk functions

The above discussion raises serious doubts about the role of loss functions and admissibility in

evaluating learning from data x0 about θ
∗
: To understand why the decision-theoretic framing

misrepresents the frequentist approach, one needs to consider the role of loss functions in

statistical inference more generally.

6.1. Where do loss functions come from?

A closer scrutiny of the decision-theoretic set up reveals that the loss function needs to invoke

“information from sources other than the data,”which is usually not readily available. Indeed,

such information is available in very restrictive situations, such as acceptance sampling in

quality control. In light of that, a proper understanding of the intended scope of statistical

inference calls for distinguishing the special cases where the loss function is part and parcel of

the available substantive information from those that no such information is either relevant or

available.

Tiao and Box [25], p. 624, reiterated Fisher’s [42] distinction:

“Now it is undoubtedly true that on the one hand that situations exist where the loss function

is at least approximately known (for example, certain problems in business) and sampling

inspection are of this sort. … On the other hand, a vast number of inferential problems occur,

particularly in the analysis of scientific data, where there is no way of knowing in advance to

what use the results of research will subsequently be put.”

Cox [43] went further and questioned this framing even in cases where the inference might

involve a decision:

“The reasons that the detailed techniques [decision-theoretic] seem of fairly limited applica-

bility, even when a fairly clear cut decision element is involved, may be (i) that, except in
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such fields as control theory and acceptance sampling, a major contribution of statistical

technique is in presenting the evidence in incisive form for discussion, rather than in provid-

ing mechanical presentation for the final decision. This is especially the case when a single

major decision is involved. (ii) The central difficulty may be in formulating the elements

required for the quantitative analysis, rather than in combining these elements via a decision

rule.” (p. 45)

Another important aspect of using loss functions in inference is that in practice they seem to

be an add-on to the inference itself since they bring to the problem the information other

than the data. In particular, the same statistical inference problem can give rise to very

different decisions/actions depending on one’s loss function. To illustrate that consider an

example from [44]:

“… consider the case of a new drug whose effects are studied by a research scientist attached to

the laboratory of a pharmaceutical company. The conclusion of the study may have different

bearings on the action to be taken by (a) the scientist whose line of further investigation would

depend on it, (b) the company whose business decisions would determined by it, and (c) the

Government whose policies as to health care, drug control, etc., would take shape on that

basis.” (p. 72)

In practice, each one of these different agents is likely to have a very different loss function, but

their inferences should have a common denominator: the scientific evidence pertaining to θ
∗

;

the true θ; that stems solely from the observed data.

6.2. Decisions vs. inferences

The above discussion brings out the crucial distinction between a “decision” and an “infer-

ence” stemming from data x0. Even before Wald [5] introduced the decision-theoretic perspec-

tive, Fisher [42] perceptively argued:

“In the field of pure research no assessment of the cost of wrong conclusions, or of delay in

arriving at more correct conclusions can conceivably be more than a pretence, and in any case

such an assessment would be inadmissible and irrelevant in judging the state of the scientific

evidence.” (pp. 25–26)

Tukey (1960) echoed Fisher’s view by contrasting decisions vs. inferences:

“Like any other human endeavor, science involves many decisions, but it progresses by the

building up of a fairly well established body of knowledge. This body grows by the reaching of

conclusions — by acts whose essential characteristics differ widely from the making of deci-

sions. Conclusions are established with careful regard to evidence, but without regard to

consequences of specific actions in specific circumstances.” (p. 425)

Hacking [45] brought out the key difference between an “inference pertaining to evidence” for

or against a hypothesis, and a “decision to do something” as a result of an inference:

“… to conclude that an hypothesis is best supported is, apparently, to decide that the hypoth-

esis in question is best supported. Hence it is a decision like any other. But this inference is
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fallacious. Deciding that something is the case differs from deciding to do something.…Hence

deciding to do something falls squarely in the province of decision theory, but deciding that

something is the case does not.” (p. 31)

This issue was elaborated upon by Birnbaum [15], p. 19:

“Two contrasting interpretations of the decision concept are formulated: behavioral, applicable

to “decisions” in a concrete literal sense as in acceptance sampling; and evidential, applicable to

“decisions” such as “reject H0” in a research context, where the pattern and strength of

statistical evidence concerning statistical hypotheses is of central interest.”

6.3. Loss functions vs. inherent distance functions

The notion of a loss function stemming from “information other than the data” raises another

source of potential conflict. This stems from the fact that within each statistical modelMθðxÞ

there exists an inherent statistic distance function, often relating to the log-likelihood and the

score function, which constitutes information contained in the data; see Ref. [46].

It is well known that when the distribution underlyingMθðxÞ is normal, the inherent distance

function for comparing estimators of the mean (θ) is the square:

NDðθ̂nðXÞ;θ
∗Þ ¼ ðθ̂nðXÞ � θ

∗Þ2: ð43Þ

On the other hand, when the distribution is Laplace, the relevant statistical distance function is

the absolute distance (see Ref. [47]):

ADðθ̂nðXÞ;θ
∗Þ ¼ jθ̂nðXÞ � θ

∗j: ð44Þ

Similarly, when the distribution underlyingMθðxÞ is uniform, the inherent distance function is:

SUPðθ̂nðXÞ;θ
∗Þ ¼ sup

x∈R
n
X

jθ̂nðxÞ � θ
∗j: ð45Þ

Note that these distance functions are defined at the point θ¼θ
∗ and not for all θ in Θ, as

traditional loss functions.

The dilemma facing a Bayesian or a decision-theoretic statistician is to decide when it makes

sense to override the MLE and select the optimal rule stemming from an externally given loss

function. The dilemma is not as trivial as it might seem at first sight for two reasons. First, the

key difference between the two is that the assumptions of the likelihood function LðθÞ are

testable vis-a-vis the data, but those underlying the loss function are not. Second, the likelihood

function renders the notion of efficiency “global,” full efficiency, in terms of Fisher’s information:

CRðθ∗Þ¼I�1
n ðθ∗Þ;Inðθ

∗Þ :¼ E �
∂2lnLðθÞ

∂θ ∂θ
Τ

� 	

: ð46Þ

Hence, the optimality of an estimator can be affirmed using testable information comprising

the statistical model MθðxÞ. This is in direct contrast with admissibility, which is a property
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defined in terms of “local” efficiency—relative to a loss function—based on external (nontestable)

information.

6.4. Acceptance sampling vs. learning from data

Let us bring out the key features of a situation where the above decision-theoretic set up makes

perfectly good sense. This is the situation Fisher [12] called acceptance sampling, such as an

industrial production process where the objective is quality control, i.e., to make a decision

pertaining to shipping sub-standard products (e.g., nuts and bolts) to a buyer using the

expected loss/gain as the ultimate criterion.

In an acceptance sampling context, the MSEðθ̂ðXÞ;θÞ; or some other risk function, are relevant

because they evaluate genuine losses associated with a decision related to the choice of an

estimate θ̂ðx0Þ, say the cost of the observed percentage of defective products, but that has

nothing to do with type I and II error probabilities.

Acceptance sampling differs from a scientific enquiry in two crucial respects:

a. The primary aim is to use statistical rules to minimize the expected loss associated with “a

decision.”

b. The sagacity of all actions is determined by the respective “losses” stemming from “rele-

vant information other than the data ([32], p. 251).”

c. The trade-off between the two types of error probabilities is determined by the risk

function itself and not by any endeavor to learn from data about θ∗: Indeed, the learning

is deliberately undermined by certain loss function such as the overall MSE (14) that favor

biased estimators of the James-Stein type.

The key difference between acceptance sampling and a scientific inquiry is that the primary

objective of the latter is not to minimize expected loss (costs and utility) associated with

different values of θ∈Θ; but to use data x0 to learn about the “true” model (17). The two

situations are drastically different mainly because the key notion of a “true θ” calls into

question the above acceptance sampling set up. Indeed, the loss function being defined

“∀θ∈Θ,” will penalize θ
∗; since there is no reason to expect that the highest ranked θ would

coincide with θ
∗, unless by accident.

The extreme relativism of loss function optimality renders decision-theoretic and Bayes rules

highly vulnerable to abuse. In practice, one can justify any estimator as optimal, however lame

in terms of other criteria, by selecting an “appropriate” loss function.

Example 1. Consider a manufacturer of high precision bolts and nuts who has information that

the buyer only checks the first and last box for quality control when accepting an order. This

suggests that to minimize losses, stemming from the return of its products as defective, an

appropriate loss function might be:

LðX;θÞ ¼
�

ðX1 þ XnÞ=2½ � � θ

�2
; θ∈ ð0; 1Þ: ð47Þ
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From the acceptance sampling perspective, the “optimal” estimator ~θ ¼ ðX1 þ XnÞ=2 is excellent

because it minimizes the expected losses, but it is a terrible estimator for pinpointing θ
∗

because it is inconsistent!

Consider a more general case where acceptance sampling resembles hypothesis testing in so far

as final products are randomly selected for inspection during the production process. In such a

situation the main objective can be viewed as operationalizing the probabilities of false accep-

tance/rejection with a view to minimize the expected losses. The conventional wisdom has been

that this situation is similar enough to Neyman-Pearson (N-P) testing to render the latter as the

appropriate framing for the decision to ship this particular batch or not. However, a closer look

at some of the examples used to illustrate such a situation [48], reveals that the decisions are

driven exclusively by the risk function and not by any quest to learn from data about the true θ∗.

For instance, N-P way of addressing the trade-off between the two types of error probabilities,

fixing α to a small value and seek a test that minimizes the type II error probability, seems utterly

irrelevant in such a context. One can easily think of a loss function where the “optimal” trade-off

calls for a much larger type I than type II error probability. As argued in Ref. [14]:

“Wald’s decision theory … has given up fixed probability of errors of the first kind, and has

focused on gains, losses or regrets.” (p. 433)

Indeed, Wald [5] was the first to highlight that the decision-theoretic notion of “optimality”

revolves around a particular loss function:

“The “best” system of regions of acceptance … will depend only on the weight function of the

errors.” ([5], p. 302)

Given the crucial differences in [a]–[c], one can make a strong case that the objectives and the

underlying reasoning of acceptance sampling are drastically different from those pertaining to

learning from data in a scientific context.

6.5. Is expected loss a legitimate frequentist error?

The key question is: what do expected losses and traditional frequentist errors, such as bias,

MSE and the type I–II errors, have in common, if anything?

First, they stem directly from the statistical model MθðxÞ since the underlying sampling

distributions of estimators, test statistics, and predictors are derived exclusively from the distri-

bution of the sample f ðx;θÞ through Eq. (7). In this sense, the relevant error probabilities are

directly related to statistical information pertaining to the data as summarized by the statistical

modelMθðxÞ itself.

Second, they are attached to a particular frequentist inference procedure as they relate to a

relevant inferential claim. These error probabilities calibrate the effectiveness of inference pro-

cedures in learning from data about the true statistical modelM∗ðxÞ¼{f ðx;θ∗Þ}; x∈Rn
X:

In light of these features, the question is: “in what sense a risk function could potentially

represent relevant frequentist errors?” That argument that the risk function represents legiti-

mate frequentist errors because it is derived by taking expectations with respect to f ðx;θÞ;

x∈Rn
X [3], is misguided for two reasons.
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a. The relevant errors in estimation, including the bias Eðθ̂nðXÞÞ � θ
∗ and MSE

Eðθ̂nðXÞ � θ
∗Þ2; are evaluated with respect to f ðx;θ∗Þ; x∈Rn

X, by invoking factual reason-

ing; θ∗ denotes the state of Nature. Wald’s [5] original loss function in Eq. (2) represents an

interesting case because it is defined in terms of θ∗, which renders it nonoperational when

evaluated for all θ in Θ, since θ∗ is unknown in practice. In contrast, the errors associated

with the bias and MSE are rendered operational by the factual reasoning fashioned to

forgo knowing θ
∗.

b. The expected losses stemming from the risk function Rðθ;θ̂Þ are attached to particular

values of θ inΘ. Such an assignment is in direct conflict with all the above legitimate error

10 probabilities that are attached to the inference procedure itself, and never to the particular

values of θ inΘ: The expected loss assigned to each value of θ inΘ has nothing to do with

12 learning from data about θ
∗. Indeed, the risk function will penalize a procedure for

13 pinpointing θ
∗ since the latter is unknown in practice. This is in direct conflict with the

14 main objective of frequentist estimation but in sync with “acceptance sampling,” where

15 the objective of the inference has everything to do with expected losses.

16 7. Summary and conclusions

17 'The paper makes a case for Fisher’s [12, 42] assertions concerning the appropriateness of the

18 decision-theoretic framing for “acceptance sampling” and its inappropriateness for frequentist

19 inference. A closer look at this framing reveals that it is congruent with the Bayesian approach

20 because it supplements the posterior distribution with a theory of optimal inference. Decision-

theoretic and Bayesian rules are considered optimal when they minimize the expected loss for all

22 possible values of θ [∀θ∈Θ�; irrespective of what the true value θ∗ happens to be. In contrast, the

23 theory of optimal frequentist inference revolves around the true valueθ∗, since it depends entirely

24 on the capacity of the procedure to pinpointθ∗
: The frequentist approach relies on factual (estima-

25 tion and prediction), as well as hypothetical (testing) reasoning, both of which revolve around the

26 existential quantifier ∃θ∗
∈Θ. The inappropriateness of the quantifier ∀θ∈Θ calls into question

27 the relevance of admissibility as aminimal property for frequentist estimators. A strong case can be

28 made that the relevant minimal property for frequentist estimators is consistency. In addition, full

29 efficiency provides the relevant measure of an estimator’s finite sample efficiency (accuracy) in

30 pinpointing θ
∗. Both of these properties stem from the underlying statistical modelMθðxÞ; in

contrast to admissibilitywhich relies on loss functions based on information other than the data.

32 It is argued that Stein’s [36] result stems from the fact that admissibility introduces a trade-off

33 between the accuracy of the estimator in pinpointing θ
∗ and the “overall” expected loss. That is,

34 the James-Stein estimator achieves a higher overall MSE by blunting the capacity of a frequentist

35 estimator to pinpoint θ∗ Whywould a frequentist care about the overall MSE defined for all θ in

36 Θ? After all, expected losses are not legitimate errors similar to bias and MSE (when properly

37 defined), as well as coverage, type I and II errors. The latter are attached to the frequentist

38 procedures themselves to calibrate their capacity to achieve learning from data about θ∗. In

39 contrast, expected losses are assigned to different values of θ in Θ, using information other than

40 the data.
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