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Abstract

The fast growing development of both the numerical equipment and power electronics
allows the rapid prototyping of the innovating idea. The objective of this chapter is to
put into evidence the teaching aspects through the applicative research in the field of the
electric drives. The chapter provides the basic and advanced aspects of the electric drives
control based on the most used electrical machine: three-phase induction motor (IM).
The research work is presented in didactical way, starting with the conventional vector
control, followed by the integration of the model reference adaptive control into the
specific IM-based drive. The verified numerical simulation results push the research
process through the implementation way. In order to increase the IM drives efficiency,
the real-time implementation of the most commonly used modulation techniques is
provided. Based on the dSpace platform, interfaced by ControlDesk, the experimental
results are obtained. Both the performances of the cascaded control and model reference
adaptive control are shown.

Keywords: DS1104, Matlab®, Simulink, PWM, THPWM, OHPWM, power inverter,
efficiency, sustainability

1. Introduction

The technical literature subject to teaching of the adjustable AC drives, at the undergraduate

and post-graduate levels, offers various techniques of learning based on the computer tools [1–5].

The fast growing of the digital technology conducts to the inherent replacement of the analog

control by the numerical ones. A successful AC drive-based teaching tool should include at

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



least the parameter identification/estimation task, the adequate control, and one friendly

interface between the student and the computer. One of the first approaches of including the

computer as an interactive learning environment and real-time implementation in adjustable

drive teaching process is presented in Refs. [1, 2]. The virtual education environment allows

the hands-on exercises to be tested and solved in a real-time environment [1, 2].

By using the obtained values from the no-load and short-circuit tests and the Matlab/Simulink

software facilities [3], the electrical and mechanical parameters of the three-phase induction

motor are determined. In order to teach and well understand the complex electromechanical

phenomena of an adjustable speed drive based on the IM, the authors [4] use the Matlab/

Simulink software as a teaching tool. The teaching tool based on the intelligent control is

presented by the authors of the chapter [5]. The fuzzy logic is one of the controlled ways in

order to avoid the parameter identification/estimation task of the AC drive. The modern

electric drives include the increase of the efficiency in the control design process. Despite the

above presented state of the art, the author of this chapter provides an original robust model

reference adaptive control of the three-phase induction motor in which the parameters of the

controller are provided on-line; the parameters being adapted through the on-line estimator.

A major key-enabled technology for sustainability of the electrical energy is the enhancement

of the efficiency characteristics in power inverter applications. Therefore, both energy saving

potential and optimization of the energy consumption should be explored [6]. For the electric

drives area, combining variable speed drives with modulation techniques could be one way of

sustainability of both the electrical energy producers and consumers. Another way of assuring

the sustainability of the electric drives is the use of the optimal control theory [6]. The power

electronics is other key enabling technology in energy efficiency, as well in production, distri-

bution and energy transport [5]. This chapter provides solutions both to increase the power

quality and efficiency of the static power inverter. The chapter offers, in the didactical manner,

the basic theoretical concerns regarding the static conversion by means of the power inverters,

mathematical modelling of the power inverter, the modulation strategies, the numerical simu-

lation and the experimental results for the presented modulation techniques. The chapter is

addressed to the future and current changeable actors: the students, researchers and engineers.

The chapter contains the basic concepts and techniques to design, simulate and implement the

efficient power inverters through a Matlab-Simulink well-structured technical guide. In this

manner, the chapter is addressed both to the students and researchers in the field of the electric

drives. The mathematical model of the power inverter combined with the rotor field vector

control of the three-phase induction machine (IM) is provided in Section 2. In Section 3, an

overview of the modulation techniques is given with the purpose to point out the development

trend in the power inverters technology. Moreover, the original model reference adaptive

control of the three-phase induction machine is provided in Section 4.

2. Field-oriented control of the three-phase induction machine

In industry, the most commonly used electric drive is based on the three-phase induction

machine (IM). It is well known that the mathematical model of the three-phase induction
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machine is nonlinear (the nonlinearities type are product, saturation and hysteresis), being a

multivariable coupling of the control structure. For the same size, weight and inertia, the

performances of the IM are higher than that of the DC motor. Therefore, the efficiency and the

maximum speed are superior to that of the DC motor, in the lower price. From the electrical

drive point of view, there are mainly two types of control: scalar and vectorial. At the constant

flux, due to the decoupling control, the performances of the vector-control IM drives are better

than of the scalar drives.

The field-oriented control concept allows independent control of the mechanical and electrical

circuits through the stator active and reactive components. The field-oriented control could be

in direct form or indirect form, depending on the flux vector position determination. The

invariance propriety of the electromagnetic torque to the reference frames conduct to the three

basic field-oriented schemes: stator field-oriented control, rotor field-oriented control, air-gap

or arbitrary field-oriented control. The most used one is the rotor-magnetizing current refer-

ence frame [6] that rotates synchronously with the angular speed of the rotor-magnetizing

current phasor. In order to apply this type of the vector control, the phasor of the rotor-

magnetizing current should be known. This requirement assumes the real-time calculus of

the position and the modulus of the magnetizing current phasor.

Due to the orthogonality between the stator and rotor magnetic fields, by neglecting the

saturation, the magnetic flux depends on the stator current, without being influenced by the

rotor current. By aligning the rotor-magnetizing phasor with the d axis of the synchronously

(d, q) quadrature reference frame, the components of it are as follows:

λqr ¼ 0, λdr ¼ λr ¼ λ ¼ ct: ð1Þ

In rotor field reference frame, the mathematical model of the three-phase induction machine is

as follows [6, 7]:

σTs
dids
dt

þ ids ¼
νds

Rs
� ð1� σÞTs

dimR

dt
þ σTsωmRiqs

σTs

diqs

dt
þ iqs ¼

νqs

Rs
� ð1� σÞTsωmRimR � σTsωmRids

Tr
dimR

dt
þ imR ¼ ids

J
dωr

dt
¼ kT imRiqs � TL

ωmR ¼ ωr þ ωsl, ωsl ¼
Rr

Lm

iqs

imR

ð2Þ

By taking into account the above mentioned system equations (2), the coupling between the d

and q voltage components could be noticed. By adding the adequate feedforward electromotive

voltage components, Ed and Eq, the IM mathematical model could be decoupled (Figure 1)

[6, 7]:
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ν
�
ds ¼ Ki

ðt

0

eddtþ Kped � ωmRσLsids � Ed

ν
�
qs ¼ Ki

ðt

0

eqdtþ Kpeq þ ωmRσLsids þ Eq

ð3Þ

Eq ¼ ωmR
Lm
Lr

λdr, Ed ¼ ωmR
Lm
Lr

λqr ¼ 0, ð4Þ

In Figure 2, the block diagram of the Field Oriented Control (FOC) based on three-phase

induction motor in rotor field magnetizing current reference frame is depicted:

The mathematical model of the rotor-magnetizing field of the three-phase induction machine

consists of the electrical and mechanical transfer functions (Figure 1).

Figure 1. FOC of IM in rotor field-magnetizing current reference frame.

Figure 2. Simulink block diagram of the rotor field vector control of the three-phase induction machine.
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In order to supply adequate power to the IM, the three-phase power inverter is necessary. By

comparing the v*ds (v
*
qs) d-axis stator reference voltage and q-axis stator reference voltage with

the carrier signal, the adequate switching states are delivered. This task is accomplished by the

modulators.

In Figure 2, the Simulink implementation of the rotor field vector control of the three-phase

induction machine is shown.

The Proportional-Integral (PI) speed and flux controllers are shown in Figure 3.

In Figure 4, the rotor magnetic flux position is shown [8]. In the Simulink group shown in

Figure 5, the PI d-q current controllers and voltage decoupling terms are added.

In Figure 6, both the inverter transfer function and the stator equivalent d-q windings are

shown.

By using the Simulink program described in this chapter, the references and the output state

variables are presented in Figure 7. The inner torque control loop is tuned by using the

modulus criterion. The speed outer loop control is performed based on the symmetrical

Figure 3. The control side of the FOC with IM.

Figure 4. Determination of the synchronous reference frame position.
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criterion. Based on the nameplate motor data presented in Table 1, the Matlab script provid-

ing automatically the parameters of the tuned speed and current controllers is depicted in

Ref. [8].

Figure 6. The power inverter transfer function and the equivalent stator windings of the three-phase IM.
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Figure 7. The comparison between the input and output signals of the FOC with IM drive.

Figure 5. Current control and the voltage decoupling block.
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3. The modulation techniques

In order to increase both the efficiency and the harmonic contents of the three-phase power

inverter, four types of modulation strategies have been implemented in real time using dSpace

platform. The implemented modulation strategies [9–12] are as follows: (1) sinusoidal modula-

tion— Sinusoidal Pulse Width Modulation (SPWM), (2) Third harmonic insertion—Third har-

monic Pulse Width Modulation (THPWM), (3) space vector modulation—space vector Pulse

Width Modulation (SVPWM) and (4) optimized modulation—optimized modulation Pulse

Width Modulation (OPWM). The first approach is the rectangular pulse modulation. This method

raises harmonic distortion problems, and the amplitude of the fundamental component of the

output voltage is fixed. However, the frequency could be varied. In order to obtain adjustable

amplitude, a derivative method has been deducted: the quasi-rectangular pulse modulation. Now-

adays, the most used method is the Sinusoidal Pulse Width Modulation (SPWM) due to the

introduction of three degrees of freedom—the phase, the frequency and the amplitude of the

fundamental component of the alternative output voltage. Additionally, the harmonics content

of the output signal is considerably diminished. Another issue of the static power inverters is the

DC link voltage utilization. By means of the modulation techniques significant improvement of

the power inverter efficiency and harmonics content of the output signals could be obtained. The

most common modulation technique is the sinusoidal pulse width modulation (SPWM). The

SPWM method introduces an important advantage: generates the high order harmonics, there-

fore the lower weight of the filter inductance is obtained in order to compensate them.

In Figure 8, the three-phase power inverter schematic is shown (νs1,n, the voltage between the 1

and n potentials; Vdc, the DC link voltage).

Based on the analysis of the control signal and the carrier signal, by deducting the conduction

time, ton, the analytic formula of the SPWM duty cycle is deducted as follows:

d1 ¼
1

2

� �

þ
1

2

νs1,n

Vdc=2

� �

ð5Þ

The modulator has been implemented in real time through the dSpace platform (Figure 9):

By using the implemented cascade control (Figure 2) in the dSpace platform, the speed

reference has been followed and the following three-phase inverter output currents have been

obtained (Figure 10).

Parameters Value Parameters Value Parameters Value

Rated power Pn=45 kW Power factor 0.86 Rated flux 0.67 Wb

Rated speed 2980 rpm Rated efficiency 0.92 J 0.15 kgm2

R.m.s line voltage 380 V Rs 0.0763Ω ImN 18.86 A

Rated frequency 50Hz Rr 0.0261Ω Rated load torque 144 Nm

Rated current 87 A Lsσ 0.0009 H

Table 1. The nameplate data of the three-phase induction motor.
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The real-time implementation results of the speed control are shown in Figures 11 and 12. The

speed is reduced through the speed reference. In Figure 11, the performances of the speed control

are shown (The step signal is the speed reference and thedelayed one is the feedback speed).

Figure 8. Three-phase power inverter schematic.

Figure 9. Matlab-Simulink implementation of the sinusoidal PWM modulation technique.

Figure 10. The output currents of the three-phase power inverter with sinusoidal modulation.
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By using the adequate modulation techniques, the efficiency of the power conversion could be

increased.

By inserting the third harmonic component in the sinusoidal waveform (Figure 13), the three-

phase reference voltages are obtained (Figure 14a). The improved efficiency and the decreased

harmonic content will be obtained by means of the space vector modulation technique

(Figure 14b). In order to minimize the number of the switching, the optimized modulation

technique could be applied (Figure 14c).

The optimized modulation could be applied for the isolated three-phase load as IM. The

optimized modulation (Figure 14c) minimizes the number of commutations by subtracting a

Figure 11. The real-time speed control of the IM based on the dSpace platform.

Figure 12. The corresponding three-phase power inverter output voltages.

Figure 13. The Simulink implementation of the third harmonic component insertion and of the sinusoidal PWM.
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zero sequence signal, u�z [Eq. (6)], from the sinusoidal voltages [Eq. (7)]. In this way, the usage

of the DC link voltage is increased. In Figure 15, the dSpace implementation of the OPWM is

shown.

u�z ¼ �min
Udc

2
�maxðu�a , u

�
b , u

�
c Þ,

Udc

2
�minðu�a , u

�
b , u

�
c Þ

� �

ð6Þ

u��a ðtÞ ¼ u�aðtÞ � u�zðtÞ
u��b ðtÞ ¼ u�bðtÞ � u�zðtÞ
u��c ðtÞ ¼ u�c ðtÞ � u�zðtÞ

ð7Þ

4. The advanced control of the three-phase induction machine based on

power inverter

In this section, the advanced control of the IM drive is provided taken into consideration the

on-line estimation of the controller parameters. Therefore, the variation of the parameters does

not affect the controller performances. The presented adaptive control is robust to unmodelled

parameter variations and structural uncertainness. The model reference adaptive control, in

direct form, unnormalized of the three-phase induction machine has been used (Figure 16)

Figure 14. The reference signals for different modulation techniques (a) the TH-PWM, (b) space vector SV-PWM and (c)

optimized modulation (O-PWM).

Figure 15. Block diagram of the dSpace implementation of the optimized modulation.
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[13, 14]. The adaptive control u(t) contains two components: the gradient (θg ∈R
2n) and the

variable structure (θν ∈R
2n):

uðtÞ ¼ θ
TðtÞνðtÞ,θ ¼ θg þ θν ð8Þ

In Figure 17, the Simulink implementation of the rotor field-oriented control of the IM (sup-

posing the constant magnetizing current at the rated value) is shown.

In order to obtain the adaptive control (8), the vector of the filtered signals should be known:

νðtÞ ¼ ½ ν
T
u ðtÞ ν

T
yp
ðtÞ ypðtÞ rðtÞ �T ∈R2np , ð9Þ

where r(t) is the reference of the adaptive system; yp (t) the output signal of the process;

νu ∈R
np � 1 the dynamic of the filter connected at the control, νy ∈R

np � 1 is the dynamic of

the filter connected at the output of the plant [14]

Figure 16. The block diagram of the three-phase IM model reference adaptive control.

Figure 17. Simulink implementation of the model reference adaptive control with unity relative degree.
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ν
o
u ¼ Λνu þ hu

ν
o
y ¼ Λνy þ hyp

(

ð10Þ

where

νuðsÞ ¼ ðsI�ΛÞ�1hUðsÞ

νyðsÞ ¼ ðsI�ΛÞ�1hYpðsÞ
ð11Þ

The adaptive control is formed by two components (Figure 18): gradient and variable struc-

ture. The specific parameters of the above-mentioned components are calculated via Figure 18.

The parameters vector with gradient-adjustment control [14, 15]:

θg ∈R
2np ¼

�

θT
guðtÞ θT

gyp
ðtÞ θgpðtÞ θgrðtÞ

�T

ð12Þ

The dynamics components of the gradient parameters vector are calculated as (Figure 18):

θ
o

gu ¼ �γg � sign ðkpÞ � νu � e0 ð13Þ

The gradient component assures stability and makes smooth transient response and zero

tracking error. The asymptotic performances will be assured by gradient-adjustment component.

The variable structure control [14]

uνðtÞ ¼ θT
ν νðtÞ, ð14Þ

where the parameters vector with variable structure adjustment control are as follows:

θνðtÞ ¼

�

θT
νuðtÞ θT

νyp
ðtÞ θyp

ðtÞ θrðtÞ

�T

: ð15Þ

Figure 18. The gradient and variable structure components of the adaptive control. The calculation of the specific

parameters (θg,θν).
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The variable structure adaptive component assures a fast time response of the control by

introducing a signum function [14]:

θνu ¼ θνusign ðkpÞ sign ðe0νuÞ: ð16Þ

In order to eliminate the small oscillations around the equilibrium point, the enhanced feature

is included in the variable structure adaptive component [16, 17] through the k-sigmoid

function [14, 15]:

θνu ffi θνu
eke0νu � 1

eke0νu þ 1
sign ðkpÞ ð17Þ

where

θ
o

νu ¼ �λνuθνu � γνje0νuj: ð18Þ

In Figure 19, calculation of the parameter θνu(mentioned in Figure 18) is based on Eq. (18):

In Figure 20, according to Eq. (10), the filtered vector calculation is shown.

In Figure 21, the Simulink implementation of the IM mathematical model is shown.

The differential equation of the circular motion is solved by using the Laplace transform as in

Figure 22. The Reverse Park and Clarke transformations are implemented in Simulink [13] as

in Figures 23 and 24. The performances of the model reference adaptive control are shown in

Figures 25–27.

Figure 19. The parameter θνu calculation.

Figure 20. The filtered vector calculation.
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The advanced control consists of the model reference adaptive control of three-phase

induction machine. It could be noted that a robust MRAC drive system has been provided,

the speed being almost insensible to load torque disturbances (Figures 25–27). Figure 25

shows the obtained adaptive control (isq) at the constant rotor-magnetizing current, the

reference and the actual values of the speed references and the evolution of the tracking

error. Taking into account the gradient and variable structure parameters (Figure 26), the

resulted adaptive control, isq, assures the stability, robustness to load variation (Figure 27),

smooth transient response of the adaptive controller parameters and zero-tracking error

(Figure 26). The asymptotic performances are assured by the gradient component. In

Figure 21. Simulink implementation of the IM mathematical model.

Figure 22. The solution of the mechanical equation.

Figure 23. The Reverse Park and Clarke transformations.
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Figure 27, the three-phase stator currents of the IM under the step load torque variation

are shown.

In Annex I, the dSpace implementation of the stator current control of the three-phase IM with

sinusoidal modulation is provided.

The first figure from the Annex I contains: (1) at the left side: the reference values of the

stator frequency and the r.m.s. reference value of the stator current, the initiation of the

control process (pwm_enable), the confirmation of the normal operation of the dSpace

platform (dspace_ok); (2) in the middle: the control system; (3) the outputs: the duty

cycles, the estimated three-phase stator voltage supply and the measured three-phase

stator currents.

The second figure from the Annex I contains the measuring system of the three-phase stator

currents, the stator currents references and the control system based on the proportional

integral regulators. The outputs of the PI regulators are used in order to generate the sinusoi-

dal modulation duty cycles (duty_abc).

Figure 24. The Simulink implementation of the reverse Park transformation.
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Figure 25. The adaptive control (isq) under the rated magnetization rotor flux (isd), the IM drive output (ω, angular speed)

and the evolution of the tracking error (e0).
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5. Conclusions

The switching function-based mathematical modelling methodology of the full-bridge single-

phase power inverter is provided. The adequate Matlab-Simulink implementation has been

shown. The advantage of increasing the switching frequency by two times is taken through

the unipolar asymmetric PWM modulation. Additionally, the harmonic spectrum shows a

decreasing distortion in spite of the bipolar symmetric PWM modulation [8]. The chapter

includes the basic theoretical aspects, followed by mathematical modelling, numerical simula-

tions and implementation of the proposed modulation techniques capable both to increase the

DC voltage usage and decrease the harmonic content of the output signals; therefore, by using

Matlab/Simulink software, an efficient and clean power converter is obtained. The three-phase
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Figure 27. The three-phase stator currents under the step load torque variation.
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power inverter connected to the three-phase induction motor is considered. The four types of

the modulation techniques for the three-phase power inverter have been presented and

implemented through a real-time platform: sinusoidal PWM, third harmonic insertion PWM,

optimized PWM and Space Vector PWM. Moreover, the increased efficiency of the power

inverter is obtained through both DC link voltage utilization and harmonic distortion reduc-

tion. In order to prove the feasibility of the provided solutions the inductive load based on the

three-phase induction machine has been used supplied by means of the three-phase voltage

power inverter. The SVM–PWM is considered as optimal switching modulation and due to

only one transition between the two switching states excursion takes place. The flat top

discontinuous PWM or optimized PWM has the advantages of minimum switching modula-

tion and increased DC link voltage [18] is used [9]. Therefore, higher efficiency is obtained and

electromagnetic compatibility is improved [10]. By inserting the third harmonic, the funda-

mental of the output voltage increases by 15.5% comparative with the sinusoidal PWM. The

original advanced electric drive system based on the MRAC has been presented.
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Nomenclature

ωsl Slip angular speed

ids (iqs) Longitudinal stator current component d (transversal stator current component q)

ν
*
ds (ν

*
qs) d-axis stator reference voltage (q-axis stator reference voltage)

Ls (Lr) Stator inductance (rotor inductance)

Lm Mutual inductance

Ts=Ls/Rs Stator time constant

σ Total leakage factor

TL The equivalent load torque reduced to the rotor shaft

Tr=Lr/Rr Rotor time constant

KT Torque constant

J The equivalent inertia moment

p Number of the pole pairs

Rs,Rr Stator and rotor phase resistance, respectively

ωmR Angular speed of the synchronous rotating frame

ωsl Slip angular frequency

ωr Rotor angular speed

eds=i
*
ds � ids, eqs= i*qs � iqs The d-q components of the current error

i*ds, i
*
qs The d-q components of the stator current references

Kp, Ki The proportional and the integral coefficients
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Annex I. dSpace implementation of the stator current loop control

MRAC Model reference adaptive control

λdr The longitudinal (reactive) component of the rotor magnetising flux

λr The rated value of the magnetic flux

λqr The quadrature (active) component of the rotor magnetising flux
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