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Abstract

From the formation of lightning-paths to vascular networks, diverse nontrivial self-
organizing and self-assembling processes of pattern formation give rise to intricate
structures everywhere and at all scales in nature, often referred to as fractals. One
striking feature of these disordered growth processes is the morphological transitions
that they undergo as a result of the interplay of the entropic and energetic aspects of
their growth dynamics that ultimately manifest in their structural geometry. Nonethe-
less, despite the complexity of these structures, great insights can be obtained into the
fundamental elements of their dynamics from the powerful concepts of fractal geometry.
In this chapter, we show how numerical and theoretical fractal analyses provide a
universal description to the well observed fractal to nonfractal morphological transitions
in particle aggregation phenomena.

Keywords: aggregation, entropic/energetic forces, fractal growth, morphological tran-
sitions, universality

1. Introduction

In nature, fractal structures emerge in a wide variety of systexms as a local optimization of

diverse growth processes restricted to the entropic and energetic inputs from the environment.

Even more, the fractality of these systems determines many of their physical, chemical, and/or

biological properties. Thus, to comprehend the mechanisms that originate and control the

fractality is highly relevant in many areas of science and technology [1–3].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



One of the most successful approaches to this problem employs stochastic growth processes

of particle aggregation. In general, aggregation phenomena are out-of-equilibrium processes of

fractal pattern formation that are ubiquitous in nature [4]. As such, since the introduction

of the diffusion-limited aggregation (DLA) and ballistic aggregation (BA) models, a plethora

of studies has been developed trying to understand the ultimate aspects of the aggregation

dynamics that give rise to self-similar or fractal clusters, the relationship of this fractality with

their physical and chemical properties, and the most effective methods and techniques to

control the fractal growth.

In particular, one striking feature of these systems is the morphological transition that

they undergo as a result of the interplay of the entropic and energetic aspects of their

growth dynamics that ultimately manifest themselves in the geometry of their structure

[5]. It is here, where despite of their complexity, great insight can be obtained into the

fundamental elements of their dynamics from the powerful concepts of fractal geometry

[6, 7].

One example of this is the well-known dielectric breakdown model (DBM) or generalized

Laplacian growth model, which has importantly contributed to our understanding of far-

from-equilibrium growth phenomena, to such extent that seemingly unrelated patterns

found in nature, as river networks or bacterial colonies, are understood in terms of a

single framework of complex growth [8, 9]. However, we are still in need for a complete

scaling theory of growth for systems far-from-equilibrium, as well as a comprehensive

description of the fractality of systems that exhibits fractal to nonfractal morphological

transitions [10].

In this chapter, starting from the mean-field result for the fractal dimension of Laplacian

growth, we present a theoretical framework for the study of these transitions. Using a

statistical approach to fundamental particle-cluster aggregation dynamics, under which it is

possible to create four nontrivial fractal to nonfractal transitions that will capture all the

main features of fractal growth, we show that, regardless of their space symmetry-breaking

mechanism, they are well described by a universal dimensionality function, including the

Laplacian one.

In order to show this, we consider the following: first, we introduce a general dimensionality

function that is able to describe the measured fractal dimensions and scaling of clusters

generated form particle aggregation. Second, we apply this equation to a set of fractal to

nonfractal morphological transitions, created by identifying the fundamental dynamics that

drive the fractal growth in particle aggregation and by combining three fundamental off-

lattice particle-cluster aggregation models, the DLA, BA, and a recently introduced infinite-

range mean-field (MF) attractive model [11, 12] under two different schemes. Afterwards,

the scaling of the clusters along the transitions is measured for different values of their

control parameters using two standard methods: the two-point density correlation function

and the radius of gyration. Finally, we show how all measurements for the scaling of the

DLA-MF, and BA-MF transitions collapse to a single universal curve valid for any embed-

ding Euclidean space, under the appropriate variable transformations of the general dimen-

sionality function.
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2. Fundamental models

In the Laplacian theory of growth, the growth probability at a given point in space, μ, is given

by the spatial variation of a scalar field, φ, i.e., μ∝ j∇φj. An example of such processes is the

paradigmatic DLAmodel, where particles randomly aggregate one-by-one to a seed particle to

form a cluster [8–10] (Figure 1). It has been found that the structure that emerges from this

process exhibits self-similar properties described by a fractal dimension, D, only dependent on

the Euclidean dimension, d, of its embedding space [13, 14] given by,

DðdÞ ¼
d
2 þ 1

dþ 1
: ð1Þ

For d ¼ 2, this expression predicts D ¼ 5=3 ≈ 1:67, different from the widely reported and

numerically obtained value for off-lattice DLA, D ¼ 1:71. Furthermore, it was found that D is

highly dependent on the mean square displacement of the particles’ trajectories, giving rise to a

continuous screening-driven morphological transition that has been neatly described by

extending the Laplacian theory to consider a general process where particles follow fractal

Figure 1. Schematic diagram of the fundamental aggregation models (top row) used in this work, where particles, that

are launched one-by-one into the system from rL with uniform probability in position and direction, (a) follow straight-

line trajectories before aggregation in BA, (b) perform a random walk in DLA, and (c) get radially attached to the closest

particle in the cluster as a result of an infinite-range radial interaction in MF. The morphology of MF emerges solely from

its long-range interaction, as opposed to the stochastic BA and DLA. The corresponding characteristic cluster with its

fractal dimension D0 is shown in the bottom row.
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trajectories [15]. It was found that D is related to the dimension of the walkers’ trajectories, dw,

through the Honda-Toyoki-Matsushita (HTM) mean-field equation [16, 17]:

Dðd; dwÞ ¼
d2 þ dw � 1

dþ dw � 1
: ð2Þ

Here, for dw ¼ 1 one gets D ¼ d, as expected for ballistic-aggregation dynamics (see Figure 1),

whereas for dw ¼ 2, the value D ¼ 5=3 for DLA is recovered. This BA-DLA transition has been

reproduced in diverse and equivalent aggregation schemes, e.g., of wandering particles under

drift [18], or with variable random-walk step size [19], by imposing directional correlations

[20, 21], and through probabilistically mixed aggregation dynamics [22].

However, one of the most challenging aspect of the theory comes when the growth is not

purely limited by diffusion, e.g., when it takes place under the presence of long-range attrac-

tive interactions, where strong screening and anisotropic effects must be considered [1, 5, 7]. In

this case, a clever generalization to the Laplacian growth process was proposed within the

context of the DBM, assuming μ∝ j∇ðφÞjη, where η is a positive real number that keeps the

information associated with all effects coming from screening and anisotropy [23, 24]. This

process generates a characteristic fractal to nonfractal morphological transition from a compact

structure with D ¼ d when η ¼ 0, through DLA at η ¼ 1, to a linear one with D ¼ 1, as η ! ∞

[25, 26]. In this scenario, the generalized HTM equation [17, 27], given as,

Dðd; dw; ηÞ ¼
d2 þ ηðdw � 1Þ

dþ ηðdw � 1Þ
; ð3Þ

provides a good approximation to the dimensions of this transition but due to its mean-field

limitations, it does not have a good correspondence with the numerical results [25, 26]. None-

theless, as shown here, Eq. (3) is the starting point to clarify this aspect of the theory and, even,

to establish a suitable and general framework to analyze more complex morphological transi-

tions in stochastic growth processes.

This is done by considering that the fundamental dynamical elements of aggregation,

which drive the fractal growth, are mainly two: a stochastic one, coming from the parti-

cles’ trajectories randomness, and an energetic one, coming from attractive interactions.

With regard to the latter, there are two physical mechanisms related to these interactions

and two models that are able to reproduce their effects. First, the model we will refer to as

λ-model [11], incorporates the screening effects associated to long-range attractive interac-

tions (such as those coming from an attractive radial potential) by means of an effective

interaction radius λ, as illustrated in Figure 2a–c. Second, the model referred here to as

the p-model [12], incorporates anisotropy effects coming from surface-tension-like interac-

tions by means of a Monte Carlo approach to aggregation using fundamental stochastic

and energetic models as explained below and illustrated in Figure 2d. Therefore, by

controlling the interplay of any of these two mechanisms with a pure stochastic model

(in this case the DLA or BA models), one is able to generate fractal to nonfractal morpho-

logical transitions.
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3. Methods

In the following and as explained below, all data forDwere measured over a large ensemble of

clusters (with N ¼ 1:5· 105 particles) for each value of the control parameters of the models

proposed, by means of two standard methods: the two-point density correlation function,

CðrÞ∝ r�α, and the radius of gyration, RgðNÞ∝Nβ, where the scaling exponents are related to

D as Dα ¼ d� α, and Dβ ¼ 1=β.

3.1. Aggregation dynamics

In all of the numerical calculations, we choose as a unit of distance, the particles’ diameter

here is set to one. For generating aggregates based on BA or MF (Figure 1a and 1c), a

standard procedure was used in which particles are launched at random, with equal proba-

bility in position and direction of motion, from a circumference of radius rL ¼ 2rmax þ δ,

where rmax is the distance of the farthest particle in the cluster with respect to the seed

particle at the origin. As well, we used δ ¼ 1000 particle diameters to avoid undesirable

screening effects. On the other hand, for the MF model, particles always aggregate to the

closest particle in the cluster. This is determined by projecting the position of the aggregated

particles along the direction of motion of the incoming particle (see Figure 1c). Finally, in the

Figure 2. Schematic diagrams of the energetic aggregation schemes. For the λ-model: (a) every particle in the cluster is

provided with an effective radius of aggregation λ. (b) A particle “collides” with the cluster when its trajectory intersects

for the first time the interaction boundary of any aggregated particle. (c) The particle is aggregated to the closest particle

along its direction of motion. This is determined by the position of the aggregated particles projected onto the direction of

motion of the incoming particle. For the p-model: (d) a Monte Carlo approach to aggregation is established through the

variable p∈ ½0; 1�, that controls the probability of aggregation under MF dynamics.
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case of aggregates generated using DLA dynamics (Figure 1b), particles were launched from

a circumference of radius rL ¼ rmax þ δ with δ ¼ 100, while their mean free path was set to

one particle diameter in the beginning. Further on, as typically done, their mean free path is

modified as the particles wander beyond a distance larger than rL or in-between branches.

As well, a killing radius is set at rK ¼ 2rL in order to speed up the aggregation process. For

the special case of the λ-model, for aggregates generated with DLA dynamics, particles were

launched from a circle of radius L ¼ rmax þ λþ δ, with δ ¼ 100.

Regarding the p-model, in order to mix different aggregation dynamics, a Monte Carlo scheme

of aggregation is implemented using the BA, DLA, and MF models. The combination between

pairs of models results in the DLA-MF and BA-MF transitions by varying the mixing param-

eter p∈ ½0; 1�. This parameter is associated with the probability or fraction of particles aggre-

gated under MF dynamics, p ¼ NMF=N, where N is total number of particles in the cluster.

Therefore, as p varies from p ¼ 0 (pure stochastic dynamics given by the BA or DLA dynamics)

to p ¼ 1 (purely energetic dynamics given by the MF model), it generates two transitions

discussed below. The evaluation of the aggregation scheme to be used is only updated once

and the particle has been successfully aggregated to the cluster under a given dynamics.

3.2. Fractal and scaling analysis

In all measurements, we performed an ensemble average over 128 clusters containing 1:5· 105

particles each. In first place, we measured the fractal dimension from the two-point density

correlation function,

CðrÞ ¼ 〈〈ρðr0Þρðr0 þ rÞ〉〉jrj¼r; ð4Þ

where the double bracket indicates an average over all possible origins r0 and all possible

orientations. Here, it is assumed that CðrÞ ≈ r�α, where the fractal dimension is given by

Dα ¼ d� α with d being the dimension of the embedding space. In second place, we also

measured the radius of gyration given by

R2
g ¼

XN

i¼1

ðri�rCMÞ
2; ð5Þ

where N is the number of particles, ri is the position of the ith-particle in the cluster and, rCM is

the position of the center of mass. Here, it is assumed that RgðNÞ ≈Nβ, where the fractal

dimension is given byDβ ¼ 1=β. In this way, the fractal dimensions Dα and Dβ are, respectively

obtained from linear-fits to the corresponding functions CðrÞ and RgðNÞ in log-log plots at

different scales.

In particular, for the p-model, linear-fits at different scales were performed in order to

capture the main local fractal features. In addition, we averaged the results of 10 linear fits,

distributed over a given interval, in order to improve the precision of the measurements. In

both transitions, DLA-MF and BA-MF, DαðpÞwas measured at short length-scales (regions αI

in Figure 6) over the interval ri ∈ ½1; 2� with fitting-length equal to 10, and rf ∈ ½11; 12� (in

Fractal Analysis - Applications in Health Sciences and Social Sciences114



particle diameters units). At long length-scales (αII), over ri ∈ ½10; 11�with fitting-length equal

to 40, and rf ∈ ½50; 51�. For DβðpÞ, measurements at medium scales (βI) were performed over

the interval ri ∈ ½102; 103� with fitting-length equal to 104, and rf ∈ ½1:01 · 104; 1:1 · 104� (in

particle number). Finally, at large scales (βII), over the interval ri ∈ ½103; 104� with fitting-

length equal to 0:9· 105, and rf ∈ ½9:1· 104; 105�.

4. Fractality prescriptions

Despite the complexity leading to morphological transitions, simple models can be established

to describe their fractality or scaling as a function of the control parameter, in our case, the

branching parameter ε for the λ-model (see below) or the mixing parameter p for the p-model.

To do so, let us start by showing that Eq. (3) can in fact be recovered as the first-order

approximation in f ðηÞ=d of a general exponential form,

DðdÞ ¼ 1þ ðd� 1Þe�f ðηÞ=d; ð6Þ

with f ðηÞ ¼ Ληðdw � 1Þ. It easily follows that,

DðdÞ ≈ 1þ
d� 1

1þ f ðηÞ=d
¼

d2 þ f ðηÞ

dþ f ðηÞ
: ð7Þ

In this form, by setting Λ ¼ 1, Eq. (3) can be fully recovered. Therefore, it is clear that f ðηÞ in

Eq. (6) keeps all the information associated with the structural symmetry-breaking of the

clusters in the DBM. Under this formalism, let us introduce f ðpÞ with control parameter p,

which takes a similar role as f ðηÞ, i.e., it is associated with the net effect of all screening/

anisotropy-driven forces of a more complex growth process, not necessarily corresponding to

the DBM description. For simplicity, we propose f ðpÞ ¼ Λpχ, where p∈ ½0; 1� is the parameter

that controls the transition, and where Λ and χ are two positive real numbers associated with

the strength of screening/anisotropy-driven forces, that are to be determined either theoreti-

cally or phenomenologically according to the studied transition. This allows us to define a

general dimensionality function, DðpÞ, that describes the fractal dimension of a structure

collapsing toward D ¼ 1 under the effects of f ðpÞ as,

DðpÞ ¼ 1þ ðD0 � 1Þe�f ðpÞ=D0 ; ð8Þ

where D0, with d ≥D0 > 1, is the fractal dimension of the clusters for p ¼ 0. This equation

predicts an inflection point at pi, given by ðΛ=D0Þp
χ
i ¼ ðχ� 1Þ=χ, which defines the change in

dynamical growth regimes. Additionally, the first-order approximation of Eq. (8), is,

DðpÞð1Þ ¼
D2

0 þ f ðpÞ

D0 þ f ðpÞ
; ð9Þ
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with pi given now by ðΛ=D0Þp
χ
i ¼ ðχ� 1Þ=ðχþ 1Þ. Eqs. (8) and (9) describe a continuous

morphological transition from D ¼ D0 for f ðpÞ ¼ 0 (disordered/fractal states) toward D ¼ 1 as

f ðpÞ ! ∞ (ordered states), with a well-defined change in growth dynamics at pi.

Furthermore, let us introduce the reduced parameter, q ¼ p=pi. Analytically, substituting

q∈ ½0;∞Þ, back into Eq. (8) leads to,

DðqÞ ¼ 1þ ðD0 � 1Þe�ΦðqÞ; ð10Þ

where

ΦðqÞ ¼ qχðχ� 1Þ=χ; ð11Þ

is an effective parameter associated to a generalized screening/anisotropy-driven force. Its

first-order approximation is then,

DðqÞð1Þ ¼
D0 þ ΦðqÞ

1þ ΦðqÞ
; ð12Þ

where the effective parameter is now given as,

ΦðqÞ ¼ qχðχ� 1Þ=ðχþ 1Þ: ð13Þ

With this prescription, the dynamical change in growth regime is now located at qi ¼ 1 for all

transitions. Here, we can also include the DBM transition as well, for which ΦðqÞ ¼ qðdw � 1Þ=d.

5. Morphological transitions

5.1. The λ-model: screening-driven transition

In the first approach to morphological transitions, we will consider the case when long-range

attractive interactions are introduced in the growth dynamics. In this case, the way to obtain

self-similar clusters, that is, clusters with a single fractal dimension, is to maintain a proper

balance between the energetic and entropic contributions to the growth process. This can be

done by considering an aggregation radius, λ, associated with the range of the interaction for

each particle in the growing cluster.

For example, for λ ¼ 1, or direct-contact interaction, the usual DLA or BA models are recovered

(see Figure 3a and 4a, respectively). When λ > 1, the attractive interactions modify the local

morphology of the aggregates, leading to a more stringy structure. Two well defined features

emerge due to the interplay of the long-range interactions and the way particles approach the

cluster (in relation with their trajectories): a multiscaling branching growth and a crossover in

fractality, from D ! 1 (as λ ! ∞) to D ¼ D0 (when N ! ∞), as shown in Figures 3 and 4.

It can be appreciated that this growth presents three well-defined stages as illustrated in

Figures 3d and 4d. In the first one, the growth is limited by the interactions and is
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Figure 3. (a) Multiscaling aggregates based on DLA, containing N ¼ 150 · 103 particles each, for λ ¼ 1; 10; 100 and 1000

units, visualized at 5, 10, 30 and 100% of their total size. The squares display the multiscaling evolution of the structure.

(b) Radius of gyration, Rg, and (c) fractal dimension, D, versus the number of aggregated particles, N, in log-log and lin-

log plots, respectively. Notice that, when λ ! ∞, the structure of the aggregates tends to MF ðD ¼ 1Þ. (d) Evolution of the

growing front for the first two stages of growth. (e) Typical structure of an MF aggregate.

Figure 4. (a) Multiscaling aggregates based on BA, containing N ¼ 300 · 103 particles each, for λ ¼ 1; 10; 100 and 1000

units, visualized at 5, 10, 30 and 100% of their total size. (b) Radius of gyration, Rg, and (c) fractal dimension, D, versus the

number of aggregated particles, N, in log-log and lin-log plots, respectively. (d) Evolution of the growing front for the first

two stages of growth. (e) Typical structure of an MF aggregate.
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characterized by D ! 1 as λ ! ∞. This is due to the fact that the radial size of the cluster is

small compared to λ. In consequence, the individual interaction regions of the aggregated

particles are highly overlapped, forming an almost circular envelope or effective boundary of

aggregation around the cluster. This makes the last aggregated particle the most probable

aggregation point in the cluster for the next incoming particle. Because of this, there is a

tendency for the clusters to develop three main arms or branches, clearly seen as λ ! ∞. This

structural feature is reminiscent of a mean-field (MF) behavior. In the second stage, clusters

exhibit a transition in growth dynamics. Here, the envelope starts to develop small deviations

from its initial circular form, with typically three main elongations or growth instabilities

associated with the main branches. When the distance between the tips of the two adjacent

branches becomes of the order of λ, a bifurcation process begins, generating multiscaling

growth. Then, when the interactive envelope develops a branched structure itself, particles

are able to penetrate into the inner regions of the aggregate and another transition in growth

dynamics takes place, from interaction-limited to trajectory-limited. In the third stage, when the

distance among the tips of the main branches becomes much larger than λ, growth is limited

by the mean squared displacement of the wandering particles. In this case, the asymptotic

value D ¼ D0 and the main features in the global structure of the cluster are remarkably

recovered as N ! ∞, inheriting the main characteristics of the entropic aggregation-model

used, either DLA or BA. That is, even though interactions leave a strong imprint in the local

structure and fractality of the clusters, the stochastic nature of the particle trajectories will

ultimately determine their global characteristics.

However, taking into account that the spatial size of the clusters is proportional to the radius of

gyration Rg ∝N1=D, the desired balance between entropic and energetic forces, the latter related

to the long-range attractive interaction and to the parameter λ, can be achieved by scaling the

interaction range itself with the number of particles in the cluster through λðNÞ ¼ λ0N
ε, where

λ0 is fixed to one, while ε is the scaling parameter that takes values in [0, 1]; we will refer ε as the

branching parameter. Given a fixed value of ε and this choice for λðNÞ, every aggregate grown

under these conditions has a precise and uniquely defined fractal dimension D ¼ DðεÞ. In fact,

using DðεÞ for different values of ε, one can define the entropic and energetic ratios given by

f S ¼ ðDðεÞ � 1Þ=ðD0 � 1Þ and f E ¼ 1� f S, respectively, that quantify the specific entropic and

energetic contribution to the fractal dimension of the clusters (see Figure 5). Here, one can clearly

appreciate the transition in growth regimes from entropic, when ε ! 0, to energetic, as ε ! 1,

and the nontrivial interplay between them to generate each cluster with a specific dimensionality.

Additionally, this model allows one to estimate εðDÞ, in order to grow aggregates with any

prescribed fractal dimension D in ½1; D0�, once the underlying entropic model, DLA or BA, is

selected. As such, we are no longer restricted to the purely entropic models of fractal growth

with a constant λ, as the energetic contribution of the long-range attractive interactions is

maintained through the varying λðNÞ, enabling one to explore in a continuous manner the full

range of clusters with fractal dimensions in ½1;D0�. Nonetheless, the purely entropic contribution

of the underlying models (DLA or BA) has two important contributions to the clusters’structure:

first, they establish an upper limit to the fractal dimensionality (D0), and second, they define a

characteristic morphology to the clusters (that of DLA or BA). This kind of control over the
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Figure 5. In (a) and (b), aggregates grown with specific values of ε in the interval ½0:01; 1�with the λ-model (top row) and

log-log plots for Rg (middle row) for (a) BA and (b) DLA with N¼ 105 particles. One can appreciate the difference in the

morphology of these monofractal-aggregates with respect to ε. Additionally, the specific entropic and energetic contribu-

tions to the clusters fractal dimension DðεÞ are shown in the bottom panes. (c) Clusters based in BA (left) and DLA (right)

with the same fractal dimension, from top to bottom D ¼ 1:51 and 1:31, grown with a very high precision around the

desired value.

Figure 6. Clusters of 1:5 · 105 particles grown with the indicated values of p, are shown at different magnifications for the

(a) DLA-MF and (b) BA-MF transitions. Particles aggregated under DLA/BA are colored in light-grey while those through

MF in black. These transitions exhibit fast morphological transformations as p increases, from unstable tip-splitting (DLA)

or dense branching (BA), through (inhomogeneous) dendritic, to needle-like growth (MF). (c-d) CðrÞ and RgðNÞ display

deviations from a well-defined linear behavior for different p, revealing the inhomogeneity or crossover effects in these

clusters. Arrows indicate the direction of the transition as function of p:0!1. This is better seen at low scales, where the

stochasticity of DLA or BA dominate the local growth, whereas MF tends to dominate the global morphology as p ! 1. In

both cases, the dynamical growth-regime changes at p ≈ 0:1. Labels αI , αII , βI , and βII indicate the scales used for the

scaling analysis.
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clusters’ fractal dimension and the range it spans, as well as over the morphology of the clusters,

has not been obtained before under any other related scheme of fractality tuning [11].

5.2. The p-model: anisotropy-driven transition

In the second approach, a general stochastic aggregation process can be model under a Monte

Carlo scheme involving three fundamental and simple off-latticemodels of particle-cluster aggre-

gation. On one hand, the well-known BA and DLAmodels provide disordered/fractal structures

through their stochastic (entropic) dynamics (Figure 1a and 1b). On the other, we introduce a

mean-field (MF)model of long-range interactive particle-cluster aggregation [11, 12] that provides

the most energetic (and noiseless) aggregation dynamics that, simultaneously, acts as the main

source of anisotropy. We must remark that this anisotropy is purely generated by the growth

dynamics and not from lattice effects [28] (see Figure 1c). Then, the statistical combination of these

models results in an off-lattice DLA-MF and BA-MF dynamics, whose morphological transitions

can be controlled by the mixing parameter p∈ ½0; 1�, associated with the probability or fraction of

particles aggregated underMF dynamics, p ¼ NMF=N, whereN is total number of particles in the

cluster. Therefore, as p varies from p ¼ 0 to p ¼ 1, it generates two nontrivial transitions from

fractals (DLA) or fat fractals (BA) with fractal dimension D ¼ D0, to nonfractal clusters with

D ¼ 1 (MF), that capture all themainmorphologies of fractal growth [6] (see Figure 6).

6. Universal description

It is necessary to remark that theDLA-MFandBA-MF transitions in the p-model are characterized

by inhomogeneous clusters, i.e., structures with nonconstant scaling as shown in Figure 6c and d,

in contrast with the ones present in BA-DLA [15, 21] and the DBM [23, 25] characterized by

monofractals. These multiscaling features reveal a crossover behavior that can be properly quan-

tified by measuring a local or effective,DðpÞ, at different scales [7], as shown in Figure 7a (details

for the values of the parameter used to produce Figure 7 are presented inTable 1). Analytically, all

measurements can be described by Eqs. (8) and (9), using Λ and χ as fitting parameters. Indeed,

the data for DðpÞ as obtained through to CðrÞ are very well described by Eq. (8), whereas Eq. (9)

better describes the results obtained through RgðNÞ. In the case of the λ-model, the BA/DLA-MF

transitions are governed by the branching parameter, ε, that is equivalent to themixing parameter

p of the p-model. Nonetheless, in theλ-model, the clusters exhibit amonofractal behavior all along

the transition as measured by RgðNÞ. Thus, the data obtained are then described by Eq. (8) as a

fitting function. This analysis is presented in Figure 7d.

By observing the description of the transitions based on the function DðqÞ in Figure 7, one can

clearly appreciate their continuousnature for both theλ- and p-models, aswell as the fact that q ¼ 1

defines a change in aggregationdynamics frompurely entropy tohighly energetic. Inparticular, the

similarity between the transitions of BA-MF and those of the DBM is quite interesting, with results

such as DðqÞ ≈ 1 for q ¼ 4 and DðqÞ ≈ 1:71 for q ¼ 1 in the BA-MF transitions, while DðηÞ ≈ 1 for

η ¼ 4 andDðηÞ ≈ 1:71 for η ¼ 1 in the case of the DBM, even though the processes are different (see

Table 2). Evenmore, by plotting all data as a function ofΦðqÞ itself, i.e.,DðΦÞ, theDLA-MF, BA-MF,
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and DBM transitions approach the highly anisotropic regime in an almost identical manner,

departing from Eqs. (10) and (12). See, for example, Figure 7c and the bottompane in Figure 7d.

A final important implication of the previous findings is that the DBM and BA-MF transitions (for

both λ- and p-models), even though completely different in origin, could be treated as belonging

to the same universality class. To understand this, we must recall that the DBM (η ¼ 1) and

viscous fingering phenomena are said to belong to the same universality class as DLA, because

they are all characterized byD ¼ 1:71 [10, 29]. Therefore, by extending this idea to the description

Figure 7. Scaling analysis for the p-model: (a) Plots of DðpÞ for the DLA-MF and BA-MF transitions obtained from CðrÞ

(left), at small (αI ) and large (αII ) scales, and RgðNÞ (right), at medium (βI ) and large (βII ) scales, in correspondence to

Figures 6c and 6d, respectively. These results are described by the solid and dotted curves given by equations (8) and (9),

respectively, for different values of the parameters Λ and χ. (b) By plotting D as a function of q ¼ p=pi (where pi is

calculated for each curve), data collapses into single master curves, DðqÞ, according to Eqs. (10) and (12), respectively.

Note the common point of regime change at qi ¼ 1, marked with the vertical dashed lines. The curves for the DBM given

by Eqs. (6) and (7), respectively, with Λ ¼ 1 and d ¼ dw ¼ 2, are also included. (c) In the description with the function

DðΦÞ, all of the morphological transitions approach common transitional points where clusters have fully collapsed to an

ordered structure, independently of the stochastic model used. (d) The corresponding scaling analysis is performed for

the BA- and DLA-MF transitions obtained by using the λ-model. In this case, Eqs. (8), (10) and the exponential form of

(14), were used. For further details about the parameter values used, see Table 1.
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with the function DðΦÞ of Eq. (10), the universality of these morphological transitions must be

understood in the sense that they are described by the same scaling in their fractal dimension. In

fact, by defining the reduced codimension, D�
∈ ½0; 1� asD� ¼ ðD� 1Þ=ðD0 � 1Þ, it is still possible

Model Transition Method Scale Λ χ D0 pi, qi

p DLA-MF C (r) αI 15.4 2.24 1.67 0.29

αII 71.5 1.82 0.08

Rg (N) βI 33.8 1.41 1.71 0.03

βII 101.6 1.32 0.01

BA-MF C (r) αI 11.6 1.61 1.94 0.18

αII 45.4 1.38 0.04

Rg (N) βI 124.8 1.95 1.95 0.06

βII 1547.7 2.05 0.02

λ DLA-MF Rg (N) 103 to 105 6.10 1.52 1.70 0.21

BA-MF Rg (N) 103 to 105 6.35 1.43 1.95 0.19

p DLA-MF C (r) – – 1.69 1.67 1.0

Rg (N) – – 1.34 1.71 1.0

BA-MF C (r) – – 1.39 1.94 1.0

Rg (N) – – 1.88 1.95 1.0

λ DLA-MF Rg (N) – – 1.52 1.70 1.0

BA-MF Rg (N) – – 1.43 1.95 1.0

In the first block, we present the parameter values used to describeDðp;Λ;χÞ, using Eqs. (8) and (9). In the second block for

Eqs. (10) and (12), used as fitting functions to the Dðq;χÞ data obtained through CðrÞ and RgðNÞ. In this prescription, χ is

the only free parameter to be determined and, by construction, all the inflection points are located at q ¼ 1. All of the

fittings to the numerical data were performed using the gnuplot embedded algorithms.

Table 1. Parameters for the plots of DðpÞ and DðqÞ in Figure 7.

Model Data D0 χ Φtðv ¼ 0:1Þ qt Φtðv ¼ 0:05Þ qt D(q = 1)

p BA-MF (α) 1.94 1.39 2.3 4.5 3.0 5.4 1.72

DLA-MF (α) 1.67 1.69 2.3 2.8 3.0 3.2 1.46

BA-MF (β) 1.95 1.88 9.0 6.0 19.0 9.0 1.73

DLA-MF (β) 1.71 1.34 9.0 21.7 19.0 37.8 1.62

λ BA-MF 1.95 1.43 2.3 4.2 3.0 5.0 1.70

DLA-MF 1.71 1.52 2.3 3.5 3.0 4.2 1.50

The labels α and β indicate that these data were obtained through measurements of the fractal dimension using CðrÞ and

RgðNÞ, respectively.

Table 2. Transitional points for which the reduced co-dimension D�
≈ 0 for the λ- and p-models studied in this work.
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to define the ultimate representation for the scaling of the transitions through the reduced

codimensionality functions. From Eqs. (10) and (12), these are, respectively given by,

D�ðΦÞ ¼ e�Φ; ð14Þ

D�ðΦÞð1Þ ¼
1

1þ Φ
; ð15Þ

Figure 8. (a) Snapshots of typical clusters present in fractal to nonfractal morphological transitions obtained from the λ-

model with the branching parameter ε as the control parameter, and the p-model with the mixing parameter p as the

control parameter. (b) By plotting D�ðΦÞ and D�ðΦÞð1Þ, the data for the morphological transitions DLA-MF, BA-MF, and

DBM collapse to universal curves described by Eqs. (14) and (15). Under this prescription, these universal fractal to

nonfractal morphological transitions are independent of the initial fractal dimension, D0, the symmetry-breaking process

that drives the transition, even crossover effects, and, quite remarkably, the Euclidean dimension, d, of its embedding

space. All of the numerical data comes from Figure 7.
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where the effective parameterΦ is, respectively, given by Eqs. (11) and (13) for each of the previous

two equations. Notice that, since the morphological transitions presented in this work are indepen-

dent of their symmetry-breaking processes, initial-configuration, and that D0 is given by the HTM

equation, we arrive to the important conclusion that, under the formalism based on Eqs. (14) and

(15), fractal to nonfractal morphological transitions will follow the same curves independently of

the Euclidean dimension of the embedding space, as shown in Figure 8. This finding makes it clear

that it is possible to define universal transitional point, Φt, where the screening/anisotropy effects

are dominant over the morphology of the cluster and D ≈ 1. Starting with reduced codimension at

Φt, i.e., D
�
t ¼ ðDðΦtÞ � 1Þ=ðD0 � 1Þ ¼ ν, we can ask for the condition ν≪ 1 to be fulfilled (see

Figure 8). Then, the universal transitional points, Φt, must, respectively satisfy exp ð�ΦtÞ ¼ ν and

Φt ¼ ð1� νÞ=ν for the Eqs. (14) and (15). In order to recover the particular transitional points for

Eqs. (10) and (12), we must recall that Φt ¼ ΦðqtÞ and thus, one has to solve for qt. Notice also that

qt ¼ qtðν;χ;D0Þ, therefore it gives different values for each transition (see Table 2).

7. Conclusion

It has been stated above that the entropic and energetic elements are the two aspects of the

complex aggregation dynamics which in nature are strongly correlated. Nonetheless, this

reductionist approach that essentially encapsulates the information of all the finer details of

the dynamics into an effective interaction (in the λ-model, for example) or through a Monte

Carlo approach to aggregation (as in the p-model) has proven to be quite rewarding, as one can

appreciate the wide assortment of fractal morphologies that can be generated and the fine and

easy control one can achieve by means of a single parameter. Here, we shall recall that in two-

dimensional systems (d ¼ 2), by changing the fractal dimension of the particle trajectories, dw,

from dw ¼ 2 (random) to 1 (ballistic), it is possible to generate a complete set of clusters with

fractal dimension betweenD ¼ 1:71 (DLA) to 2 (BA), corresponding to the stochastic (entropic)

regime. However, by scaling the interaction range λ with N, or by gradually introducing an

energetic element trough MF dynamics, we are no longer restricted to this range in D as we

were. We can now explore the full set of fractals with D in ½1;D0�, where D0 ranges from that

value corresponding to DLA to that corresponding to BA, not necessarily bound to d ¼ 2, since

these approaches can be easily extended to higher dimensions [30].

Additionally, the descriptive framework for the scaling of fractal to nonfractal morphological

transitions in stochastic growth processes, which includes the concept of an effective screen-

ing/anisotropy force and reduced codimensionality transformations, has revealed that the

DLA-MF, BA-MF, and DBM transitions exhibit a well-defined universal scaling D�ðΦÞ, which

is independent of the initial fractal configuration of the system, the dimensionality of the

embedding space, crossover effects, and the anisotropy force acting upon them.

The results and models discussed in this chapter represent an important unifying step toward

a complete scaling theory of fractal growth and far-from-equilibrium pattern formation. Addi-

tionally, the possibility of applying the dimensionality function to discuss complex structures

in other research areas, ranging from biology [4, 1], intelligent materials engineering [31, 32] to

medicine [33], seems to be in some cases straightforward.
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