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Abstract

In addition to the Hausdorff dimension used as fractal characterization parameter, in 
general, correlation functions can also be employed for this purpose. Given the approxi-
mately pure random spatial dispersion of big part of natural fractals, with respect to the 
center of a reference frame, the most common use of the pair-to-pair correlation func-
tion has as main variable the radial distance between two elements of the fractal. Such 
an approach is extremely practical, since the fractal basic structure statistically presents 
some kind of isotropy. For the cases where the fractal growth is not isotropic, the use of a 
pair-to-pair angular correlation function can detect a fractal pattern may be worthy. This 
will be the topic that is going to be discussed in this chapter, how to implement, discuss 
and visualize a pair-to-pair angular correlation function.

Keywords: characterization, correlation functions, fractal growth

1. Introduction

Several fractal structures show morphological properties that can be mapped and studied by 
means of a great amount of geometric parameters. Such definitions generally seek to directly 
and precisely evidence some physical and structural properties of the object. The Hausdorff 
dimension [1], recognized as the fractal dimension of a given object, represents a characteristi-
cally stationary information of the fractals, that is, it returns an image about the morphology 
after its formation. In general, this type of parameter becomes very effective in the charac-
terization of several fractal types or different samples, where the process of formation of the 
same is well-known, such as the case for the deterministic fractals.

However, the most interesting fractals to be analyzed are those found in nature where 
the growth processes are not well known. In order to investigate and determine the main 
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phenomena involved in the formation of these fractals, it is vitally important to charac-
terize the growth process of these objects. In this context, we can introduce the pair-pair 
correlation functions [2].

Statistically speaking, the pair-pair correlation functions return probabilistic information 
related to the dispersion of the constituent parts, taken as fractal singularity elements, to be 
found by a given characteristic separation. This statistical tool has applications within the anal-
ysis of fractal structures and is also commonly used in studies of Molecular Physics, in the 
analysis and interpretation of simulations of classical molecular dynamics (CMD). Using the 
taxonomy appropriate to this large area of knowledge, this function is called radial distribution 
function (RDF) [2]. As structurally CMD simulations require radial information, the most rel-
evant spatial data retrieval takes into account that the dispersion of the particles to be investi-
gated follows a spherical symmetry, hence only analyzing the radial dispersion of the particles.

In fractals with dendritic structures, such as diffusion limited aggregation (DLA) [1], which is 
a good representation of several physical and biological phenomena in nature, such as crystal 
growth, formation of polymers, sedimentation processes, among others or deterministic frac-
tals of the group of Julia [3], this type of analysis, through the functions of pair-pair correla-
tion, can elucidate the process of branching for the obtained structures.

Knowing how this process develops can helps the scientists to predict the behavior of the 
Hausdorff dimension of the fractals analyzed, and the fractal morphologies. In the next ses-
sion, we will present the basic definition of a DLA fractal in a 2D (two dimensional) per-
spective, which will be the basic archetype for the formal presentation of radial and angular 
correlation analysis, which will have a basic explanation of the implementation and subse-
quent analysis of the results obtained.

2. DLA and radial correlation function

Formally, the diffusion limited aggregation (DLA) was initially studied by Witten and Sander 
in 1970 [4], and consists of a process of simple aggregate formation that emulates processes 
of dendritic structures that grow through diffusion, as is the case with of electrodeposition 
phenomena of solid materials in homogeneous solutions or polymerization process. From a 
computational modeling point of view, DLA aggregates can be obtained on-lattice and off-
lattice, two dimensions (2D) and in three dimensions (3D) both initialized with a single depos-
ited particle, called the seed. Given the diffusive characteristics of the system, all particles are 
taken as identical and run random walks, until they come into contact with the aggregate 
when they stop moving and are permanently added to it.

There are several variants of the DLA model, and several ways to obtain a DLA-type aggre-
gate [5]. However, given the statistical properties of the random walk, the simplest way to 
perform such a simulation is to individually draw each particle and perform several steps of 
a random walk until one of two events may occur: First, if the particle comes into contact with 
some particle of the aggregate, the path is terminated and another particle is thrown at a fixed 
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distance from the seed, called the radius of launch Rlau, or second, particle reaches a position 
far from the seed, this distance called death ray Rkill, the probability of the particle to return by 
means of a random-walk and contact with the aggregate becomes very low, hence the walk is 
finished and another particle is thrown. In general, the launching radius is equal to the sum of 
the radius of the aggregate R

agg
 with a sufficiently large distance, to avoid a trend in aggregate 

growth. Since the particles are all identical, the rays of the particles are taken to be the basic 
unit (arbitrary unit). In general, Rkill ≫ Rlan. The position of the walking particle launched is 
determined randomly at the launch circle. A schematic diagram of the basic structure of a 
DLA can be seen in Figure 1.

The most delicate part of a DLA simulation is the aggregation test. In the on-lattice cases, the 
test consists of the investigation of the elements of a regular network in the surroundings of 
the aggregated particles, if any element in the vicinity of the walking particle is occupied, 
it means that the particle has reached the aggregate and must be glued to it, see Figure 2. 
In the off-lattice cases, the aggregation is more complicate, since it must be checked at every 
step if the distance from the center of the walking particle to the center of all the aggregated 
particles is not less than twice the radius of the particles, if this occurs, the aggregation must 
be performed. However, double caution must be taken because in these configurations the 
overlap of particles must be avoided, see Figure 2(b). Several works in the literature have 
explored algorithms that talk about this problem [6, 7].

As observed by the dendritic growth exposed at Figure 2(a) and (b), the on-lattice simulations 
have typical different features when compared to the off-lattice simulations, and one special 
form to quantify this difference is the angular pair-pair correlation function that is discussed 
in Section 3.

Figure 1. 2D DLA off-lattice containing 103 identical particles, showing the respective radii of the aggregates used during 
the simulation.
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There are some types of DLAs that, instead of using a radial configuration for the launch of 
particles, they use a line (2D) or a plane (3D) and limitate the walk of the particles between 
the launching line/plane and parallel line/plane that contains the seed particle. see Figure 3. 
Although visually the two DLAs, planar-based growth and radial growth, are very different, 
both typically have a fractal dimension of approximately 1.71 for 2D cases [7].

The typical pair-pair correlation function c (r) directly measures the probability of finding 
two particles separated by a given radial distance. In classical molecular dynamics simula-

tions, this type of function is called radial distribution function g(r) [2], and may characterize, 
among other things, the formation of micelles, clusters, and in some cases chemical bonds.

Mathematically, in the case of fractals, this radial function can be calculated as
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    |    )     is equal to the unit for the case of particles separated by a given radial 

separation r and zero otherwise. N is exactly the total number of particles added.

The radial feature of this distribution does not prevent it from being used in fractals that do not 
present radial symmetry, as is the case of planar-based DLA, but its analysis must be performed 
with more cautious. From the computational point of view, it is very rare for the particles to 
be perfectly separated by the distance r. Effectively, an average histogram-like calculation is 
made for the above summation as follows: every aggregate particle is taken as the center of a 
spherical/circular shell/ring in the surroundings of this particle. The thickness of this shell/ring 
is δr. It is counted how many particles have their centers within this ring of radius r and thick-

ness δr, - see Figure 4. At the end of the calculation, the summation is divided the value by N.

When this calculation is performed for different values of r, going from 1 unit to RAgg which is 
the characteristic size of the aggregate, we can determine a continuous curve, and to denote 
characteristics of probability distribution to this function. In general, this function is normalized 

Figure 2. (a) Aggregation test in a 2D on-lattice DLA, white sites represent empty space, black sites represents spaces 
occupied by aggregate particles and gray site represents the walking particle. (b) DLA 2D off-lattice aggregation test, 
black circles are aggregate particles and the gray circle is the walking particle.
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with the integral of the function obtained in the domain of the function, or it is rescaled based 
on the maximum value Max(c(r)) of the function.

In the case of a typical DLA, c(r) behaves similarly to that shown in Figure 5. Note that there 
is a global maximum and no other intermediate peaks. This value of r for which c(r) reaches 

Figure 4. Schematic diagram of the calculation of c(r) by accounting for a histogram of the radial correlation function for 
a 2D DLA particle. Black circles are aggregate circles, the centered gray circle is the center of the circular ring, and gray 
circles are the circles accounted due to their centers are within the circular ring of thickness δr.

Figure 3. (a) DLA 2D with 103 particles deposited on-lattice for the case where the seed is deposited in a plane and the 
particles are thrown on top a plane.
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a maximum value means the most likely average separation between the particles. As there 
is only this peak, the aggregate is expected to exhibit isotropy in its morphology, or there is 
no trend in aggregate growth. In cases where the aggregate has one of the branches more 

Figure 6. (a) DLA 2D off-lattice containing 2 × 103 particles containing one of the branches more developed than the other 
branches and (b) pair-pair radial distribution function referring to DLA of item (a) of this figure.

Figure 5. Radial distribution function for the 2D off-lattice DLA containing 104 particles of Figure 1.
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developed than the others, there is a change in this distance, and one of the peaks ends up 
becoming a peaked function, see Figure 6. The maximum of the function is shifted from its 
original position, making evident that exist an anisotropy at the aggregate, but cannot be the 
finally proven to be a signature of the anomalous growth of the fractal.

3. Angular pair-pair correlation function

The manner in which the dendrites of a DLA-type aggregate or other branched fractal are 
formed may be extremely relevant in their characterization. One way to characterize such 
branching is by calculating the angular pair correlation function c(θ).

Using the primitive ideas of c(r), the pair-pair angular correlation function is nothing more 
than a probabilistic measure that we can find two aggregated particles, or two infinitesi-
mal parts of the fractal, separated by an angular aperture (θ) one of the others. That is, 
we indirectly measure which angles of openings are more or less likely to be of branch 
bifurcations.

Mathematically, the correlation function c(θ) is

  c(θ ) =   
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   |    )     is equal to unity since particles i and j are separated by an angular separa-

tion θ. N remains the total number of particles added to the aggregate.

Computationally speaking, it is also very complicated to determine θ angle, for this, we again 
perform the calculation of c (θ) by means of a histogram, which is executed as follows: all 
aggregated particles are taken as the center of of circular sectors with angular opening δ(θ), 
centered on (θ), with (θ) being calculated as the angle based on the polar axis created on the 
particle analyzed, see Figure 7.

The aggregate particles that have their center inside the circular sector are accounted for in the 
histogram. After the calculation is performed for all aggregated particles, the sum is divided 
by the total number of particles added.

Similarly to the case of c(r), one can normalize the function c(θ) or simply rescale it with its 
maximum value for a better visualization of it.

In the case of a typical 2D DLA, such a function can be seen in Figure 8. Note that again DLA 
growth isotropy returns us a function that is periodic with respect to the angle π and all 
dendrites grew at a periodic aperture, with multiple peaked angles at this interval. In cases 
where c(θ) presents more than one direction of growth, such a phenomenon may be associ-
ated with some anisotropy in fractal growth, similar to that presented in Ref. [8]. In general, 
these anisotropies are associated with symmetry breaks in the process of aggregate formation 
[8]. And such a mathematical tool is extremely useful and effective in the process of quantifi-

cation of this phenomenology. As can be obser ved on the c(θ) function shown in Figure 9, for 
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Figure 8. Rescaled c(θ) for the typical 2D DLA shown in Figure 1 performed as described in Section 3.

Figure 7. Schematic diagram of c(θ) calculation, for the 2D case the centered gray is the particle selected to be the 
center of the circular sector, the black circles are the aggregate particles and the gray circles are the particles that will be 
accounted for in the histogram. The black filled line is the polar axis associated with the selected particle, the black dotted 
lines is the centerline of the circular sector with opening δθ centered in angular position (θ).
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the anisotropic DLA, presented in Figure 6(a), is visible that the peaked functions at the spe-
cific angle of approximately {π/2, 3π/2} radians are associated with the anomalous branches 
that grew bigger than the rest of the aggregate.

Obviously, the Hausdorff dimension of these anisotropic structures also change, but mean-
while, the calculations of c(r) and c(θ) end up corroborating the morphological changes advo-
cated by a primary fractal dimension calculation.

There are cases in which the constituent species of the fractal/aggregate end up being differ-
ent from each other, as was discussed in the paper [9]. In this case, it was necessary to create 
a correlation function for each of the species of particles involved in the aggregation growth 
process. This example proves the malleability of this type of function in the determination of 
morphological characteristics of the aggregates.

4. Conclusion

As observed throughout this chapter, the determination of the main characteristics associated 
with the morphological structures of two-dimensional fractals, especially those with dendritic 
properties and radial dispersion, involves the determination of  angular correlation functions 

Figure 9. Rescaled c(θ) for the typical 2D DLA shown in Figure 6(a) performed as described in Section 3.
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c(θ) that may be useful at the capture of this characteristics. Investigations associated with dif-
fusive processes such as crystal growth, neuronal formation, some types of tumoral growth, 
polymerization processes, deposition of materials, electric discharges, the formation of per-
colation networks among others are some of the examples that can be approached quantita-
tively by this mathematical tool.
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