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Abstract

This review concentrates on two aspects of how total flavonoid content and individual 
flavonoid compounds change with the perception of environmental stress and the subse-
quent changes in those metabolites after post-harvest conditions are of the main points of 
the study. Hereby, along with this study, the flavonoid synthesis or their accumulation 
with their importance in plants and then in humans is briefly described. According to 
the literature cited herein, it seems that a universal mechanism concerned with flavonoid 
accumulation in response to the abiotic stress factors cannot be illustrated. Flavonoid 
accumulation exhibits different reactions to the different stressors. Flavonoid accumula-
tion behavior not only varies depending on the developmental stage, species and even 
cultivars of the same species but also post-harvest processes.

Keywords: total flavonoid, abiotic stress, post-harvest processes

1. Introduction

Phenolic compounds are secondary metabolites derived from pentose phosphate, shikimate 
and phenylpropanoid pathways in plants [1], and a wide range of functions including partici-
pation in the regulation of growth and developmental processes and interactions with biotic 
and abiotic environmental stimuli have been attributed to the those phytochemicals [2]. Of 
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those compounds, flavonoids comprise the large and common group of plant phenolics with 
more than 5000 different described flavonoids in six major subclasses, including flavones, 
flavonols, flavanones, flavanols, anthocyanidins and isoflavones [3].

Carbon skeleton of flavonoids occurs from combining of two phenyl ring and a propane 
chain. Rings of 2-phenyl benzopyran consisting 15 carbons are referred as A, B and C-rings 
[4] (Figure 1). Flavonoids structure’s diversity can be classified according to do both major 
classification and oxidation level [5]. Additionally type, number and binding positions of sub-

stitutions binding to aromatic rings cause flavonoids structure’s diversity [6].

Since plants are open systems and do not exist in a vacuum, they are continuously interacted 
with their biotic and non-biotic surroundings. In order to explore what kind of mechanisms 
underlining the defense against changing environmental conditions and other physiologi-
cal and biochemical processes for the plant are still great concern of the researchers. Like all 
living and non-living things in the universe, with each step upwards in the life span, novel 
properties concerned with quality and quantities of the flavonoid content depending on the 
environmental, ontogenetic, annual and diurnal variations, which are not present at the cur-

rent stage of the plant may emerge but it is worthy to underline that these effects are species 
dependent. The post-harvest practices such as “from wild to domestication,” “from fields 
to shelves” and “from shelves to pharmacy” are also great interest of the consumers for the 
sustainable healthier life conditions. Hence, universal and uniform mechanisms with respect 
to the production, accumulation or secretion of the flavonoid have not been proposed yet 
(Figure 2). Two aspects of flavonoid content and their individual compounds can be dis-

cussed. One is the content which is directly dependent on plant species itself and with its 
responses against abiotic stress conditions. This can be simplified as “plant health.” The later 
one is about the changes, which are related to the human consumption. This second aspect 
can be also simplified as “human health.”

1.1. Abiotic stress challenges regarding with quantity versus quality: two sides of  

the coin

As sessile organisms, plants are often exposed to various environmental stress factors. 
Hence, plants must regulate their growth and development in response to ever-changing 

Figure 1. The basic structure of flavonoids.
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 environmental conditions and their stimuli. Once plants cannot tolerate or overcome the 
unfavorable environmental conditions, plant growth and development are likely adversely 
influenced and subsequently significant loss of crop yields [7, 8]. Along with the stress condi-
tions, plant behavior may change with respect to the secondary metabolite synthesis, produc-
tion, secretion and storage when subjected to the abiotic stress factors [9]. Some secondary 
metabolite synthesis, enzyme activities and soluble substance accumulation were positively 
influenced by abiotic stress conditions. These are considered as consequences of plant adap-
tive strategies concerned with establishment of some changes allowing to the plant to sustain 
its life under ever-changing conditions.

Many results concerned with total flavonoid and their individual compounds in response to 
the different stressors. For total flavonoid content, increases were determined [2, 10–14, 16, 17, 
19, 20] whereas decreases were found [15, 18, 21] under different stress conditions.

Based on the literature review, we cannot deduce and explain the flavonoid accumulation or 
their compound profile using one simple sentence. The stress effect is compound specific. A 
uniform mechanism for compound profile variation cannot be illustrated [22]. Furthermore, 
the flavonoid accumulation is likely dependent stress factors, frequency, duration and timing.

Figure 2. Biotic and abiotic factors affecting flavonoid content and composition in plants.
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1.2. Is it adaptive strategy to sacrifice the primary metabolites through increases in 
secondary metabolite production against stress conditions or high efficiency use of 
secondary metabolite biosynthesis pathway?

As previously mentioned, pentose phosphate, shikimate and phenylpropanoid pathways 
are of the three pathways in plants, which are responsible for biosynthesis of phenolic com-

pounds [1]. Shikimic acid is a key intermediate in the synthesis of both aromatic amino acids 
and phenylpropanoids, and oxidative pentose phosphate pathway is of the precursors for the 
biosynthesis of aromatic amino acids, lignin and flavonoids [23]. Regulation and expression 
of the genes on the pathways have been well elucidated, but the pathway compartmentation 
is not yet known [24]. Some of the synthesis-associated genes and enzymes involved in phe-

nolics biosynthesis were characterized in Arabidopsis (Arabidopsis thaliana), maize (Zea mays) 

and petunia (Petunia hybrid). Also Fragaria spp. has been studied for their genes and enzymes 
([25–30]; cited by [24]). In order to determine which pathway is preferred for biosynthesis 
secondary metabolites under abiotic stress factors, the expression of protein or enzymes asso-

ciated with synthesis of secondary metabolites in the pathways should be determined and 
then compared with the control group-not stressed group. Determination of the long or short 
distance metabolic pathways or high or low energy cost pathways in response to the stress is 
also great concern to understand plant behavior and signaling.

Stressors bring about quantitative and qualitative changes in plant metabolites. Of those, in 
general, biosynthesis of proteins in the plant leaves is suppressed, triggering the changes at 
gene expression levels and subsequently the synthesis of new proteins. For the lipid content 
and composition, the disturbances concerned with fatty acid composition, especially changes 
in fatty acid carbon chains. The variations in the lipid composition influence membrane lip-

ids and transport functions of membranes. Furthermore, accumulation of the compatible sol-
utes is of the responses against drought, high temperature or high salinity, maintaining the 
osmotic adjustment and turgor regulation [31].

Plant secondary metabolites have been considered or often referred to as metabolites which 
are not fundamentals for sustainability of basic plant life processes. However, the crucial and 
wide range roles of secondary metabolites have been understood. The accumulation of phen-

ylpropanoids increased in response to the environmental stress including pathogen attack, 
UV-radiation, high light, nutrient deficiency etc. According to Bryant et al. [32] hypothesis, an 
exchange occurs between carbon and biomass production or formation of defensive secondary 
metabolites, proposing that secondary metabolites are involved in protective processes of plants 
in response to stressors. For example, phenyl amide formation and accumulation of anthocy-

anin and polyamines have been reported as a response to the environmental stresses [33, 34].

1.3. Over accumulation of flavonoid versus reactive oxygen species? Non-enzymatic 
antioxidant system but any relations with the enzymatic antioxidant system (SOD, CAT, 
APX)?

Flavonoids are secondary metabolites synthesized by general phenylpropanoid pathway in 
plants [35]. They have been considered as a secondary (non-enzymatic) reactive oxygen spe-
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cies scavenging system in plants and humans [36]. Flavonoids exhibit direct scavenging of 
reactive oxygen species [36] one of the ways scavenging reactive oxygen species, flavonoids 
can easily donate hydrogen atom. Thus, while reactive oxygen species are inactivated by 
flavonoids, flavonoids return to phenoxyl radical [37]. Flavonoids phenoxyl radical can react 
with other free radicals and then acquiring a stable quinone structure [38]. The other way 
of scavenging reactive oxygen species, flavonoids return to phenoxyl radical by donating 
hydrogen atom at the first step. At the second step, phenoxyl radical scavenge other high 
reactive radical (R●) by radical-radical termination. Flavonoid phenoxyl radical is highly sta-

bile radical due to presence of a resonance structure redistributed the unpaired electron on 
the aromatic core [39] (Figure 3).

1.4. The possible protective defense roles of flavonoids in response to UV light have 
been documented in many studies but what happens if the flavonoid and other pigments 
cannot completely block the sunlight transmission?

UV light from sunlight is primarily required to perform photosynthesis as basic function and 
developmental process such as de-etiolation, phototropism and flowering of the plants [40, 41]. 
But interestingly, the UV light causes damage to DNA, protein and cell membranes of the 
plants, because, as sessile organisms, plants are more exposed to the UV-light. Subsequently, 
normal growth and development of plants are retarded [41]. Short-wavelength UV light is 
grouped into three categories. Of those, UV-A (315–400 nm) directly reaches the earth’s  surface, 
and UV-B (280–315 nm) and UV-C (100–280 nm) are blocked by the ozone layer. However, a 
small quantity of UV-B reaches the earth’s surface because of ozone layer depletion and subse-

quently causes DNA damages [42].

A

B

Figure 3. Scavenging of ROS by flavonoids, reproduced from Pietta [38] (A) and reproduced from Amic [39] (B).
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UV-B has highest energy of UV light that reaches the earth surface [43]. Although the high 
level of UV-B causes damage to biomolecules, low level of UV-B regulates morphology, devel-
opment, phycology and biochemical compositions [44]. While long wavelengths UV light-
induced regulation is provided with photoreceptors including phototropins, neochromes, 
phytochromes, rhodopsins and cryptochromes [45] (Figure 5), UV-B-induced regulation 
is provided with UV RESISTANCE LOCUS 8 (UVR8) receptor protein [46]. UVR8 directly 
absorbs UV-B radiation and induces the transcription of flavonoids biosynthesis genes by 
orchestrating UV protective gene expression responses [47].

Flavonoids are synthesized with phenylpropanoid pathway in plant and the pathway 
includes enzymes such as phenylalanine ammonia lyase (PAL), 4-coumaroyl: CoA ligase 
(4CL), Chalcone Synthase (CHS), Chalcone Isomerase (CHI), Flavone Synthase (FS) and 
Dihydroflavonol-4-Reductase (DFRA) [48]. CHS is key enzymes for flavonoid biosynthesis 
pathway. CHS catalysis condensation reaction of Coumaroyl CoA and Malonyl CoA.

Upregulation of CHS genes transcription in response to the several stressors was reported to 
induce flavonoid biosynthesis [49]. UVR8 protein interacts with the WD40-repeat domain of 
COP1 after perception of UV-B light that is one of the stressors [50]. Consequently, UVR8-
COP1 complex leads to activation of HY5 gene expression [47]. HY5 proteins as a transcrip-

tion factor play an enhancing role for UV-B induced-CHS gene expression during seedling 
development by binding to a conserved G-box sequence [51, 52]. Thus, flavonoids that accu-

mulate in upper epidermis layer specially absorb a large amount of 280–340 nm wavelengths 
[53]. Thus, the flavonoids accumulated in upper epidermis layer protect the internal tissues 
of leaves and stems against UV-B. Since the synthesis of kaempferol is deficient in chalcone 
flavone isomerase mutant tt4 A. thaliana, the plant exhibits high sensitivity to UV light [54]. 
Along with the absorption of UV light with chromophore group of flavonoids, flavonoids 
may undergo a transformation. While flavonoids with aromatic chromophore absorb light 
in the 250 nm region of UV spectra, flavonoids contain carbonyl that are conjugated with the 
aromatic ring chromophore absorb light in the 350 nm region of UV spectra. The transforma-

tion of flavonoids after of UV light absorption in vitro conditions is illustrated in Figure 4 [55].

It is worthy to note that the flavonoids are not unique functional UV-blocker absorbing all 
UV-B irradiation but the other protective roles of flavonoids cannot be ignored in spite of 
deficient in absorption of all UV-B irradiation since UV-B induced increase in the quantity of 
flavonoids has been reported, suggesting that flavonoids may exhibit functions including sig-

nal molecules, antioxidant molecules, defensive compounds, allelochemicals [56] after UV-B 
exposure in plant.

When the UV light cannot be completely blocked via defense system apparatus of the plants, 
UV light reaches to DNA, resulting in formation of cyclobutene pyrimidine dimers (CPDs) 
and 6-4 photoproducts (6-4PPs) on DNA [57, 58]. There are two mechanisms repairing the 
photoproduct that can inhibit transcription and replication and induce mutations [48]: first 
one is photolyases enzyme, and the other one is nucleotide excision repair mechanism [60]. 
CPD Photolyase gene expression is regulated by a wide spectrum of light, including far-red, 
red and blue light [61]. But recent studies reported that photolyase gene expression was regu-

lated by UVR8 receptor protein and the regulation mechanism remains poorly  understood 
[62]. In order to exhibit DNA repair activity, photolyase enzyme needs UV-A light [63] but 

Flavonoids - From Biosynthesis to Human Health156



the light is not required for the activity of dark repair called nucleotide excision repair mecha-

nism. Recently, photolyase and nucleotide excision repair mechanism in A. thaliana were well 

described [60].

1.5. The fate of the flavonoid-enriched crop plants through the food chain: terminal

Any direct and indirect biotic or abiotic stressors or their combinations at certain time or 
simultaneously influence the phytochemistry and subsequently the changes orchestrate the 
plant protection and plants’ biological activities. Herewith, phytochemistry of a plant can be 
regarded as protective roles for plants against stressors and health-promoting properties for 
humans. The quality of the crop plants is a combination attributed to their composition and 

Figure 4. Photochemistry of quercetin pentamethyl ether (A) and photochemistry of flavan-3-ols (B) [55].

Figure 5. UV light perception, signaling and responses in Arabidopsis (scheme adapted from Li et al. [45]).
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contents that shape the commodity value for human consumption. Since humans are, in gen-

eral, considered to be at the top of the food chain, the terminal of the flavonoid-enriched/poor 
crop plants would be the human, resulting the health standards.

Nothing stays the same as its former form and the changes are inevitable for all living and 
non-living things. Therefore, numerous studies—as listed in Table 1 but not limited in this 
chapter—have been performed in order to keep the stability or dynamic changes of flavonoid 
content and its compound. Of those studies, atmosphere conditions are of great interest for 
long-term storage and subsequently essential for keeping biological value of the crop. In the 
study reported on Allium cepa var. calonicum Backer) by [64] (see the detail in Table 1), the high-

est content after storage at conditions with gas composition of 5% CO
2
 + 5% O

2
 was achieved. 

Two major compound—quercetin 3,4′-di-O-glucoside and quercetin 4′-O-glucoside (spi-
raeoside)—exhibited an increase [64]. Effect of carbon dioxide-enriched atmosphere on total 

Storage conditions/
cultivars/harvest times

Total flavonoid content Plant species Researchers

Different storage 
temperatures (0, 2, 4, and 6 
+ 2°C) + 5%, 10%, 20%  
or 0.03% CO

2

Total flavonoid content Phoenix dactylifera L. [54]

Storage conditions were at 
50, 25, 4, and −20°C

Total flavonoid content Anemopsis californica [59]

Freeze and thermal drying Total flavonoid content Oxycoccus palustris Pers. [60]

Stability testing at different 
temperatures

Flavonoid glycosides Calendula officinalis and 
Betula sp.

[61]

Storage at 27°C for 9 days Total flavonoid content Paluma cultivar [62]

Temperature and storage 
time

quercetin-3-rutinoside, 
quercetin-3-glucoside, 
quercetin-3-d-galactoside

Sorbus aucuparia [63]

Subunit parts of the 
rhizome during the 
thermal drying process 
under treatment 
temperatures ranging from 
40 to 120°C

Mangiferin, iristectorigenin 
A, irigenin, irilone 
dichotomitin

Belamcanda. chinensis (L.) DC. [64]

Cultivars and storage 
conditions

Total flavonoids Pistachia vera L. [65]

Normal atmosphere and 
0% CO

2
 + 21% O

2
, (2) 5% 

CO
2
 + 5% O

2
, 5% CO

2
 + 2% 

O2, 2% CO
2
 + 5% O

2
, 2% 

CO
2
 + 2% O

2

Quercetin 3,4′-di-O-
glucoside, quercetin 
3-O-glucoside (isoquercetin), 
quercetin 4′-O-glucoside 
(spiraeoside)

Allium cepa var. calonicum 

Backer
[64]

At ambient temperature 
(about 25 ± 2°C) in a 
refrigerator (4 ± 0.2°C)  
and sampling days 0, 2,  
4, 6, 8, 10, 12, 14

Total flavonoid content Juglans sigillata [67]

Table 1. Continue
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 flavonoid content changes in Phoenix dactylifera L. fruit in response cold storage was tested and 
the fruits stored under low temperature conditions (0°C) or relatively high CO

2
 concentration 

(20% CO
2
) was reported not to exhibit any chilling or CO

2
 injury symptoms. Modified condi-

tions have been reported to extend not only the date storability and then fruit quality but also 
magnify the maintenance of fruit quality in response to the cold temperature storage [65].

Furthermore, the influence of different plant parts, developmental storage and storage dura-

tions (1, 2, 3 and 4 days) [66], different temperature and sampling days  [67], different storage 
days  [68], Light (photosynthetically active radiation (PAR) level and maturity [69] has been 

Storage conditions/
cultivars/harvest times

Total flavonoid content Plant species Researchers

Different cultivars Spiraeoside (quercetin-4′-
O-β-d-glucoside), rutin and 
quercetin

Allium cepa [70]

Different plant parts, 
developmental storage  
and storage durations  
(1, 2, 3 and 4 days)

Total flavonoid content Clinacanthus nutans (Burm. f.) [66]

Storage at 6, 16 and  
25°C for 6 days.

Flavonol Fragaria ananassa Duch. [68]

Different temperatures 25 
± 2°C (room temperature) 
and 10 ± 1°C (refrigerator) 
at different time of 
intervals (1st, 5th and 10th 
day)

Total flavonoid content Brassica rapa L. [71]

Storage for 0–7 months  
at 25 and 37°C

Total flavonoid content Oryza sativa (milled rice) [72]

Light ((photosynthetically 
active radiation (PAR) 
level of 56 ± 0.5 μmol m−2 

s−1 (H); 31 ± 0.2 μmol m−2 

s(L), or in dark (D). and 
maturity (0–5% red, 20% 
red, 50% red, 80% red, 
100% red)

Ellagic acid, quercetin, 
kaempferol and cyanidin 
3-glucoside

Rubus ideaus L. [69]

Storage for 7, 15 and 30 
days at 4, 22 and 35°C

Catechin, epicatechin, 
procyanidins B1-B4 and total 
flavonoids

Cocoa powder [73]

Industrially squeezed, 
pasteurized, concentrated 
and stored under 
refrigeration (4°C) and at 
room temperature (20°C)

Flavanone-7-O-glycosides, 
fully methoxylated flavones

Citrus clementina Hort. ex 
Tan. C. reticulata Blanco × C. 

sinensis Osb., C. sinensis

[74]

Cultivar and storage 
conditions

Total flavonoid content Malus domestica Borkh. [75]

Table 1. Various studies concerned with the post-harvest processes and different cultivars influence on flavonoid content.

Table 1. Continued
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examined to indicate that the there is no constant stability or dynamics of flavonoid content 
and its compounds in quantity and quality.

2. Conclusion

As a conclusion, since plants are open systems and do not exist in a vacuum, they are continu-
ously interacted with their biotic and non-biotic surroundings. Based on the literatures cited 
in the present chapter, a universal mechanism with respect to the accumulation behavior 
of flavonoid cannot be illustrated even the flavonoids commonly exhibit a tendency toward 
increase in response to the unfavorable conditions. Up to our best research, flavonoid accu-
mulation behavior varies depending on the developmental stage, species and even cultivars 
of the same species. It also exhibits different reaction to the different stressors.

Beyond physiological aspect for the plants for their survival mechanism, plants are also 
sources for other living organisms. The quality and then biological efficacy of the flavonoid 
containing crops are great issue for human beings. According to the literature cited herein, 
the fate of the flavonoids containing herbal products including bulbs, leaves, fruits etc is influ-
enced by the storage temperatures, storage time, modified storage conditions, cultivars, dif-
ferent parts and subunit parts of the plant, light and maturity.
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