
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 10

Modeling and Simulation of Task Allocation with
Colored Petri Nets

Mildreth Alcaraz-Mejia,
Raul Campos-Rodriguez and
Marco Caballero-Gutierrez

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67950

Abstract

The task allocation problem is a key element in the solution of several applications from
different engineering fields. With the explosion of the amount of information produced
by the today Internet-connected solutions, scheduling techniques for the allocation of
tasks relying on grids, clusters of computers, or in the cloud computing, is at the core
of efficient solutions. The task allocation is an important problem within some branch of
the computer sciences and operations research, where it is usually modeled as an
optimization of a combinatorial problem with the inconvenience of a state explosion
problem. This chapter proposes the modeling of the task allocation problem by the use
of Colored Petri nets. The proposed methodology allows the construction of compact
models for task scheduling problems. Moreover, a simulation process is possible within
the constructed model, which allows the study of some performance aspects of the task
allocation problem before any implementation stage.

Keywords: colored Petri nets, task allocation problem, modeling and simulation, dis-
tributed computing

1. Introduction

The services provided by Internet-based modern applications require the execution of mas-

sively parallel processes in order to produce time-effective information for different require-

ments. The processing of these “Big Data” is very computing, demanding in almost all of the

cases. Thus, vast server farms installed over the world are ready to process the requests from

different users. The digital data available in the web are huge and diverse, therefore complex,

and in a continuous growth rate.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Nowadays, most of the queries on Internet are produced from smartphones and personal

computers. However, the data traffic on web is expected to grow in an exponential rate, as

the technology related to the Internet of Things (IoT) allows the connection of other devices

from the houses, smart warehouses, automated driving cars, machinery from the agriculture,

UAV’s for goods delivering, or smart cities, to mention a few. In order to cope with the

challenges related to a massive number of connected devices, new ways of computing

emerged. Most of them are based on parallel and distributed computing, such as clusters,

grids, and cloud computing paradigms.

At the core of these paradigms are the tasks scheduling and resources allocation problems.

Adaptations of theory, methods, algorithms, tools, and others are arising in order to cope with

the increasing number of cores per processor, as well as with the interconnected and heteroge-

neous computers, considering that, in many cases, those computing architectures are connected

through the Internet. The tasks scheduling and resources allocation were well studied in the

context of architectures with a relatively small number of processors. One of the fundamental

concerns deals with designing algorithms for an efficiently allocation of the tasks among all the

available processes and resources.

The answer to this question may lead to a hard work, since, in the worst case, it involves an

exponential number of possible solutions [1]. Thus, a simulation process, for scenarios with a

big number of computing elements, or cores, as in cloud and grid computing, is a valuable

tool. In this context, the modeling and simulation are disciplines widely used to obtain feed-

back and statistics information, to improve associated applications and algorithms. Through

experimentation in simulators, a fast prototyping process allows performance evaluation and

parameter tuning for different workload conditions. To perform an efficient simulation pro-

cess, a suitable modeling method is required. The Petri nets (PN’s) and its extension, such as

colored PN (CPN), have been considered as an efficient modeling technique for concurrent and

distributed systems.

The simulation and implementation stages of scheduling and resource allocation problems in

distributed systems have been successfully addressed [2–9]. Moreover, variants of PN’s are

used for modeling and simulation of other distributed concepts related to cloud services and

computing [9–16], as well as in the field of the diagnosis of discrete event systems [17–19],

reconfiguration [20–24], fuzzy inference [25] or identification [26].

This work proposes the modeling of the task allocation problem by the use of a methodology

based on CPN’s. It also shows how to simulate these models in order to obtain relevant informa-

tion for the design process. To illustrate the techniques, this work considers a tree structure and

supposes that the set of tasks and the set of processes are fixed and defined before the task

allocation is performed as in Ref. [27]. The proposed CPN modeling method represents the

behavior of a set of processors, or working threads, that traverse a tree structure from the root

to a single leaf in order to acquire a task. The processes decide what route to take at each node of

the tree structure, by using a decision function. Then, it routes the tree backwards updating some

global variables that serves as inter-process communication mechanism.

The proposed method allows obtaining a CPN, which is a compact representation of the

problem, and at the same time, it allows simulating its behavior and obtaining performance

Computer Simulation214

graphics. The colored tokens represent the processes, tasks, and other variables of interest in

the problem. A decision function is attached to some transitions of the CPN model. This

function influences the behavior of the process or thread. Due to the graphical nature of the

CPN, in addition to the mathematical fundamentals, this methodology provides a great frame-

work to simulate and analyze the task allocation problem, avoiding the state space explosion,

and thus, having a compact representation of a complex behavior. The flexibility of the model-

ing framework allows simulating different scenarios, using different decision functions, as well

as varying the number of initial processes or threads. Additionally, the Petri Net model can be

easily extended to simulate a wider number of tasks.

The rest of this chapter includes a background of the task allocation and several techniques

that have been used for addressing this problem. The modeling framework based on colored

Petri nets is next presented and the modeling methodology is detailed. This methodology

highlights the main aspects of the task allocation problem, such as the concepts of task and

process, as well as the balancing policies and how to capture them by CPN blocks. The

simulation of the obtained CPN models is then presented and discussed. Some performance

charts are provided. The charts allow the study of key aspects of task allocation problem such

as the effective work done by a processor, the task contention, the effects of different balancing

policies, to mention a few. With this information, the scientists and engineers are able to study

different aspects of the problem prior any implementation stage in a particular field of interest.

2. Task allocation problem

Task allocation problem has been addressed for several purposes and using different tech-

niques. Analytic solutions are in some cases prohibitive since they require the analysis of an

exponential number of possible solutions. Thus, some designs use probabilistic approaches to

produce good solutions in a reasonable time. Jevtić et al. [28] present a distributed bee’s

algorithm for static task allocation inspired on the behavior of a colony of bees and based on

the optimization of a cost function. They also show results using the Arena simulator. Delle

Fave et al. [29] introduced a decentralized optimization for static task assignment based on a

constrained utility function, firstly evaluated by simulations. Johnson et al. [30] state a distrib-

uted multi-agent algorithm for static multi-task allocation as an optimization problem based

on mixed-integer programming. They also provide some results of Monte Carlo simulation.

Zhao-Pin et al. [31] introduced a distributed and static task allocation algorithm for multi-

agents that learn how to determine by themselves what tasks should realize and how to form

coalitions for cooperation, via their proposed profit-sharing learning mechanism. Macarthur

et al. [32] introduced a dynamic and distributed algorithm for multi-agent task allocation

problems, based on fast-max-sum algorithm combined with a branch-and-bound technique,

in order to reduce the execution time in the allocation of task to its respective agent. Alistarh

et al. [27, 33] present a decentralized task allocation, static and dynamic, based on to-do trees,

where decisions on every inner node are based on a probability function.

One of these most used techniques, due to its simplicity of implementation, is based on a

rooted tree structure that the process traverses in order to acquire a task [7, 8]. The tree

structure allows to the working processes for executing a non-deterministic behavior, which

Modeling and Simulation of Task Allocation with Colored Petri Nets
http://dx.doi.org/10.5772/67950

215

is quite suitable for real environments. Typically, in these tree structures, every reference to a

task is allocated on the leaves. Thus, every internal vertex allows to a working process taking a

decision based on a function over the number of tasks in every leaf of the subtrees from each

child of the current vertex. Hence, the decision function, which could be a simple deterministic

algorithm, or a sophisticated statistical or stochastic procedure, is a key element for which a

process traverses through the tree structure, in this kind of task allocation techniques.

Figure 1 shows a binary tree that represents a scheduling problem where eight tasks have to be

attended. The height of the tree is H ¼ log2ð8Þ ¼ 3, where the level of v2,2 is 2, the vertex v1,0 is

said to be parent, or ancestor, of v2,0 and v2,1, and the latter two are said to be children, or

descendant, of v1,0. The vertex v0,0 is the root, and every vertex is internal except for all of the

level 3, i.e., v3,x with x∈ ½0, 7�, which are known as leafs of the tree. The tree formed by the

vertexes v2,1, v3,2, v3,3 and the corresponding edges that connects them, is a subtree with v2,1 as

a root.

From the graph theory point of view, a DT is an acyclic graph in which a unique path connects

every node to others, represented in a top-to-bottom fashion, where the root, i.e., initial node,

is plotted at the top of the tree. The DT is a binary decision tree (BDT) if at every node is

considered at most two possible decisions, as shown in Figure 1. For more information on trees

see Ref. [34].

2.1. Task scheduling with DT

By using a tree structure like the one depicted in Figure 1, the task allocation algorithm is

relatively simple. Each working process shares the tree structure and iterates in an infinite

loop, trying to acquire a new task to execute, which is located at the leafs of the tree. Each

working process starts at the root node of the tree and decides whether to go to the left or the

right child node. The process knows an approximation of the total pending tasks at the left and

right subtrees at every step. For example, in Figure 1, each working thread knows that at the

beginning of the scheduling process, at the root node, that there exist four pending tasks at the

Figure 1. A direct rooted full binary tree.

Computer Simulation216

left subtree and four pending tasks at the right one. Then, at every stage, the processes decide

to traverse to the left or right in an asynchronous fashion. The total number of pending tasks is

backward updated from the lower nodes to the uppers as the tasks are successfully executed

by the threads. Notice that, the number of pending tasks at the left or right subtree is an

approximation since this number may be not updated yet.

Since the processes are asynchronous among them, it is possible that they arrive to the leaf

nodes that may occur at different rates. Every time that a process reaches a leaf, it asks for the

execution of the task. If such a task is free, then the process blocks this task, executes the

activity, and marks the task as executed. Then, it goes back to the root node to seek for a new

task to execute, while the information of the remaining tasks is backward updated from the

leaf to the root node. It is possible that when a process reaches a leaf node, the corresponding

task was already executed by another process. In this case, the process goes back to the root

node, and this miss is counted to measure the effectiveness of the algorithms.

r <
x

xþ y
ð1Þ

In Eq. (1), it represented a decision rule that a working process may execute at every level of

the BDT. Let x be the total number of pending tasks in the left subtree and y be the total

number of pending tasks in the right subtree, while r is a random number. Thus, the probabil-

ity to go to the left subtree in a flip coin is given by r. As greater the ratio, it is greater the

probability to go to the left child of the current node. One of the main objectives of this work is

to measure the effectiveness of a decision rule as Eq. (1) by means of a simulation process.

3. Colored Petri nets

PN’s are a modeling framework that combines a graphical visualization with a mathematical

model [35]. The CPN’s are one of the extensions to PN’s [9, 17, 35–42], which allow the

construction of compact representations of big models. In this section, basic notions of CPN

are presented.

The main characteristic that differentiates CPN from other type of nets resides in the token

definition. In a CPN, the tokens can stand for complex data besides of a single value, such as an

integer, a real, Boolean or strings. This characteristic allows for the representation of elaborated

data types, similar to those used by high-level programming languages. This ability exploits

the multi-set cardinality to construct compact models that otherwise are in the power set of the

colored tokens. The formal definition of a CPN is as follows [35].

Definition 1. A Colored Petri Net (CPN) is a tuple

N ¼ 〈P, T, Pre, Post, B, F, Cp, Ct〉 where its elements are described as:

• P is a finite set of places of N , with m ¼ jPj,

• T is a finite set of transitions of N , such that T∩ P ¼ ∅, with n ¼ jTj,

Modeling and Simulation of Task Allocation with Colored Petri Nets
http://dx.doi.org/10.5772/67950

217

• B is finite set of color classes,

• F is a set of conditions,

• Cp : P ! B is the color domain mapping,

• Ct : T ! F is a conditional color mapping, and

• Pre, Post∈SjPj· jTj are matrices representing the input and output incidence matrices of N ,

such that Pre½p, t� : CtðtÞ ! BagðCpðpÞÞ and Post½p, t� : CtðtÞ ! BagðCpðpÞÞ are mappings for

every pair ðp, tÞ∈P ·T; where BagðSÞ ¼ ∪ bðsiÞ for all si ∈S, such that bðsiÞ ¼
X

si ∈S.

The incidence matrix is C ¼ Post� Pre. The mapping given by Pre½p, t� : CtðtÞ ! BagðCpðpÞÞ,

defines for each conditional color mapping f of t ði:e: ∀f i ∈ CtðtÞÞ, the token bag to be removed

from p, in the occurrence of t, under color condition f. In the same way, Post½p, t�ðf Þ specifies the

token bag to be added to p, in the occurrence of t, under color condition f.

Definition 2. A marking M of a CPN N is a vector of size m ¼ jPj, such that MðpÞ∈BagðCpðpÞÞ

for every p∈P. The vector M0 denotes the initial marking of the net N and the pair ðN ,M0Þ

is known as a CPN System.

Definition 3. A transition in a CPN System ðN ,M0Þ is said to be enabled for a color condition f

in a marking M iff M ≥Pre½■, t�ðf Þ, denoted as M!
t, f
.

Definition 4. The marking evolution w.r.t a color condition f is given by M0 ¼ Mþ Post½■, t�ðf Þ

�Pre½■, t�ðf Þ ¼ Mþ C½■, t�ðf Þ, denoted by M!
t, f
M0. For a general color condition, it is

denoted as M!
t
M0 where f is implicit in a context.

The net in Figure 2 represents a very simple CPN System ðN ,M0Þ where:

• P ¼ fp1, p2, p3g,

• T ¼ ft1, t2g,

• B ¼ o∪ r, where o ¼ fo1, o2g and r ¼ fr1, r2g are variables,

• F ¼ {f 1, f 2},

Figure 2. A CPN example.

Computer Simulation218

• Cpðp1Þ ¼ Cpðp2Þ ¼ o, Cpðp3Þ ¼ r,

• Ctðt1Þ ¼ f 1, Ctðt2Þ ¼ f 2,

• Pre and Post are as depicted, and

• M0 ¼ ½fo1, o2g,∅, {r1, r2}�
0, where o1 ¼ 1, o2 ¼ 2, r1 ¼ a, r2 ¼ b.

Notice that, at the initial condition, M0 ≥ Pre½■, t1�ðf 1Þ. That is ½fo1, o2g,∅, fr1, r2g�
0
≥ ½fo1, o2g,

∅, {r1, r2}� : {ðo1, r1Þðo2, r2Þ}, thus, t1 can be fired for any color binding fðo1, r2Þðo2, r1Þg due to the

condition in f1. Suppose that, t1 fires for color condition f1 with ðo2, r1Þ, thenM0 ���!
t1, ðo2, r1Þ

M1, with

M1 ¼ ½fo1g, fo2g, fr2g�
0, where o1 ¼ 1, o2 ¼ 2, r2 ¼ b, by Post½■, t1�ðf 1Þ ¼ {ðs1Þ} as detailed in the

figure. Now, M1 ���!
t1, ðo1, r2Þ

and M1���!
t2, ðo2Þ

, in such a way, that if t2 is fired, then M1 ��!
t2, ðo2Þ

M2, with

M2 ¼ ½fo1,o2g,∅,fr1 , r2g�
0

, where o1 ¼ 1, o2 ¼ 4, r1 ¼ a, r2 ¼ b. However, if t1 is fired from M1

for the color condition ðo1, r2Þ, then M1 ���!
t1, ðo1, r2Þ

M3, with M3 ¼ ½∅,fo1,o2g,∅�
0, where o1 ¼ 1,

o2 ¼ 2.

Roughly speaking, the CPN binds the even number in p1 to the character “a” in p3 and the odd

number to character “b.” This is defined by the guard function f 1 attached to t1. The function s1
discards the r element of the token bound to the firing of t1, while the firing of t2 adds two to

the o element of the token and recovers the r element that is put back to the place p3. Thus, the

tones in p1 changes to o1 ¼ 1, 3, 5,… and o2 ¼ 2, 4, 6,…, while the characters “a” and “b” in p3
remain the same all the time. The “R” in the place p3 stands for “resources,” which is the

function intended for the characters in this CPN model.

Notice that, the bindings ðo1, r1Þ and ðo2, r2Þ are discarded by the function f 1. This is one of the

advantages of the CPNmodeling tool, since otherwise, the combinatorial explosion of possible

bindings turns untreatable under some circumstances that typically arises in real applications.

For more information about the CPN modeling formalism and related analysis and tools, see

Ref. [36].

4. Modeling and simulation of task scheduling

The construction of a generalized model for a BDT based on CPN considers d different features

and nT classes. The procedure includes the identification of the transitions and places of the

model, the arcs and its labeling, as well as the multi-set of colored tokens. The remaining of this

section is devoted to detail the methodology and illustrate it by short examples.

4.1. Structure of the task allocation as a CPN

Consider the following steps for the construction of a CPNmodel that captures the structure of

a BDT. It is supposed that the BDT is a full binary tree with a complete set of tasks represented

by a structure called Task Array. Thus, the size of the Task Array is 2H, where the height of the

tree is H.

Modeling and Simulation of Task Allocation with Colored Petri Nets
http://dx.doi.org/10.5772/67950

219

Step 1. Labeling nodes in the BDT

Firstly, suppose that the DT is a full binary tree. Then, assign “0” to every left edge and “1” to

every right edge. This labeling represents the result of the flip coin in the task allocation

procedure of a BDT discussed in the previous section.

After that, some information is used to label every node with a pair ðdepth, positionÞ, where depth

is the level of the node, and position is the corresponding position from left to right. For example,

consider the root node ð0, 0Þ in the section of the BDT depicted in Figure 3. It is a fraction of the

tree of height H ¼ 3 of Figure 1. Then, to label the children of the root node proceed as follows:

• Let be depth ¼ depth� of � the� parentþ 1 and position ¼ 2 � position� of � the� parentþ h,

with h ¼ 0 if this node is the left child, h ¼ 1 otherwise.

Therefore, the label of the left child is ðdepth ¼ 0þ 1, position ¼ 0 � 2þ 0Þ ¼ ð1, 0Þ, while the

label of the right child is ðdepth ¼ 0þ 1, position ¼ 0 � 2þ 1Þ ¼ ð1, 1Þ.

Step 2. Building the CPN System

Let ðN ,M0Þ be a CPN System for a dynamic binary decision tree for nT classes and d features

with N ¼ 〈P, T, Pre, Post, B, F, Cp, Ct〉 constructed as follows:

• P ¼ PO∪ PR∪ PA, where PO is the set of places with assigned tokens of type O, PR is the set of

places with assigned tokens of type R, PA is the place with assigned tokens of type A.

jPOj ¼ 2ðH þ 1Þ, jPRj ¼ H and jPAj ¼ 1, where H ¼ log2nT. Places of type O represent

every level from the root to the leaves, forward, and backwards, i.e., a token in one of those

place contains the information of pos, depth, val. Places of type R represent the state of every

subtree from every node at that level, i.e., the value of the data function for every node of

the same level given by pos and depth. Place of type A represent the Task Array state, i.e., the

information of the availability of the task.

• T is the set of transitions with jTj ¼ jPOj.

Figure 3. Relation BDT and CPN.

Computer Simulation220

• B ¼ o ∪ r ∪ a, for o ¼ ∪ oi, r ¼ ∪ rj, and a ¼ ∪ al where oi ¼ 〈depthi, posi, vali, successi〉, rj ¼

〈depthj, posj, dataj〉, al ¼ 〈posl, readyl〉 for i∈ ½1, d�, j∈ ½1, 2Hþ1 � 2�, and l∈ ½1, nT�, with depthi,

posi, vali, successi, dataj, existl variables and depthj, posj, posl constants.

• F ¼ ff
1
, f

2
, f

3
, f

4
g, such that f

1
: ðoi, rj, rkÞjdepthi þ 1 ¼ depthj ¼ depthk ∧ posi�2 ¼ posj ∧ posi�2

þ1 ¼ posk, f 2 : ðoi, rjÞjdepthi ¼ depthj ∧ posi ¼ posj, f 3 : ðoi, ajÞjposi ¼ posj, f 4 : ðojÞ.

• CpðpiÞ ¼ o for all i∈ ½1, jPOj�, CpðpiÞ ¼ r for all i∈ ½jPOj þ 1, jPj� and CpðpiÞ ¼ a for i ¼ 2ðHþ

1Þ þHþ 1.

• CtðtiÞ ¼ f
1
for i∈ ½1, H�, CtðtiÞ ¼ f

2
for i∈ ½H þ 2, jPOj � 1�, CtðtiÞ ¼ f

3
for i ¼ H þ 1 and i ¼

jPOj þ 1:

• Pre½pi, ti�ðf 1Þ ¼ si1jf 1, for i∈ ½1, H�, Pre½pi, ti�ðf 2Þ ¼ si1jf 2, for i∈ ½H þ 2, jPOj � 1�, Pre½pi, ti�ðf 3Þ

¼ si1jf 3, for i ¼ H þ 1, Pre½pi, ti�ðf 3Þ ¼ si1jf 4, for i ¼ jPOj þ 1, Pre½pi, tj�ðf 3Þ ¼ qi1jf 3, for

i ¼ jPOj þ jPRj þ 1, j ¼ H þ 1, Pre½puþi, ti�ðf 1Þ ¼ 2ri1jf 1, for i∈ ½1, H�, Pre½puþi, tu�i�ðf 2Þ ¼ 2ri2

jf
2
, for i∈ ½1, H�, where:

• si1: o ! o, such that si1ð〈depthi, posi, vali, successi〉Þ ¼ 〈depthi, posi, vali, successi〉.

• qi1: a ! a, such that i1ð〈posl, existlÞ〉 ¼ ð〈posl, existl〉Þ.

• ri1: r· r ! r, such that ri1ð〈depthj, posj, dataj〉, 〈depthk, posk, datak〉Þ ¼ 〈depthj, posj, dataj〉

〈depthk, posk, datak〉.

• ri2 : r ! r, such that ri2ð〈depthj, posj, dataj〉Þ ¼ 〈depthj, posj, dataj〉.

• Post½piþ1
, ti�ðf 1Þ ¼ so1jf 1, for i∈ ½1, H�, Post½piþ1

, ti�ðf 2Þ ¼ so2jf 2, for i∈ ½H þ 2, jPOj � 1�, Post

½piþ1
, ti�ðf 3Þ ¼ so3jf 3, for i ¼ H þ 1, Post½p

1
, ti�ðf 3Þ ¼ so4jf 4, for i ¼ jPOj, Post½pi, tj�ðf 3Þ ¼ qo1jf 3,

for i ¼ jPOj þ jPRj þ 1, j ¼ H þ 1Post½puþi, ti�ðf 1Þ ¼ ro1, for i∈ ½1, H�, Post½puþi, tu�i�ðf 2Þ ¼ ro2,

for i∈ ½1, H�, where:

• so1 : o ! o, such that so1ð〈depthi, posi, vali, successi〉Þ ¼ 〈depthi þ 1, posi�2þ hi, vali þ ðhiÞ�

2H�depthiþ1, successi〉, withhi ¼ 0 ifαholds, otherwise 1. α is a decision function.

• so2 : o ! o, such that so2ð〈depthi, posi, vali, successi〉Þ ¼ 〈depthi � 1, posi
2
, vali, successi〉.

• so3 : o ! o, such that so3ð〈depthi, posi, vali, successi〉Þ ¼ 〈depthi, posi, vali, successi ¼ 1if Exist

ðposi, alÞ ¼ 1 otherwise 0〉, where Existðposi, alÞ returns 1 if for a color class al ¼ posl, existl
with posl ¼ posi, existl ¼ 1, otherwise 0.

• so4 : o ! o, such that so4ð〈depthi, posi, vali, successi〉Þ ¼ 〈0, 0, 0, 0〉,

• qo1: a ! a, such that qo1ð〈posl, existl〉Þ ¼ ð〈posl, existl ¼ 0 if Existðposl, alÞ ¼ 1, otherwise1〉Þ:

• ro1: r· r ! r, such that ro1ð〈depthj, posj, dataj〉, 〈depthk, posk, datak〉Þ ¼ 〈depthj, posj, dataj〉

〈depthk, posk, datak〉.

• ro2: r ! r, such that ro2ð〈depthj, posj, dataj〉Þ ¼ 〈depthj, posj, dataj � 1 if successi ¼ 1,

otherwisedataj〉.

Modeling and Simulation of Task Allocation with Colored Petri Nets
http://dx.doi.org/10.5772/67950

221

• The initial marking, assuming that the Task Array is initially full, is M0 defined as follows:

• M0½1� ¼ fo1,…, odg, where oi ¼ depthi ¼ 0, posi ¼ 0, vali ¼ 0, successi ¼ 0 ¼ 0, 0, 0, 0 for

i∈ ½1, d�.

• M0½jPOj þ i� ¼ ∪ i¼1H ∪ j¼02i�1r2i�2þj ¼ 〈i, j, 2H�i〉 assuming that the Task Array is initially

full, as mentioned.

• M0½2ðHþ 1Þ þHþ 1� ¼ ∪ i¼1nTai where ai ¼ 〈posi ¼ i, existi ¼ 1〉.

• M0½i� ¼ ∅ for i∈ ½2, jPOj�.

Figure 4 shows the relation of the tree structure with the proposed CPN as stated by the

previous definition. Observe that places of type O represent every level from the root to the

leaves, forward, and backwards, i.e., a token in one of those place contains the information of pos,

depth, and val. Places of type R represent the state of every subtree from every node at that level,

i.e., the value of the data function for every node of the same level given by pos and depth. Place of

type A represents the Task Array state, i.e., the information of the availability of the task.

4.2. Dynamics of the task allocation as a CPN

Typically, in these tree structures, every reference to a task is allocated on the leaves. Thus,

every internal vertex allows to a working process taking a decision based on a function over

the number of tasks in every leaf of the subtrees from each child of the current vertex. Hence,

the decision function, which could be a simple deterministic algorithm, or a sophisticated

statistical or stochastic procedure, is a key element for which a process traverses through the

tree structure, in this kind of allocation techniques. The following definitions allow capturing

these dynamics aspects of the task allocation based on a BDT.

Definition 5. The pos is a position function defined from a set of vertexes V of a tree T to the set

of natural numbers N as pos : V ! N, such that posðvÞ ¼ j, where j is the numeric position of

vertex v with respect to all the vertexes in the same level and counting from left to right.

Definition 6. The depth is a function defined from a set of vertexes V of a tree T to the set of

natural numbers N as depth : V ! N, such that depthðvÞ ¼ #edges from the root node to v:

Notice that, in Figure 2, the identification of a vertex v is given by vi, j where i ¼ depthðvÞ and

j ¼ posðvÞ.

Definition 7. The w is a weight function defined from the set of edges E of a tree T to the set

containing 0 and 1 as w : E ! f0, 1g, such that wðeÞ ¼ 0 if e connects a parent vertex to its

left child, and 1 if it connects to its right child. Let consider a vertex v of a tree T denoted as

vi, j such that i ¼ depthðvÞ and j ¼ posðvÞ. Then, for vi,x parent of left child vj,y and right child

vj,z, with their respective edges ei, j,y and ei, j,z, with y < z, by definition of depth, then

wðei, j,yÞ ¼ 0 and wðei, j,zÞ ¼ 1.

Notice that, the weight function w provides a zero for an edge connecting a father with its left

child and a one for the edge connecting it with the right child. In the modeling methodology

Computer Simulation222

here introduced, it is assumed that there exists a data structure called Task Array, which may

have a reference to a task, if it is initially inserted, and the task has not been taken yet. This Task

Array is mapped to the location of the leaves of a tree of height H from left to right, i.e., the

array has a capacity for referencing a maximum of The quaternion semi�widel tasks. Figure 1

shows a tree of height 3, with 8 leaves that are associated with the location in the Task Array,

where references to task are T0, T1…, T7. Accordingly, the following functions are defined.

Definition 8. The data function is defined from the set of vertexes V of a tree T to the set of

natural numbers N as data : V ! N, where dataðvÞ ¼ # of leaves in the subtree of root v with

a task ready to be taken.

Definition 9. The parent is a function defined from the set of vertexes of a tree T to itself as

parent : V ! V , such that parentðvÞ ¼ y, if v is child of y.

Definition 10. The val is a recursive function defined from the set of vertexes V of a tree T of

height H, to the set of natural numbers N as val : V ! N, such that:

• (Base): valðv0,0Þ ¼ 0.

• (Induction): valðvi, jÞ ¼ val
�

parentðvi, jÞ
�

þ w
�

eposðparentðvi, jÞ,depthðvi, jÞ, j

�

�2H�i, for every pair ði, jÞ,

where 1 ≤ i ≤ H, 0 ≤ j < 2i.

In Figure 2, for example, valðvÞ is shown in the left of every vertex v as valðvÞ=, e.g.,

valðv2,3Þ ¼ val
�

parentðv2,3Þ
�

þ w
�

eposðparentðv2,3Þ,depthðv2,3Þ,3

�

�23�2 ¼ valðv1,1Þ þ w
�

eposðv1,1Þ,2,3

�

�21

¼ val
�

parentðv1,1Þ
�

þ w
�

eposðparentðv1,1Þ,depthðv1,1Þ,1

�

�23�1 þ w
�

eposðv1,1Þ,2,3

�

�21 ¼ valðv0,0Þþ ¼ 0

þwðe0,1,1Þ�4þ wðe1,2,3Þ�2 ¼ 0þ 1�4þ 1�2 ¼ 6.

Observe that function val generates the value of a node based on the value of his parent. Notice

that, there are 8 leaves in level 3, and then, every node value is exactly one entry in the Task

Array. For example, the value 4= at v3,5 points to the entry T4. Now, consider the nodes in level

2, which are 4, exactly the half of those at level 3. Every vertex at this level, points to the first

entry in a range of 2, i.e., v2,0 has a value of 0, v2,1 and has a value of 2. Thus, every vertex at

level 1, points to the first entry of the two partitions of the Task Array, and therefore, v0,0 points

to the first entry of the whole of the Task Array.

For illustration purposes, suppose that there is one node with two threads and eight tasks to be

executed. Accordingly, d ¼ 2 and nT ¼ 8. The CPN System ðN ,M0Þ for modeling this problem

is shown in Figure 4.

Notice that accordingly to the proposed method, a full binary tree is obtained when nT ¼ 2n

for some n, since, in this case, H ¼ log2nT is exactly equal to log2nT. In the particular example,

H ¼ 3, since nT ¼ 23 ¼ 8. Then, jPOj ¼ 2ðH þ 1Þ ¼ 8, with PO ¼ fp1, p2,…, p8g; jPRj ¼ H ¼ 3,

with PR ¼ fp9, p10, p11g; jPAj ¼ 1 with PA ¼ {p12}; jTj ¼ jPOj ¼ 8, with T ¼ {t1, t2,…, t8}; o ¼

{o1, o2} since d ¼ 2; r ¼ fr1, r2,…, r14g, since 2
Hþ1 � 2 ¼ 23 � 2 ¼ 14, and a ¼ {a1, a2,…, a8}.

The following functions complement the CPN model:

Modeling and Simulation of Task Allocation with Colored Petri Nets
http://dx.doi.org/10.5772/67950

223

Figure 4. DS CPN with nT ¼ 8.

Computer Simulation224

• oi ¼ 〈depthi, posi, vali, successi〉 ¼ 〈0, 0, 0, 0〉, for i∈ {1, 2}. This marking represents the current

state of every process, i.e., at the beginning, processes are at root node v0,0 with a value 0.

Success being 0 means that no task has been assigned to the current process.

• rj ¼ 〈depthj, posj, dataj〉, such that j∈ ½1, jrj�, where: r1 ¼ 〈1, 0, 4〉, r2 ¼ 〈1, 1, 4〉, r3 ¼ 〈2, 0, 2〉,

r4 ¼ 〈2, 1, 2〉, r5 ¼ 〈2, 2, 2〉, r6 ¼ 〈2, 3, 2〉, r7 ¼ 〈3, 0, 1〉, r8 ¼ 〈3, 1, 1〉, r9 ¼ 〈3, 2, 1〉, r10 ¼ 〈3, 3,

1〉, r11 ¼ 〈3, 4, 1〉, r12 ¼ 〈3, 5, 1〉, r13 ¼ 〈3, 6, 1〉, r14 ¼ 〈3, 7, 1〉. These markings provide the

information about the data available for every subtree constructed from the node identified

as vdepth,pos.

• al ¼ 〈posl, tyl〉, such that l∈ ½1, nT�, where: a1 ¼ 〈1, 1〉, a2 ¼ 〈2, 1〉, a3 ¼ 〈3, 1〉, a4 ¼ 〈4, 1〉,

a5 ¼ 〈5, 1〉, a6 ¼ 〈6, 1〉, a7 ¼ 〈7, 1〉, a8 ¼ 〈8, 1〉. These markings provide the information about

the availability of the task located at pos, i.e., ty ¼ 1 if the task is available, 0 otherwise.

The color mapping is CpðpkÞ ¼ o for k∈ ½1, 8�, CpðpkÞ ¼ r for k∈ ½9, 11� and Cpðp12Þ ¼ a. That is,

the places p1,…, p8 accept tokens of type O, the places p9, p10, p11 accept tokens of type R, and

p12 accept tokens of type A. The conditional color mapping is CtðtkÞ ¼ f 1 for k∈ ½1, 3�,

CtðtkÞ ¼ f 2 for k∈ ½5, 7�, and CtðtkÞ ¼ f 3 for k ¼ 4 and k ¼ 9. The Pre- and Post matrices for the

net of this example are shown in Figure 5.

Thus, Figure 4 represents a CPN that captures the structure of a BDT and the behavior of the

working threads over the tree of height H ¼ log2nT ¼ log28 ¼ 3. They represents the places

and transitions for the traveling from the root down to a leaf, and the reverse way from the leaf

up to the root, on the left and right side of the CPN, respectively. Additionally, the central

places, marked as “R,” represent the “resources” in the system, i.e., the shared memory

registers and the tasks.

Consider an initial token in place p1 ¼ 〈0, 0, 0, 0〉 as described by the initial marking M0. Now,

the binding for t1 requires two tokens from p9, besides one initial token in p1, subject to

Figure 5. Pre and postmatrices for CPN DS nT ¼ 8.

Modeling and Simulation of Task Allocation with Colored Petri Nets
http://dx.doi.org/10.5772/67950

225

conditions given by f 1: ðoi, rj, rkÞjdepthi þ 1 ¼ depthj ¼ depthk ∧ posi � 2 ¼ posj ∧ posi � 2þ 1 ¼

posk. Since in this case oi ¼ o1 ¼ 〈pos1 ¼ 0, depht1 ¼ 0, val1 ¼ 0, success1 ¼ 0〉 due to si1, then the

required tokens from p9 are rj ¼ r1 ¼ 〈depth1 ¼ 0, pos1 ¼ 1, data1 ¼ 2H�1 ¼ 4〉 and rk ¼ r2 ¼

〈depth2 ¼ 1, pos2 ¼ 1, data2 ¼ 23�1 ¼ 4〉, where data1 ¼ data2 ¼ 4, assuming that the Task Array

is full of tasks to be attended. Thus, the output of t1 due to so1 is o1 ¼ 〈depth1 ¼ depth1 þ 1,

pos1 ¼ pos1 � 2þ h ¼ 1, val1 þ h � 22 ¼ 4, success1 ¼ 0〉 ¼ 〈1, 1, 4, 0〉, assuming h ¼ 1.

The sketches of CPN in Figure 6 show the three main marking evolutions in the CPN subject to

the binding functions f 1, f 2, f 3. The marking evolution subject to f 1 from the current state is

shown in (a). In (b), the tokens oi, rj, rk are taken by the depicted transition, since

f 1: ðoi, rj, rkÞjdepthi þ 1 ¼ depthj ¼ depthk ∧ posi�2 ¼ posj ∧posi�2þ 1 ¼ posk, then oi ¼< 1, 1, 0, 0 > ,

rj ¼< 2, 2, 2 > , rk ¼< 2, 3, 2 > : In (c), the transition has fired, then o1 ¼< 2, 3, 6, 0 >, since

so1ð〈depthi, posi, vali, successi〉Þ ¼ 〈depthi þ 1, posi � 2þ hi, vali þ ðhiÞ � 2
H�depthiþ1, successi〉 assum-

ing that hi ¼ 1. The tokens rj, rk remain the same, since success ¼ 0. In (d), the marking evolu-

tion subject to f 3 from the current marking < 3, 6, 6, 0 > is updated to the marking < 3, 6, 6, 1 >

Figure 6. Binding and firing of a CPN transition.

Computer Simulation226

as shown in (f), since the task reference represented by the marking < 6, 1 > is available as

shown in (e). Notice that, this marking is updated to < 6, 0 > as shown in (f), as expected. In

(g), the input state of the transitions subject to f 2 is represented with the marking < 3, 6, 6, 1 >.

Then, it is binding by f 2 with the token < 3, 6, 1 >, as illustrated in (h). Thus, the input token

< 3, 6, 6, 1 > is updated to < 2, 3, 6, 1 > by so2, as well as, < 3, 6, 1 > is updated to < 3, 6, 0 > by

ro2, as shown in the section (i) of the figure.

One of the main advantages of modeling the task allocation problem by using CPN’s is the

possibility of varying the parameters during the simulation process, as well as the flexibility of

the net structure in order to cope with a greater number of task to be attended. One of the key

parameters for the simulation of the problem is the number of tokens of type O, which

represents the number of processes or threads in a specific problem. The other important

parameter is the decision function α, which is related to the spreading of processes or threads

through the tree, by updating of depth and pos functions. It is clear, for example, that the

distribution of the processes or threads at every level in the tree structure directly influences

the contention at the acquisition of the tasks.

The next section explains the simulation process that is possible to execute with the proposed

modeling methodology and how these simulations can help explore different parameters in

order to optimize the task allocation problem.

5. Simulation of the CPN model

This section shows how to simulate a CPN model as that obtained by the methodology detailed

in the previous subsection. The simulation process allows to investigate the performance of the

model under parametric variations. First, the general characteristics of the simulation framework

are introduced. Then, the simulation and results of a CPN model, representing a problem with

1024 tasks, are given.

In order to simplify the construction of the CPN model by using the herein proposed method-

ology, and thus, simulate its behavior, a CPN tool is used [43]. This environment allows

editing, simulating and analyzing CPN models [36–42] and was successfully used for a variety

of applications areas [44–48].

The model parameters that have to be considered are a number of initially available tasks

ðnTasksÞ, the height of the tree with respect to the number of tasks ðHÞ, and the decision

function ðαÞ. For this example, those values are nTasks ¼ 1024, H ¼ log21024 ¼ 10, and

α ¼ ðr < dataj=ðdataj þ datakÞÞ for a given oi, rj, rk such that depthi þ 1 ¼ depthj ¼ depthk ∧ posi�2

¼ posj ∧ posi�2þ 1 ¼ posk and where r is a randomly generated number. These parameters are

fixed during every simulation process. However, the number of threads is varying between

simulations, with d ¼ 2n, 1 ≤n ≤nTasks, for a total of 10 simulations runs.

In the simulation framework, there are different measurements of parameters that can be

obtained. For illustrative purposes, in this example, the attention is focused on study the impact

on the performance of the task allocation procedure when the number of processes, or working

threads, is increasing.

Modeling and Simulation of Task Allocation with Colored Petri Nets
http://dx.doi.org/10.5772/67950

227

Table 1 summarizes some results obtained from the simulations performed on the CPN tools

framework for a model with model described previously. The number of tasks was constant,

while the number of processes was increased by a power of two, represented in the first

column. The second column represents the average of events required per process to complete

all the tasks. It provides a measure of the speed by increasing the number of processes. The

third column represents the total number of readings to the task array. The forth column

represents the total number of read collisions, i.e., when a process reads a task that was

previously attended by other process. The fifth column represents the average of the reads to

the task array executed by each process. The sixth column shows the average of the failed

reads or collisions executed by each process. The seventh column shows the proficiency of the

execution by the total amount of processes. Finally, the eighth column represents the average

of total reads, including the failed ones, to the task array required per task.

The plot in Figure 7 shows the average of event, in the simulation framework, that each process

required for completing all the tasks in the array. Notice that, as the number of processes

increases exponentially, the number of events per processes decreases almost logarithmically.

The plot in Figure 8 shows the average of reads that each process has performed to the task

array for the completion of all the tasks. As in the previous figure, notice that the number of

reads decreases almost logarithmically as the number of processes increases exponentially.

The plot in Figure 9 shows the average of collisions, i.e., a process’s read of a task that was

previously attended by other process, as the number of processes increases. The figure shows

that the maximum number of average collisions occurs when the number of processes is 32 in

these experiments. The collisions, or failed reads, are highly influenced by the decision rule α.

The plot in Figure 10 shows the proficiency of attending all the tasks in the array as the number

of processes increases. The proficiency increases almost exponentially as the number of

Processes (d) Average

events

Reads Collisions Reads per

process

Fails per

process

Proficiency Read

per task

1 22528.00 1024.00 0.00 1024.00 0.00 1.00 1.00

2 11293.25 1027.00 3.00 513.50 1.50 1.99 1.00

4 5667.00 1030.67 6.67 257.67 1.67 3.97 1.01

8 2853.02 1038.00 14.00 129.75 1.75 7.89 1.01

16 1443.81 1051.33 27.33 65.71 1.71 15.58 1.03

32 743.34 1081.67 57.67 33.80 1.80 30.29 1.06

64 384.67 1117.33 93.33 17.46 1.46 58.65 1.09

128 202.77 1175.00 151.00 9.18 1.18 111.55 1.15

256 108.85 1265.67 241.67 4.94 0.94 207.12 1.24

512 55.39 1271.00 247.00 2.48 0.48 412.50 1.24

1024 27.70 1285.50 261.50 1.26 0.26 815.70 1.26

Table 1. Simulation results for nTasks ¼ 1024.

Computer Simulation228

processes increases to 256. The ideal behavior is to double the proficiency as the number of

processes also double. However, the collisions at reading the tasks undermine this proficiency,

as expected. Notice that, the plot is logarithmic.

Figure 7. Average of events per process.

Figure 8. Average of reads per process.

Modeling and Simulation of Task Allocation with Colored Petri Nets
http://dx.doi.org/10.5772/67950

229

The plot in Figure 11 shows the average of work that each process has to do for completing a

task, measured as the number of reads. This number slightly increases as the number of

processes increases due to the growth in the number of collisions.

Figure 9. Average of collisions per process.

Figure 10. Average of proficiency.

Computer Simulation230

6. Conclusions

This work presented a framework, based on Colored Petri nets, for the modeling and simula-

tion of task allocation problems, which arises in environments such as grid or cluster of

computers. The framework allows the construction of complex problems in a compact way.

Additionally, a simulation process of the constructed models permits the study of different key

aspects of the allocation strategies. Some analysis that could be performed includes the impact

of different decision rules of the processes for allocating the tasks, the effect of a greater

number of processes in the contention of the task’s acquisition or the ration of the increased

speed to the attention of tasks by a greater number of processes, among others. Additionally,

the methodology allows with ease the construction of structures for an incremental model

construction and its respective simulation process.

The proposed methodology allows with ease the extension to n� ary tree structures as well as

tree structures with a greater number of tasks and their respective simulation process.

Author details

Mildreth Alcaraz-Mejia*, Raul Campos-Rodriguez and Marco Caballero-Gutierrez

*Address all correspondence to: mildreth@iteso.mx

Electronics, Systems and Informatics Department, ITESO University, Tlaquepaque, Jalisco,

Mexico

Figure 11. Average of reads per task.

Modeling and Simulation of Task Allocation with Colored Petri Nets
http://dx.doi.org/10.5772/67950

231

References

[1] Lee, E. Y. S., and Tsuchiya, M., A task allocation model for distributed computing sys-

tems. IEEE Transactions on Computers, 1982, vol 100, no 1, pp. 41–47.

[2] Han, Y., Jiang, C., and Luo, X., Resource scheduling model for grid computing based on

sharing synthesis of Petri net, in Proceedings of the 9th International Conference on

Computer Supported Cooperative Work in Design, Coventry, UK, 2005, pp. 367–372.

[3] Han, Y., Jiang, C., and Luo, X., Modelling and performance analysis of grid task scheduling

based on composition and reduction of Petri nets, in Proceedings of the 5th International

Conference on Grid and Cooperative Computing, Changsha, China, 2006, pp. 331–334.

[4] Zhao, X., Wang, B., and Xu, L., Grid application scheduling model based on Petri net with

changeable structure, in Proceeding of 6th International Conference on Grid and Cooper-

ative Computing, Los Alamitos, CA, 2007, pp. 733–736.

[5] Han, Y., Jiang, C., and Luo, X., Resource scheduling scheme for grid computing and its

Petri net model and analysis, Parallel and Distributed Processing and Applications,

Lecture Notes in Computer Science, vol. 3759, G. Chen et al., editors, Heidelberg:

Springer, pp. 530–539, 2005.

[6] Hu, Z. G., Hu, R., Gui, W. H., Chen, J. E., and Chen, S. Q., General scheduling framework

in computational grid based on Petri net, Journal of Central South University of Technol-

ogy, vol. 12, no. 1, pp. 232–237, 2005.

[7] Shojafar,M., Barzegar, S., andMeybodi,M.R., A newmethod on resource scheduling in grid

systems based on hierarchical stochastic Petri net, in Proceedings of the 3rd International

Conference on Computer and Electrical Engineering, Chengdu, China, 2010, pp. 175–180.

[8] Buyya, R., and Murshed, M., GridSim: a toolkit for the modelling and simulation of

distributed resource management and scheduling for grid computing, Concurrency and

Computation: Practice and Experience, vol. 14, no. 13–15, pp. 1175–1220, 2002.

[9] Zhovtobryukh, D., A Petri net-based approach for automated goal-driven web service

composition, Simulation, January 2007; vol. 83, 1: pp. 33–63.

[10] Haggarty, O. J., Knottenbelt, W. J., and Bradley, J. T., Distributed response time analysis of

GSPN models with MapReduce, Simulation, August 2009; vol. 85, 8: pp. 497–509.

[11] Narciso, M., Piera, M. A., and Guasch, A., A methodology for solving logistic optimiza-

tion problems through simulation, Simulation, May/June 2010; vol. 86, 5–6: pp. 369–389.

[12] Xiong, Z. G., Zhai, Z. L., Zhang, X. M., and Xia, X. W., Grid workflow service composition

based on colored petri net. JDCTA: International Journal of Digital Content Technology

and its Applications, 2011, vol. 5, no 5, pp. 125–131.

[13] Camilli, M., Petri nets state space analysis in the cloud. In 2012 34th International Confer-

ence on Software Engineering (ICSE). pp. 1638–1640.

Computer Simulation232

[14] Longo, F., Ghosh, R., Naik, V. K., and Trivedi, K. S., A scalable availability model for

infrastructure-as-a-service cloud. In 2011 IEEE/IFIP 41st International Conference on

Dependable Systems and Networks (DSN), IEEE 2011. pp. 335–346.

[15] Wei, B., Lin, C., and Kong, X., Dependability modeling and analysis for the virtual data

center of cloud computing. In 2011 IEEE 13th International Conference on High Perfor-

mance Computing and Communications (HPCC), IEEE, 2011. pp. 784–789.

[16] Li, X., Fan, Y., Sheng, Q. Z., Maamar, Z., and Zhu, H., A petri net approach to analyzing

behavioral compatibility and similarity of web services. IEEE Transactions on Systems,

Man and Cybernetics, Part A: Systems and Humans, 2011, vol. 41, no 3, pp. 510–521.

[17] Muñoz, D. M., Correcher, A., García, E., and Morant, F., Stochastic DES fault diagnosis

with coloured interpreted Petri nets. Mathematical Problems in Engineering, vol. 2015,

Article ID 303107, 13 pages, 2015. doi:10.1155/2015/303107.

[18] Ghainani, A. T., Mohd Zin, A. A., and Ismail, N. A. M., Fuzzy timing Petri net for fault

diagnosis in power system. Mathematical Problems in Engineering, vol. 2012, Article ID

717195, 12 pages, 2012. doi:10.1155/2012/717195.

[19] Alcaraz-Mejia, M., Lopez-Mellado, E., Ramirez-Treviño, A., Rivera-Rangel, I., Petri net

based fault diagnosis of discrete event systems, In Proceedings of the IEEE International

Conference on Systems, Man and Cybernetics. pp. 4730–4735, October 2003.

[20] Latorre, J. I., Jiménez, E., and Pérez, M., The optimization problem based on alternatives

aggregation Petri nets as models for industrial discrete event systems, Simulation, March

2013; vol. 89, no 3: pp. 346–361.

[21] Latorre, J. I., and Jiménez, E., Simulation-based optimization of discrete event systems

with alternative structural configurations using distributed computation and the Petri net

paradigm, Simulation, November 2013; vol. 89, no 11: pp. 1310–1334.

[22] Alcaraz-Mejia, M., and Lopez-Mellado, E., Petri net model reconfiguration of discrete

manufacturing systems. In Alexandre Dolgui Gerard Morel Carlos Pereira Editors:

Information Control Problems in Manufacturing. 1st edition, Editorial Elsevier Sci-

ence, 2006. pp. 517–552. eBook ISBN: 9780080478487, ISBN: 9780080446547, Page Count:

2480.

[23] Alcaraz-Mejia, M., and Lopez-Mellado, E., Fault recovery of manufacturing systems

based on controller reconfiguration. In 2006 IEEE/SMC International Conference on Sys-

tem of Systems Engineering, IEEE, 2006. p. 6.

[24] Alcaraz-Mejia, M., Lopez-Mellado, E., and Ramirez-Treviño, A., A redundancy based

method for Petri net model reconfiguration. In IEEE International Conference on Sys-

tems, Man and Cybernetics, 2007. IEEE, 2007. pp. 1382–1387.

[25] Chen, S. J., Zhan, T. S., Huang, C. H., Chen, J. L., and Lin, C. H. (2015). Nontechnical loss

and outage detection using fractional-order self-synchronization error-based fuzzy petri

nets in micro-distribution systems. IEEE Transactions on smart grid, 6(1), 411–420.

Modeling and Simulation of Task Allocation with Colored Petri Nets
http://dx.doi.org/10.5772/67950

233

[26] Muñoz, D. M., Correcher, A., García, E., and Morant, F., Identification of stochastic timed

discrete event systems with st-IPN. Mathematical Problems in Engineering, vol. 2014,

Article ID 835312, 21 pages, 2014. doi:10.1155/2014/835312.

[27] Alistarh, D., Bender, M., Gilbert, S., and Guerraoui, R., How to allocate tasks asynchro-

nously. 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012,

New Brunswick, NJ, USA, October 20-23, 2012, pp. 331–340, 2012.

[28] Jevtić, A., Gutiérrez, A., Andina, D., and Jamshidi, M., Distributed bees algorithm for task

allocation in swarm of robots. IEEE Systems Journal, 2012, vol. 6, no 2, pp. 296–304.

[29] Delle Fave, F. M., Rogers, A., Xu, Z., Sukkarieh, S., and Jennings, N. R., Deploying the

max-sum algorithm for decentralised coordination and task allocation of unmanned

aerial vehicles for live aerial imagery collection. In 2012 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2012, pp. 469–476.

[30] Johnson, L., Choi, H. L., Ponda, S., and How, J. P., Allowing non-submodular score

functions in distributed task allocation. In 2012 IEEE 51st Annual Conference on Decision

and Control (CDC). IEEE, 2012, pp. 4702–4708.

[31] Zhao-Pin, S. U., Jiang, J. G., Liang, C. Y., and Zhang, G. F., A distributed algorithm for

parallel multi-task allocation based on profit sharing learning. Acta Automatica Sinica,

2011, vol. 37, no 7, pp. 865–872.

[32] Macarthur, K. S., Stranders, R., Ramchurn, S. D., and Jennings, N. R., A distributed anytime

algorithm for dynamic task allocation in multi-agent systems. In Proceedings of the 25th

Association of the Advancement on Artificial Intelligence Conference (AAAI 2011), pp.

356–362, 2011. San Francisco, USA.

[33] Alistarh, D., Aspnes, J., Bender, M. A., Gelashvili, R., and Gilbert, S. Dynamic task

allocation in asynchronous shared memory. In Proceedings of the Twenty-Fifth Annual

ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2014. pp. 416–435.

[34] Diestel, R., Graph Theory. Springer-Verlag, Heidelberg. Berlin. Graduate Texts in Mathe-

matics, vol. 173, 3rd edition, 2005.

[35] Girault, C. and Valk, R., Petri Nets for Systems Engineering: A Guide toModelling, Verifica-

tion, and Applications, July 30, 2001, Springer-Verlag Berlin Heidelberg, Newyork, 2003.

ISBN: 3642074472 9783642074479. Series ISSN: 1431–2654. vol. 2, no 1.

[36] Jensen, K., Coloured Petri nets: basic concepts, analysis methods and practical use.

Springer Science and Business Media, 2013.

[37] Jensen, K., Kristensen, L. M., and Wells, L., Coloured Petri Nets and CPN Tools for

modelling and validation of concurrent systems. International Journal on Software Tools

for Technology Transfer, 2007, vol. 9, no 3–4, pp. 213–254.

[38] Ratzer A.V. et al. (2003) CPN Tools for Editing, Simulating, and Analysing Coloured Petri

Nets. In: van der Aalst W.M.P., Best E. (eds) Applications and Theory of Petri Nets 2003.

ICATPN 2003. Lecture Notes in Computer Science, vol. 2679. Springer, Berlin, Heidelberg.

Computer Simulation234

[39] Wells, L., Performance analysis using CPN tools. In Proceedings of the 1st international

conference on Performance evaluation methodologies and tools. ACM, 2006. p. 59.

[40] Westergaard, M., CPN Tools 4: Multi-formalism and extensibility. In Application and

Theory of Petri Nets and Concurrency. Springer Berlin Heidelberg, 2013. pp. 400–409.

[41] Westergaard, M. and Slaats, T., CPN Tools 4: a process modeling tool combining declar-

ative and imperative paradigms. Automatic Control and Computer Sciences, 2013, vol.

47, no 7, pp. 393–402.

[42] Dworzański, L. W., and Lomazova, Irina A., CPN Tools-assisted simulation and verification of

nested Petri nets. Automatic Control and Computer Sciences, 2013, vol. 47, no 7, pp. 393–402.

[43] Cpntools.org, (2015). CPN Tools Homepage. [online] Available at: http://cpntools.org/

[Accessed 24 Jul. 2015].

[44] Machado, R. J., Lassen, K. B., Oliveira, S., Couto, M., and Pinto, P., Requirements valida-

tion: execution of UML models with CPN tools. International Journal on Software Tools

for Technology Transfer, 2007, vol. 9, no 3–4, pp. 353–369.

[45] Vanderfeesten, I., van der Aalst, W., and Reijers, H. A., Modelling a product based

workflow system in CPN tools. In Proceedings of the Sixth Workshop on the Practical

Use of Coloured Petri Nets and CPN Tools (CPN 2005). 2005. pp. 99–118.

[46] Störrle, H., Semantics and verification of data flow in UML 2.0 activities. Electronic Notes

in Theoretical Computer Science, 2005, vol. 127, no 4, pp. 35–52.

[47] Yi, X., and Kochut, K. J., A cp-nets-based design and verification framework for web

services composition. In Web Services, 2004. Proceedings. IEEE International Conference

on. IEEE, 2004. pp. 756–760.

[48] Rozinat, A., Wynn, M. T., van der Aalst, W. M., terHofstede, A. H., and Fidge, C. J.,

Workflow simulation for operational decision support. Data and Knowledge Engineer-

ing, 2009, vol. 68, no 9, pp. 834–850.

Modeling and Simulation of Task Allocation with Colored Petri Nets
http://dx.doi.org/10.5772/67950

235

