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Abstract

As we all know, perturbation theory is closely related to methods used in the numerical
analysis fields. In this chapter, we focus on introducing two homotopy asymptotic
methods and their applications. In order to search for analytical approximate solutions
of two types of typical nonlinear partial differential equations by using the famous
homotopy analysis method (HAM) and the homotopy perturbation method (HPM), we
consider these two systems including the generalized perturbed Kortewerg-de Vries-
Burgers equation and the generalized perturbed nonlinear Schrödinger equation (GPNLS).
The approximate solution with arbitrary degree of accuracy for these two equations is
researched, and the efficiency, accuracy and convergence of the approximate solution are
also discussed.

Keywords: homotopy analysis method, homotopy perturbation method, generalized
KdV-Burgers equation, generalized perturbed nonlinear Schrödinger equation, approx-
imate solutions, Fourier transformation

1. Introduction

In the past decades, due to the numerous applications of nonlinear partial differential equa-

tions (NPDEs) in the areas of nonlinear science [1, 2], many important phenomena can be

described successfully using the NPDEs models, such as engineering and physics, dielectric

polarization, fluid dynamics, optical fibers and quantitative finance and so on [3–5]. Searching

for analytical exact solutions of these NPDEs plays an important and a significant role in all

aspects of this subject. Many authors presented various powerful methods to deal with this

problem, such as inverse scattering transformation method, Hirota bilinear method, homoge-

neous balance method, Bäcklund transformation, Darboux transformation, the generalized

Jacobi elliptic function expansion method, the mapping deformation method and so on [6–10].

But once people noticed the complexity of nonlinear terms of NPDEs, they could not find the

exact analytic solutions for many of them, especially with disturbed terms. Researchers had to
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develop some approximate and numerical methods for nonlinear theory; a great deal of efforts

has been proposed for these problems, such as the multiple-scale method, the variational itera-

tion method, the indirect matching method, the renormalization method, the Adomian decom-

position method (ADM), the generalized differential transform method and so forth [11–13],

among them the perturbation method [14], including the regular perturbation method, the

singular perturbation method and the homotopy perturbation method (HPM) and so on.

Perturbation theory is widely used in numerical analysis as we all know. The earliest pertur-

bation theory was built to deal with the unsolvable mathematical problems in the calculation

of the motions of planets in the solar system [15]. The gradually increasing accuracy of

astronomical observations led to incremental demands in the accuracy of solutions to New-

ton’s gravitational equations, which extended and generalized the methods of perturbation

theory. In the nineteenth century, Charles-Eugène Delaunay discovered the problem of small

denominators which appeared in the nth term of the perturbative expansion when he was

studying the perturbative expansion for the Earth-Moon-Sun system [16]. These well-

developed perturbation methods were adopted and adapted to solve new problems arising

during the development of Quantum Mechanics in the twentieth century. In the middle of the

twentieth century, Richard Feynman realized that the perturbative expansion could be given a

dramatic and beautiful graphical representation in terms of what are now called Feynman

diagrams [17]. In the late twentieth century, because the broad questions about perturbation

theory were found in the quantum physics community, including the difficulty of the nth term

of the perturbative expansion and the demonstration of the convergent about the perturbative

expansion, people had to pay more attention to the area of non-perturbative analysis, and

much of the theoretical work goes under the name of quantum groups and non-commutative

geometry [18]. As we all know, the solutions of the famous Korteweg-de Vries (KdV) equation

cannot be reached by perturbation theory, even if the perturbations were carried out. Now, we

can divide the perturbation theory to regular and singular perturbation theory; singular

perturbation theory concerns those problems which depend on a parameter (here called ε)

and whose solutions at a limiting value have a non-uniform behavior when the parameter

tends to a pre-specified value. For regular perturbation problems, the solutions converge to the

solutions of the limit problem as the parameter tends to the limit value. Both of these two

methods are frequently used in physics and engineering today. There is no guarantee that

perturbative methods lead to a convergent solution. In fact, the asymptotic series of the

solution is the norm. In order to obtain the perturbative solution, we involve two distinct steps

in general. The first is to assume that there is a convergent power asymptotic series about the

parameter ε expressing the solution; then, the coefficients of the nth power of ε exist and can be

computed via finite computation. The second step is to prove that the formal asymptotic series

converges for ε small enough or to at least find a summation rule for the formal asymptotic

series, thus providing a real solution to the problem.

The homotopy analysis method (HAM) was firstly proposed in 1992 by Liao [19], which

yields a rapid convergence in most of the situations [20]. It also showed a high accuracy

to solutions of the nonlinear differential systems. After this, many types of nonlinear problems

were solved with HAM by others, such as nonlinear Schrödinger equation, fractional KdV-
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Burgers-Kuramoto equation, a generalized Hirota-Satsuma coupled KdV equation, discrete

KdV equation and so on [21–24]. With this basic idea of HAM (as ℏ ¼ �1 and Hðx, tÞ ¼ 1),

Jihuan He proposed the homotopy perturbation method(HPM) [25] which has been widely

used to handle the nonlinear problems arising in the engineering and mathematical phys-

ics [26, 27].

In this chapter, we extend the applications of HAM and HPM with the aid of Fourier transfor-

mation to solve the generalized perturbed KdV-Burgers equation with power-law nonlinearity

and a class of disturbed nonlinear Schrödinger equations in nonlinear optics. Many useful

results are researched.

1.1. The homotopy analysis method (HAM)

Let us consider the following nonlinear equation

N½uðx, tÞ� ¼ 0, ð1Þ

where N is a nonlinear operator, uðx, tÞ is an unknown function and xand t denote spatial and

temporal independent variables, respectively.

With the basic idea of the traditional homotopy method, we construct the following zero-order

deformation equation

ð1� qÞL½φðx, t; qÞ � u0ðx, tÞ� ¼ qℏHðx, tÞN½φðx, t; qÞ� ð2Þ

where ℏ 6¼ 0 is a non-zero auxiliary parameter, q∈ ½0, 1� is the embedding parameter, Hðx, tÞ is

an auxiliary function, L is an auxiliary linear operator, ~u0ðx, tÞ is an initial guess of uðx, tÞ and

φðx, t; qÞ is an unknown function. Obviously, when q ¼ 0 and q ¼ 1, it holds

φðx, t; 0Þ ¼ u0ðx, tÞ,φðx, t; 1Þ ¼ uðx, tÞ: ð3Þ

Thus, as q increases from 0 to 1, the solution φðx, t; qÞ varies from the initial guess u0ðx, tÞ to the

solution uðx, tÞ. Expanding φðx, t; qÞ in Taylor series with respect to q, we have

φðx, t; qÞ ¼ u0 þ
X∞

m¼1

umq
m

¼ u0 þ qu1 þ q2u2 þ⋯; u0 ¼ ~u0ðx, tÞ, um ¼ umðx, tÞ:

ð4Þ

where

umðx, tÞ ¼
1

m!

∂m

∂qm
φðx, t; qÞj

q ¼ 0
: ð5Þ

If the auxiliary linear operator, the initial guess, the auxiliary parameter and the auxiliary

function are so properly chosen such that they are smooth enough, the Taylor’s series (4) with

respect to q converges at q ¼ 1, and we have
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u ¼ φðx, t; 1Þ ¼
X

∞

m¼0

um, ð6Þ

which must be one of the solutions of the original nonlinear equation, as proved by Liao. As

ℏ ¼ �1 and Hðx, tÞ ¼ 1, Eq. (2) becomes

ð1� qÞL½φðx, t; qÞ � u0ðx, tÞ� þ qN½φðx, t; qÞ� ¼ 0: ð7Þ

Eq. (7) is used mostly in the HPM, whereas the solution is obtained directly, without using

Taylor’s series. As Hðx, tÞ ¼ 1, Eq. (2) becomes

ð1� qÞL½φðx, t; qÞ � u0ðx, tÞ� ¼ qℏN½φðx, t; qÞ�, ð8Þ

which is used in the HAM when it is not introduced in the set of base functions. According to

definition (5), the governing equation can be deduced from Eq. (2). Define the vector

u
!

mðx, tÞ ¼ {u0, u1, u2,⋯, um}: ð9Þ

Differentiating Eq. (2) m times with respect to the embedding parameter q and then setting

q ¼ 0 and finally dividing them by m!, we have the so-called mth-order deformation equation

L½umðx, tÞ � χmum�1ðx, tÞ� ¼ ℏHðx, tÞRm�1ðu
!

m�1, x, tÞ, ð10Þ

where

Rm�1ðu
!
m�1, x, tÞ ¼

1

ðm� 1Þ!

∂
m�1

∂qm�1
N½φðx, t; qÞ�j

q ¼ 0
: ð11Þ

And

χm ¼
0, x ≤ 1

1, x ≥ 2
:

�

ð12Þ

It should be emphasized that umðx, tÞ for m ≥ 1 is governed by the linear Eq. (10) with the linear

boundary conditions that come from the original problem, which can be easily solved by

symbolic computation software such as Mathematica and Matlab.

1.2. The homotopy perturbation method

To illustrate the basic concept of the homotopy perturbation method, consider the following

nonlinear system of differential equations with boundary conditions

AðuÞ ¼ f ðrÞ, r∈Ω, ð13:1Þ

Bðu,
∂u

∂n
Þ ¼ 0, r∈ Γ ¼ ∂Ω ð13:2Þ

,

8

<

:

ð13Þ
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where B is a boundary operator and Γ is the boundary of the domain Ω, f ðrÞ is a known

analytical function. The differential operator A can be divided into two parts, L and N, in

general, where L is a linear and N is a nonlinear operator. Eq. (13) can be rewritten as follows:

LðuÞ þNðuÞ ¼ f ðrÞ: ð14Þ

We construct the following homotopy mapping Hðφ, qÞ:Ω� ½0, 1� ! R, which satisfies

Hðφ, qÞ ¼ ð1� qÞ½LðvÞ � Lð~u0Þ� þ q½AðvÞ � f ðrÞ� ¼ 0, q∈ ½0, 1�, r∈Ω, ð15Þ

where ~u0is an initial approximation of Eq. (13), and is the embedding parameter; we have the

following power series presentation for φ,

φ ¼
X∞

i¼0

uiðx, tÞq
i ¼ u0 þ qu1 þ q2u2 þ⋯: ð16Þ

The approximate solution can be obtained by setting q ¼ 1, that is

u ¼ lim
q!1

φ ¼ u0 þ u1 þ u2 þ⋯: ð17Þ

If we let u0ðx, tÞ ¼ ~u0ðx, tÞ,notice the analytic properties of f , L, ~u0 and mapping (15), we know

that the series of (17) is convergence in most cases when q∈ ½0, 1� [28]. We obtain the solution of

Eq. (13).

To study the convergence of the method, let us state the following theorem.

Theorem (Sufficient Condition of Convergence).

Suppose that X and Y are Banach spaces andN : X ! Y is a contract nonlinear mapping that is

∀u, u � ∈X : kNðuÞ �Nðu�Þk ≤γku� u � k, 0 < γ < 1: ð18Þ

Then, according to Banach’s fixed point theorem, N has a unique fixed point u, that is

NðuÞ ¼ u. Assume that the sequence generated by homotopy perturbation method can be

written as

Un ¼ NðUn�1Þ, Un ¼
Xn

i¼0

ui, ui ∈X, n ¼ 1, 2, 3,⋯, ð19Þ

and suppose that

U0 ¼ u0 ∈BrðuÞ, BrðuÞ ¼ {u � ∈Xjku � �uk < γ} ð20Þ

then; we have ðiÞ Un ∈BrðuÞ, ðiiÞlim
n!∞

Un ¼ u: ð21Þ

Proof. (i) By inductive approach, for n ¼ 1, we have
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kU1 � uk ¼ kNðU0Þ �NðuÞk ≤γkU0 � uk and then

kUn � uk ¼ kNðUn�1Þ �NðuÞk ≤γnkU0 � uk ≤γnr ) Un ∈BrðuÞ

(ii) Because of 0 < γ < 1, we have lim
n!∞

kUn � uk ¼ 0 that is lim
n!∞

Un ¼ u.

2. Application to the generalized perturbed KdV-Burgers equation

Consider the following generalized perturbed KdV-Burgers equation

ut þ αupux þ βu2pux þ γuxx þ δuxxx ¼ f ðt, x, uÞ: ð22Þ

where α, β,γ, δ, p are arbitrary constants, and f ¼ f ðt, x, uÞ is a disturbed term, which is a

sufficiently smooth function in a corresponding domain.

This equation with p ≥ 1 is a model for long-wave propagation in nonlinear media with disper-

sion and dissipation. Eq. (22) arises in a variety of physical contexts which include a number of

equations, and many valuable results about Eq. (22) have been studied by many authors

in [29–31]. In fact, if one takes different value of α, β,γ, δ, p and f , Eq.(22) represents a large

number of equations, such as KdV equation, MKdV equation, CKdV equation, Burgers equa-

tion, KdV-Burgers equation and the equations as the following forms.

Fitzhugh-Nagumo equation [32]:

ut � uxx ¼ f ¼ uðu� αÞð1� uÞ, ð23Þ

Burgers-Huxley equation [33]

ut þ αuδux � λuxx ¼ f ¼ βuð1� uδÞðηuδ � γÞ ð24Þ

Burgers-Fisher equation [34]

ut þ αuδux � uxx ¼ f ¼ βuð1� uδÞ ð25Þ

It’s significant for us to handle Eq. (22).

2.1. The generalized KdV-Burgers equation

If we let f ¼ 0 in Eq. (22), we can obtain the famous generalized KdV-Burgers equation with

nonlinear terms of any order [35, 36].

ut þ αupux þ βu2pux þ γuxx þ δuxxx ¼ 0: ð26Þ

Eq. (26) is solved on the infinite line �∞ < x < ∞ together with the initial condition uðx, 0Þ ¼

f ðxÞ, � ∞ < x < ∞ by using the HAM. We first introduce the traveling wave transform
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ξ ¼ xþ ctþ ξ0: ð27Þ

where c are constants to be determined later and ξ0 ∈C are arbitrary constants. Secondly, we

make the following transformation:

uðξÞ ¼ v1=pðξÞ: ð28Þ

Eq. (26) is reduced to the following form:

pðpþ 1Þð2pþ 1ÞδvðξÞv00ðξÞ þ ðpþ 1Þð2pþ 1Þδð1� pÞv02ðξÞ

þpðpþ 1Þð2pþ 1ÞγvðξÞv0ðξÞ þ cp2ðpþ 1Þð2pþ 1Þv2ðξÞ

þp2ð2pþ 1Þαv3ðξÞ þ p2ðpþ 1Þβv4ðξÞ ¼ 0

ð29Þ

where the derivatives are performed with respect to the coordinate ξ. We can conclude that

Eq. (26) has the following solution, by using the deformation mapping method:

~u0 ¼ �
cð1þ pÞ

2α
þ
dð1þ pÞγ

pα

ffiffiffiffiffiffiffiffiffiffiffiffi

c2p2

4d2γ2

s

tanhðd

ffiffiffiffiffiffiffiffiffiffiffiffi

c2p2

4d2γ2

s

ðxþ ctþ ξ0ÞÞ

( )
1
p

: ð30Þ

2.2. The approximate solutions by using HAM

To solve Eq. (22) by means of HAM, we choose the initial approximation

u0ðx, tÞ ¼ ~u0ðx, tÞ
�

�

�

t ¼ 0
¼ gðxÞ, ð31Þ

where ~u0ðx, tÞ is an arbitrary exact solution of Eq. (23).

According to Eq. (1), we define the nonlinear operator

N½φ� ¼ φt þ αφpφx þ βφ2pφx þ γφxx þ δφxxx � f ðφÞ,φ ¼ φðx, t; qÞ: ð32Þ

It is reasonable to express the solution uðx, tÞ by set of base functions gnðxÞt
n, n ≥ 0, under the

rule of solution expression; it is straightforward to choose Hðx, tÞ ¼ 1 and the linear operator

L½φðx, t; qÞ� ¼
∂φðx, t; qÞ

∂t
ð33Þ

with the property

L½cðxÞ� ¼ 0: ð34Þ

From Eqs. (10, 11 and 32), we have

Rm�1ðu
!

m�1, x, tÞ ¼ um�1, t þ γum�1, xx þ δum�1, xxx þ αDm�1ðφ
pφxÞ

þ βDm�1ðφ
2pφxÞ � Fðu0, u1,⋯, um�1Þ,

ð35Þ
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where

Dm�1ðφ
nφxÞ ¼

X

n

k1¼0

X

k1

k2¼0

X

k2

k3¼0

⋯

X

km�2

km�1¼0

X

m�1

i¼0

Ck1
n C

k2
k1
Ck3
k2
⋯Ckm�1

km�2
un�k1
0 uk1�k2

1 ⋯ukm�1

m�1uiξ ð36Þ

and n ≥ k1 ≥ k2 ≥⋯ ≥ km�1 ≥ 0∈N, with

X

m�1

j¼1

kj þ i ¼ m� 1, i ¼ 0,⋯, m� 1

Fðu0, u1,⋯, um�1Þ ¼
1

ðn� 1Þ!

∂
ðm�1Þ

∂qm�1
f ðx, t, uÞ

q ¼ 0
:

�

�

�

�

�

ð37Þ

Now, the solution of the mth-order deformation in Eq. (10) with initial condition umðx, tÞ ¼ 0

for m ≥ 1 becomes

um ¼ χmum�1 þ L�1½ℏRm�1ðu
!
m�1, x, tÞ�, ð38Þ

Thus, from Eqs. (31, 35 and 38), we can successively obtain

u0 ¼ ~u0ðx, 0Þ ¼ gðxÞ, ð39Þ

u1 ¼ �ℏt½~u0t þ f ðu0Þ�, ~u0t ¼
∂

∂t
~u0ðx, tÞjt¼0, ð40Þ

u2 ¼ ð1þ ℏÞu1 þ ℏðαu
p
0u1, x þ βu

2p
0 u1, x þ γu1, xx þ δu1, xxx � f uðu0Þu1Þt ð41Þ

⋮

um ¼ ð1þ ℏÞum�1 þ ℏ½γu1, xx þ δu1, xxx þ αDm�1ðφ
pφxÞ þ βDm�1ðφ

2pφxÞ � Fðu0, u1,⋯, um�1Þ�t

ð42Þ

⋮

We obtain the mth-order approximate solution and exact solution of Eq. (22) as follows

um,appr ¼
X

m

k¼0

uk, uexact ¼ φðx, t; 1Þ ¼ lim
m!∞

X

m

k¼0

uk ð43Þ

if we choose

~u0ðx, 0Þ ¼ �
cð1þ pÞ

2α
þ
dð1þ pÞγ

pα

ffiffiffiffiffiffiffiffiffiffiffiffi

c2p2

4d2γ2

s

tanhðd

ffiffiffiffiffiffiffiffiffiffiffiffi

c2p2

4d2γ2

s

xÞ

( )
1
p

: ð44Þ

From Eqs. (39–44), we can obtain the corresponding approximate solution of Eq. (22).
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2.3. Example

In the following, three examples are presented to illustrate the effectiveness of the HAM. We

first plot the so-called ℏ curves of u
00

apprð0, 0Þ and u
000

apprð0, 0Þ to discover the valid region of ℏ,

which corresponds to the line segment nearly parallel to the horizontal axis. The simulate

comparison between the initial exact solution, exact solution and the fourth order of approxi-

mation solution is given.

Now, we consider the small perturbation term f ¼ ε
~f in Eq. (22).

Example 1. Consider the CKdV equation with small disturbed term

ut þ 6uux � 6u2ux þ uxxx ¼ εu2, 0 < ε≪ 1 ð45Þ

with the initial exact solution

~u0ðx, tÞ ¼
1

2
�
1

2
tanh½

1

2
ðx� tÞ�: ð46Þ

From Section 2.2, we have

u0 ¼
1

2
�
1

2
tanh

1

2
x

� �

, ~u0t ¼
1

4
sech2 1

2
x

� �

, ð47Þ

u1 ¼ �ℏ
1

4
sech2 1

2
x

� �

þ ε

1

2
�
1

2
tanh

1

2
x

� �� �2
( )

t ð48Þ

u2 ¼ �ð1þ ℏÞℏt
1

4
sech2 1

2
x

� �

þ ε

1

2
�
1

2
tanh

1

2
x

� �� �2
( )

� ℏ
2t2

(

6
1

2
�
1

2
tanh

1

2
x

� �� �

1

4
sech2 1

2
x

� �

þ ε

1

2
�
1

2
tanh

1

2
x

� �� �2
( )

x

þ 6ℏ2t2
1

2
�
1

2
tanh

1

2
x

� �� �

2
1

4
sech2 1

2
x

� �

þ ε

1

2
�
1

2
tanh

1

2
x

� �� �2
( )

x

� ℏ
2t2

1

4
sech2 1

2
x

� �

þ ε

1

2
�
1

2
tanh

1

2
x

� �� �2
( )

xxx

þ 2εℏ2t2
1

2
�
1

2
tanh

1

2
x

� �� �

1

4
sech2 1

2
x

� �

þ ε

1

2
�
1

2
tanh

1

2
x

� �� �2
( )

¼
ℏt

32
cosh

x

2

	 


� sinh
x

2

	 
h i

sec h5
x

2

	 


(

ℏ 5t� 3� 3εð Þ � 3� 3ε

þ 2ℏtε 1þ εð Þ þ 2cosh xð Þ 2ε� 2� 2ℏ 1þ εð Þ þ ℏt 2ε2 þ 7ε� 3
� �
 �

þ ℏ t� ε� 1þ 2tε2
� �

� ε� 1

 �

cosh 2xð Þ � 2sinh
x

2

	 


1� εþ ℏ� εℏ½

þ ℏt 2� 3εþ 2ε2
� �

þ 1� εð Þcoshxþ ℏ 1� t� εþ 2tε2
� �

coshxÞ�

)

⋯

ð49Þ
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uappr ¼
1

2
�
1

2
tanh

1

2
x

� �

� ℏ
1

4
sech2 1

2
x

� �

þ�ε

1

2
�
1

2
tanh

1

2
x

� �� �2
( )

t

þ
ℏt

32
cosh

x

2

	 


� sinh
x

2

	 
h i

sec h5
x

2

	 


(

ℏ 5t� 3� 3εð Þ � 3� 3εþ

2ℏtε 1þ εð Þ þ 2cosh xð Þ 2ε� 2� 2ℏ 1þ εð Þ þ ℏt 2ε2 þ 7ε� 3
� �
 �

þ ℏ t� ε� 1þ 2tε2
� �

� ε� 1

 �

cosh 2xð Þ � 2sinh
x

2

	 


1� εþ ℏ� εℏ½

þ ℏt 2� 3εþ 2ε2
� �

þ 1� εð Þcoshxþ ℏ 1� t� εþ 2tε2
� �

coshx
��

)

þ⋯

ð50Þ

The ℏ curves of u
00

apprð0, 0Þ and u
000

apprð0, 0Þ in Eq. (45) are shown in Figure 1(a), and the compar-

ison between the initial exact solution and the fourth order of approximation solution is shown

in Figure 1(b).

Figure 1. (a) The ℏ curves of u
00

apprð0, 0Þ and u
000

apprð0, 0Þat the fourth order of approximation. (b) The initial exact solution

and the fourth order of approximation solution.
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Example 2. Consider the KdV-Burgers equation with small disturbed term

ut þ 6uux þ uxx � uxxx ¼ ε sin u ð51Þ

with the initial exact solution

~u0ðx, tÞ ¼
1

50
1� coth½�

1

10
ðx�

6

25
tÞ�

� �2

ð52Þ

From Section 2.2, we have

u0 ¼
1

50
½1� cothð�

1

10
xÞ�2, ~u0t ¼

3

3125
csch2ð

1

10
xÞ½1þ cothð

1

10
xÞ� ð53Þ

u1 ¼ �ℏε sin
1

50
½1� cothð

�1

10
xÞ�2

� �

t�
3ℏt

3125
csch2ð

1

10
xÞ½1þ cothð

1

10
xÞ� ð54Þ

u2 ¼ ð1þ ℏÞu1 þ ℏtð6u0u1, x þ u1, xx � u1, xxx � εu1 cos u0Þ ð55Þ

uappr ¼
1

50
1� coth �

1

10
x

� �� �2

� ℏε sin
1

50
1� coth �

1

10
x

� �� �2
( )

t

�
3

3125
ℏtcsch2 1

10
x

� �

1þ coth
1

10
x

� �� �

þ u2 þ⋯

ð56Þ

The ℏ curves of u
00

apprð0, 0Þ and u
000

apprð0, 0Þ in Eq. (51) are shown in Figure 2(a); the comparison

between the initial exact solution and the fourth order of approximation solution is shown in

Figure 2(b).

Figure 2. (a) The ℏ curves of u
00

apprð10ln2, 0Þ and u
000

apprð10ln2, 0Þ at the fourth order of approximation. (b) The initial exact

solution and the fourth order of approximation solution.
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Example 3. Consider the Burgers-Fisher equation

ut þ u2ux � uxx ¼ εuð1� u2Þ ð57Þ

with the exact solution and the initial exact solution

u1exact ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
�
1

2
tanh

1

3
x�

1þ 9ε

9
tþ ξ0

� �

s

ð58Þ

u2exact ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
�
1

2
coth

1

3
x�

1þ 9ε

9
tþ ξ0

� �

s

ð59Þ

~u0ðx, tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
�
1

2
tanh

1

3
x�

1

9
tþ ξ0

� �

s

ð60Þ

From Section 2.2, we have

u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
�
1

2
tanh

1

3
x

� �

s

, ~u0t ¼ sech2 1

3
x

� �

=18

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2tanh
1

3
x

� �

s

ð61Þ

u1 ¼ �
ℏtsech2 1

3 x
� �

18
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2tanh 1
3 x
� �

q � ℏtε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
�
1

2
tanh

1

3
x

� �

s

1

2
þ
1

2
tanh

1

3
x

� �� �

ð62Þ

u2 ¼ ð1þ ℏÞu1 þ ℏtðαu0u1, x � u1, xx � εu1 þ 3εu20u1Þ ð63Þ

Figure 3. (a) The ℏ curves of u
00

apprð0, 0Þ and u
000

apprð0, 0Þ at the fourth order of approximation. (b) The exact solution, initial

exact solution and the fourth order of approximation solution.
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uappr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
�
1

2
tanh

1

3
x

� �

s

�

ℏtsech2 1

3
x

� �

18

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2tanh
1

3
x

� �

s

� ℏtε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
�
1

2
tanh

1

3
x

� �

s

1

2
þ
1

2
tanh

1

3
x

� �� �

þ u2 þ⋯

ð64Þ

The ℏ curves of u
00

apprð0, 0Þ and u
000

apprð0, 0Þ in Eq. (57) are shown in Figure 3(a), the comparison

between the initial exact solution and the fourth order of approximation solution is shown in

Figure 3(b).

3. Application to the generalized perturbed NLS equation

In this section, we will use the HPM and Fourier’s transformation to search for the solution of

the generalized perturbed nonlinear Schrödinger equation (GPNLS)

i
∂u

∂z
þ
1

2
βðzÞ

∂2u

∂t2
þ δðzÞujuj2 � iαðzÞu ¼ βðzÞf ðu, z, tÞ: ð65Þ

If we let t ! x, z ! t,Eq. (65) turns to the following form

i
∂u

∂t
þ
1

2
βðtÞ

∂
2u

∂x2
þ δðtÞujuj2 � iαðtÞu ¼ βðtÞf ðu, t, xÞ: ð66Þ

where disturbed term f is a sufficiently smooth function in a corresponding domain. αðtÞ

represents the heat-insulating amplification or loss. βðtÞ and δðtÞ are the slowly increasing

dispersion coefficient and nonlinear coefficient, respectively. The transmission of soliton in the

real communication system of optical soliton is described by Eq. (66) with f ¼ 0 [37–39].

i
∂u

∂t
þ
1

2
βðtÞ

∂2u

∂x2
þ δðtÞujuj2 � iαðtÞu ¼ 0: ð67Þ

We make the transformation

u ¼ AðtÞϕðξÞeiη, ξ ¼ k1xþ c1ðtÞ, η ¼ k2xþ c2ðtÞ ð68Þ

With the following consistency conditions,

AðtÞ ¼ ce
Ð t

0
αðτÞdτ

, c1ðtÞ ¼ �k1k2

ðt

0

βðτÞdτ, c2ðtÞ ¼
1

2
ða2k

2
1 � k22Þ

ðt

0

βðτÞdτ, δðtÞ ¼
�a4k

2
1

c2
βðtÞe

�2
Ð t

0
αðτÞdτ

ð69Þ

where k1, k2, a2, a4, c are arbitrary non-zero constants.

Homotopy Asymptotic Method and Its Application
http://dx.doi.org/10.5772/67876

55



If we let f ðu, t, xÞ ¼ 1
2 k

2
1f ðϕÞe

iη, substituting Eq. (68) into Eq. (67), we have

ϕ
00

ξξ � a2ϕ� 2a4ϕ
3 ¼ f ðϕÞ: ð70Þ

By using the general mapping deformation method [10, 40], we can obtain the following

solutions of the corresponding undisturbed Eq. (70) when f ¼ 0.

~ϕ0 ¼ cn½k1x� k1k2

ðt

0

βðτÞdτ�: ð71Þ

In order to obtain the solution of Eq. (70), we introduce the following homotopic mapping

Hðϕ, pÞ: R� I ! R,

Hðϕ, pÞ ¼ Lϕ� L~ϕ0 þ q
	

L~ϕ0 � 2a4ϕ
3 � f ðϕÞ




: ð72Þ

where R ¼ ð�∞, þ ∞Þ, I ¼ ½0, 1�, ~ϕ0 is an initial approximate solution to Eq. (70), and the linear

operator L is expressed as

LðuÞ ¼ ϕ
00

ξξ � a2ϕ: ð73Þ

Obviously, from mapping Eq. (72), Hðϕ, 1Þ ¼ 0 is the same as Eq. (70). Thus, the solution of

Eq. (70) is the same as the solution of Hðϕ, qÞ as q ! 1.

3.1. Approximate solution

In order to obtain the solution of Eq. (70), set

ϕ ¼
X

∞

i¼0

ϕiðξÞq
i ¼ ϕ0 þ qϕ1 þ q2ϕ2 þ⋯ ð74Þ

If we let ϕ0 ¼ ~ϕ0,notice the analytical properties of f , ~ϕ0, and mapping Eq. (72), we can deduce

that the series of Eq. (74) are uniform convergence when q∈ ½0, 1�. Substituting expression (74)

into Hðu, qÞ ¼ 0 and expanding nonlinear terms into the power series in powers of q, we

compare the coefficients of the same power of q on both sides of the equation and we have

q0 : Lϕ0 ¼ L~ϕ0, ð75Þ

q1 : Lϕ1 ¼ f ðϕ0Þ, ð76Þ

q2 : Lϕ2 ¼ 6a4ϕ
2
0ϕ1 þ f ϕðϕ0Þϕ1, ð77Þ

⋯

qn : Lϕn ¼ Fðϕ0,ϕ1,⋯,ϕn�1Þ þ 2a4
X

3

k1¼0

X

k1

k2¼0

X

k2

k3¼0

⋯

X

kn�2

kn�1¼0

Ck1
3 C

k2
k1
Ck3
k2
⋯Ckn�1

kn�2
ϕ3�k1
0 ϕk1�k2

1 ϕk2�k3
2 ⋯ϕkn�2�kn�1

n�2 ϕkn�1

n�1

: ð78Þ

⋯
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where 3 ≥ k1 ≥ k2 ≥⋯ ≥ kn�1 ≥ 0∈N,
X

n�1

j¼1

kj ¼ n� 1, n∈Nþ and Fðϕ0,ϕ1,⋯,ϕn�1Þ ¼ 1
ðn�1Þ!

∂
ðn�1Þ

∂pn�1

f ðϕ0,ϕ1,⋯,ϕn�1Þj p ¼ 0
.

From Eq. (75) we have ϕ0ðξÞ ¼ ~ϕ0ðξÞ. If we select ϕ1jξ¼0 ¼ 0, by using Fourier transformation

and from Eq. (76), we have

ϕ1 ¼
1
ffiffiffiffiffi

a2
p

ðξ

0

f ðϕ0Þðe
ffiffiffi

a2
p ðξ�τÞ � e�

ffiffiffi

a2
p ðξ�τÞÞdτ, a2 6¼ 0, f ðϕ0Þ ¼ f ðϕ0ðτÞÞ: ð79Þ

If we select ϕ2jξ¼0 ¼ 0, from Eq. (77) we have

ϕ2 ¼
1
ffiffiffiffiffi

a2
p

ðξ

0

½6a4ϕ2
0ϕ1 þ f ϕðϕ0Þϕ1�ðe

ffiffiffi

a2
p ðξ�τÞ � e�

ffiffiffi

a2
p ðξ�τÞÞdτ: ð80Þ

where a2 6¼ 0,ϕ0 ¼ ϕ0ðτÞ,ϕ1 ¼ ϕ1ðτÞ.

We obtain the first- and second-order approximate solutions u1homðx, tÞ and u2homðx, tÞ of the
Eq. (70) as follows:

ϕ1homðx, tÞ ¼ ~ϕ0 þ
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2 � 1
p

ðξ

0

f ðϕ0Þðe
ffiffiffiffiffiffiffiffiffiffiffi

2m2�1
p

ðξ�τÞ � e�
ffiffiffiffiffiffiffiffiffiffiffi

2m2�1
p

ðξ�τÞÞdτ ð81Þ

u1homðx, tÞ ¼ ce
Ð t

0
αðτÞdτþi½k2xþ1

2

Ð t

0
ðð2m2�1Þk21�k22ÞβðτÞdτ�ϕ1homðx, tÞ ð82Þ

ϕ2homðx, tÞ ¼ ~ϕ0 þ
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2 � 1
p

ðξ

0

f ðϕ0Þðe
ffiffiffiffiffiffiffiffiffiffiffi

2m2�1
p

ðξ�τÞ � e�
ffiffiffiffiffiffiffiffiffiffiffi

2m2�1
p

ðξ�τÞÞdτ

þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2 � 1
p

ðξ

0

½�6m2ϕ2
0ϕ1 þ f ϕðϕ0Þϕ1�ðe

ffiffiffiffiffiffiffiffiffiffiffi

2m2�1
p

ðξ�τÞ � e�
ffiffiffiffiffiffiffiffiffiffiffi

2m2�1
p

ðξ�τÞÞdτ
ð83Þ

u2homðx, tÞ ¼ ce
Ð t

0
αðτÞdτþi½k2xþ1

2

Ð t

0
ðð2m2�1Þk21�k22ÞβðτÞdτ�ϕ2homðx, tÞ ð84Þ

With the same process, we can also obtain the N-order approximate solution

ϕnhomðx, tÞ ¼ ~ϕ0 þ
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2 � 1
p

ðξ

0

f ðϕ0Þðe
ffiffiffi

a2
p ðξ�τÞ � e�

ffiffiffi

a2
p ðξ�τÞÞdτ

þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2 � 1
p

ðξ

0

½�6m2ϕ2
0ϕ1 þ f ϕðϕ0Þϕ1�ðe

ffiffiffiffiffiffiffiffiffiffiffi

2m2�1
p

ðξ�τÞ � e�
ffiffiffiffiffiffiffiffiffiffiffi

2m2�1
p

ðξ�τÞÞdτ

þ⋯þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2 � 1
p

ðξ

0

ðe
ffiffiffiffiffiffiffiffiffiffiffi

2m2�1
p

ðξ�τÞ � e�
ffiffiffiffiffiffiffiffiffiffiffi

2m2�1
p

ðξ�τÞÞ½Fðϕ0,ϕ1,⋯,ϕn�1Þ � 2m2

X

3

k1¼0

X

k1

k2¼0

X

k2

k3¼0

⋯

X

kn�2

kn�1¼0

Ck1
3 C

k2
k1
Ck3
k2
⋯Ckn�1

kn�2
ϕ3�k1
0 ϕk1�k2

1 ϕk2�k3
2 ⋯ϕkn�2�kn�1

n�2 ϕkn�1

n�1�dτ

ð85Þ

unhomðx, tÞ ¼ ce
Ð t

0
αðτÞdτþi½k2xþ1

2

Ð t

0
ðð2m2�1Þk21�k22ÞβðτÞdτ�ϕnhomðx, tÞ ð86Þ
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where 3 ≥ k1 ≥ k2 ≥⋯ ≥ kn�1 ≥ 0∈N,
X

n�1

j¼1

kj ¼ n� 1, n∈Nþ and

Fðϕ0,ϕ1,⋯,ϕn�1Þ ¼
1

ðn� 1Þ!
∂ðn�1Þ

∂pn�1
f ðϕ0,ϕ1,⋯,ϕn�1Þ p ¼ 0

�

�

�

�

�

ð87Þ

3.2. Comparison of accuracy

In order to explain the accuracy of the expressions of the approximate solution represented by

Eq. (86), we consider the small perturbation term

i
∂u

∂t
þ 1

2
βðtÞ ∂

2u

∂x2
þ δðtÞujuj2 � iαðtÞu ¼ 1

2
εk21βðtÞeiη sin nϕ, ð88Þ

where n∈Nþ,ϕ ¼ e
�
Ð t

0
αðτÞdτ�iðk2xþ1

2ða2k
2
1�k22Þ

Ð t

0
βðτÞdτÞ

u=c,0 < ε≪ 1.

From the discussion of Section 3.1, we obtain the second-order approximate Jacobi-like elliptic

function solution of Eq. (88) as follows

ϕ2homðx, tÞ ¼ cn½k1x� k1k2

ðt

0

βðτÞdτ� þ ε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2 � 1
p

ðξ

0

sin nðϕ0Þðe
ffiffiffiffiffiffiffiffiffiffiffi

2m2�1
p

ðξ�τÞ

� e�
ffiffiffiffiffiffiffiffiffiffiffi

2m2�1
p

ðξ�τÞÞdτþ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2 � 1
p

ðξ

0

½�6m2ϕ2
0ϕ1 þ εn sin n�1ðϕ0Þ

cos ðϕ0Þϕ1�ðe
ffiffiffiffiffiffiffiffiffiffiffi

2m2�1
p

ðξ�τÞ � e�
ffiffiffiffiffiffiffiffiffiffiffi

2m2�1
p

ðξ�τÞÞdτ

ð89Þ

u2homðx, tÞ ¼ ce
Ð t

0
αðτÞdτþi½k2xþ1

2

Ð t

0
ðð2m2�1Þk21�k22ÞβðτÞdτ�ϕ2homðx, tÞ: ð90Þ

Set ϕexaðx, tÞ ¼
X

∞

i¼0

ϕiðx, tÞ to be an exact solution of Eq. (88), notice that

Lðϕexa � ϕ2homÞ ¼ f ðϕÞ þ 2a4ϕexa
3 � ½2a4ϕ0

3 þ f ðϕ0Þ þ 6a4ϕ
2
0ϕ1

þ f ϕðϕ0Þϕ1� ¼ ε sin n
X

∞

i¼0

ϕi

 !

þ 2a4
X

∞

i¼0

ϕi

 !3

� ½2a4ϕ0
3 þ ε sin nðϕ0Þ

þ 6a4ϕ
2
0ϕ1 þ εn sin n�1ðϕ0Þ cos ðϕ0Þϕ1� ¼ Oðε2Þ

, ð91Þ

where 0 < ε≪ 1, selecting arbitrary constants such that ϕexað0Þ ¼ ϕ2homð0Þ, from the fixed

point theorem [41], we have ϕexa � ϕ2hom ¼ Oðε2Þ, then

juexa � u2homj ¼ jAðtÞeiη½ϕexa � ϕ2hom�j

¼ ε2An sin n�1ðϕ0Þ cos ðϕ0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2 � 1
p

ðξ

0

sin nðϕ0Þðe
ffiffiffi

a2
p ðξ�τÞ � e�

ffiffiffi

a2
p ðξ�τÞÞdτ

�

�

�

�

�

�

�

�

�

�

¼ Oðε2Þ:

ð92Þ
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Therefore, from the above result, we know that the approximate solution,u2hom, obtained by

asymptotic method and possesses better accuracy.

Set AðtÞ ¼ 1, k1 ¼ k2 ¼ 1, βðtÞ ¼ 1, m ! 1, n ¼ 1, ξ∈ ½0, 3� and ε ¼ 0:01, 0:001 for Eq. (90), and

then, we will have the curves of solutions ju1homðξÞj and ju0ðξÞj and be able to compare them;

see Figures 4 and 5. From Figures 4 and 5, it is easy to see that as 0 < ε≪ 1 is a small parameter,

and the solutions ju1homðξÞj and ju0ðξÞj are very close to each other. This behavior is coincident

with that of the approximate solution of the weakly disturbed evolution in Eq. (88).

4. Conclusions

We research the generalized perturbed KdV-Burgers equation and GPNLS equation by using

the HAM and HPM; these two powerful straightforward methods are much more simple and

efficient than some other asymptotic methods such as perturbation method and Adomian

decomposition method and so on. The Jacobi elliptic function and solitary wave approximate

solution with arbitrary degree of accuracy for the disturbed equation are researched, which

Figure 4. A comparison between the curves of solutions ju1homðξÞj (solid line) and ju0ðξÞj (dashed line) with ε ¼ 0:01.

Figure 5. A comparison between the curves of solutions ju1homðξÞj (solid line) and ju0ðξÞj (dashed line) with ε ¼ 0:001.
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shows that these two methods have wide applications in science and engineering and also can

be used in the soliton equation with complex variables, but it is still worth to research whether

or not these two methods can be used in the system with high dimension and high order.
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