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Abstract

Structural and numerical chromosomal abnormalities are common in early developing 
embryos, and these abnormalities may cause spontaneous abortions and implantation 
failure. The reproductive risk of carriers with structural chromosomal abnormalities 
depends on the breakpoint positions, the segregation patterns and the sex of the car-
rier. These carriers have a lower chance of producing normal or balanced gametes due 
to abnormal segregation of chromosomes at meiosis leading to repeated spontaneous 
abortions and infertility. Preimplantation genetic diagnosis (PGD) is offered to couples 
who have already been diagnosed with a single gene disorder or a chromosome imbal-
ance to select an embryo free from the mutation or an embryo with a balanced karyotype 
prior to implantation and pregnancy. PGS is applied to patients experiencing repeated 
implantation failures or spontaneous abortions with normal karyotypes. Translocations 
are the most common type of structural chromosome rearrangement. Both reciprocal 
and Robertsonian translocations are phenotypically normal. PGD for translocations 
was initially performed by fluorescence in situ hybridization (FISH) at cleavage stage 
embryos. However, with the recent developments, many centers have opted for the use 
of array comparative genomic hybridization (aCGH), single-nucleotide polymorphism 
(SNP) arrays and next generation sequencing (NGS).
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1. Introduction

Preimplantation embryo development follows a series of critical events. These events start 

at gametogenesis and lasts until parturition. Gametogenesis is a process of gamete forma-

tion. Male and female gametes are derived from primordial germ cells (PGCs) by the pro-

cesses of spermatogenesis and oogenesis, respectively. PGCs have unique properties of 
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gene expression, epigenetics, morphology and behavior. Once the PGCs undergo mitosis, 
spermatogenesis and oogenesis progress differently. In spermatogenesis, spermatogonia 
undergo mitosis starting at puberty until death, and each primary spermatocyte produces 

four spermatids at the end of meiosis. In oogenesis, PGCs differentiate into oogenia, and 
they enter meiosis and arrest until puberty. Unlike meiosis II in spermatogenesis, secondary 
oocyte and first polar body do not undergo meiosis II until fertilization. After fertilization, 
meiosis II starts and each oogenia produce a single viable oocyte [1].

At fertilization, the oocyte completes meiosis, and the fertilized oocyte is called the zygote. Oocyte 
and sperm nuclei fuse resulting in syngamy. The zygote undergoes series of cleavage divisions, 
forming 2-cell, 4-cell, 8-cell, morula and blastocyst stages [2]. During cleavage stage divisions pro-

gramming of maternal and paternal chromosomes takes place to create the embryonic genome 

(embryonic genome activation, EGA) and to start the preimplantation embryo development. If 
the EGA fails, the development does not continue because of the inability of the embryo to have 
cellular functions [3]. This activation is initiated by degradation of maternal nucleic acids, specific 
RNAs stored in oocytes, proteins and other macromolecules [4]. Upon EGA, which starts at the 
2-cell stage in mouse and 4–8-cell stage in human [5], remarkable reprogramming of expres-

sion occurs in the preimplantation embryo. These reprogramming events are controlled by DNA 
methylation, histone acetylation, transcription, translation and miRNA regulation [6].

Both conception and embryonic developments during pregnancy are vulnerable processes 

since a large number of the conceptions are chromosomally abnormal. Chromosomal imbal-
ances, gains or losses of segments/whole chromosomes, are common in human, and they are 

observed in 1/380 live births [7]. Chromosomal imbalances have been observed in preimplan-

tation embryos mostly in the form of aneuploidies and translocations, and they may lead to 

embryo death or development of an affected embryo [8, 9]. The incidence of chromosomally 

abnormal embryos increases vividly with advanced maternal age [10–12]. The main causes of 

spontaneous abortions and repeated implantation failure are these numerical and structural 

chromosomal abnormalities [13–17]. Therefore, in the last decades, a great focus has been put 

on detecting these chromosomal aberrations in preimplantation embryos. Preimplantation 

genetic diagnosis has been applied to patients with known structural chromosomal abnor-

malities as well as single gene disorders, whereas preimplantation genetic screening has 

aimed to detect aneuploid embryos and lower the risk of implantation failures and spontane-

ous abortions following in assisted reproductive technology treatments [18–20].

In this chapter, the applications of preimplantation genetic diagnosis for translocations and 
preimplantation genetic screening for aneuploidy testing will be discussed. Translocations 

are the most common type of rearrangements that we come across in fertility clinics. Different 
techniques that are being used currently will be thoroughly evaluated. Finally, different 
aspects of preimplantation genetic screening will be evaluated.

2. Structural chromosomal abnormalities in human embryos

Majority of conceptus with chromosomal abnormality aborts spontaneously with <1% of 

abnormal conceptus resulting in term pregnancy. Chromosomal abnormalities can arise at 
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three stages during human development, gametogenesis, fertilization and embryogenesis. 
Analysis of chromosomes in human gametes and embryos has become available with the 
development of artificial reproductive (ART) technologies developed to treat infertility.

Balanced structural chromosome rearrangements are common in human. Approximately 1/500 
to 1/1000 live births carry a balanced translocation [21]. Translocations are formed due to 

rearrangements of nonhomologous chromosome segments. They can be caused by abnormal 

DNA repair, chromosome breakage, centric fission followed by malsegregation of that chro-

mosome or through the formation of isochromosomes or terminal deletion accompanied by 

a duplication of the rest of the chromosome [22]. Translocations are grouped in two catego-

ries: reciprocal, the most common form, and Robertsonian. Reciprocal translocations occur 

due to an exchange of two ends of nonhomologous chromosomes. Robertsonian transloca-

tions involve rearrangement of two acrocentric chromosomes (chromosomes 13, 14, 15, 21 

and 22) with the loss of the short arms occurring in 1/900 live births [7]. The most common 

Robertsonian translocation involves chromosomes 13 and 14 [23].

Although the carriers of both reciprocal and Robertsonian translocations are phenotypically 
normal, the reproductive risk of balanced carriers varies depending on the chromosomes 

involved, breakpoint positions, the segregation patterns and the sex of the translocation 
carrier [24]. However, they generally have a lower chance to produce normal or balanced 
gametes due to abnormal segregation of chromosomes at meiosis leading to repeated spon-

taneous abortions and infertility [21, 25]. At pachytene stage of meiosis I, chromosomes with 
reciprocal translocation rearrangements form quadrivalent. At the end of meiosis I, these 
chromosomes can segregate in four different ways: alternate (2:2), adjacent (2:2), 3:1 and 4:0 
(Figure 1a). Alternate segregation either leads to a normal or a balanced rearrangement, and 
therefore, it results in a viable birth. Studies suggest that the most common segregation pat-

tern of gametes produced by the carriers of reciprocal translocations is alternate (balanced) 

segregation [26]. In the case of an adjacent segregation, homologous chromosomes cause a 
monosomy for one centric center and trisomy for the other centric center. Studies suggest that 

adjacent two segregation pattern is rather uncommon [26] and may rise in cases of maternal 

meiotic errors [21]. Three to one segregation leads to a tertiary trisomy/monosomy or inter-

change trisomy/monosomy. This type of segregation can be viable. If the chromosomes fail to 
segregate, it leads to 4:0 segregation resulting in double trisomy or double monosomy. In case 
of a Robertsonian translocation, one normal with one derivative chromosome or single chro-

mosomes of derivative or the single chromosomes of the normal chromosome can segregate 

resulting in an abnormal gamete (Figure 1b). The only way of a Robertsonian carrier can pro-

duce a normal gamete is if the two normal chromosomes segregate together at meiosis I [27].

Insertions can be classified as a type of translocations, and these are uncommon rearrangements. 
The simple insertion involves three breaks where the first two removes the part of the chromo-

some, and the segment is reinserted within the third break. The conceptus with a smaller inser-

tional segment has a potential to be viable [28]. The insertions, especially the small ones, may 

be passed on from generations to generations without being detected. However, with the use of 
newer technologies, such as microarrays, more patients with insertions are likely to be detected 

[29]. Insertions are one the rearrangements with the highest reproductive risk, in such approxi-
mately 32% of male and 36% of female carriers are having a chromosomally abnormal child [30].
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Another example of chromosomal rearrangements is inversions. These are intrachromosomal 
structural rearrangements. The simple inversion involves two break points within the same 

chromosome where the intercalcary segment gets rotated and reinserted. The inversions can 

be subcharacterized as pericentric, where the inverted segment involves the centromere, and 
paracentric, where the inverted segment is reinserted on the same chromosome arm. It is very 
rare that an inversion, especially pericentric inversions, would cause infertility [31]. However, 
abnormal synapsis of a chromosome pair may cause the development of an abnormal embryo 

Figure 1. Segregation patterns of translocation carriers (a. Reciprocal and b. Robertsonian translocation carriers) during 

meiosis.
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due to malsegregation of chromosomes during gametogenesis. Depending on the break point, 

whether it involves genes or not, the size of the inversion could result in detrimental effects. 
Therefore, the risk of an inversion carrier varies among couples, and each has their own risk. 

The risk estimate can be performed by family studies, literature with similar inversion break 

points and gamete (sperm) analysis. Sperm studies have shown that during spermatogenesis, 

inversions with larger segments could result in spermatogenic arrest [32].

The carriers with a chromosomal rearrangements have the option to pursue pregnancy without 

seeking for any medical help and wish for a chromosomally normal child. Some of these carri-

ers may have had an abnormal child due to the chromosomal abnormalities, and some of these 

carriers, especially translocation carriers, may have experienced repeated spontaneous abortions. 
Therefore, these patients may choose to seek for different options to avoid such experiences. These 
couples may opt for donor gametes, prenatal diagnosis or preimplantation genetic diagnosis.

3. Preimplantation genetic diagnosis

Preimplantation genetic diagnosis (PGD) is offered to couples who have already been diag-

nosed with a single gene disorder or a chromosome imbalance to select an embryo free 

from the mutation or an embryo with a balanced karyotype prior to implantation and 

pregnancy [9]. The first application of PGD was performed for a couple with X-linked 
recessive disorder almost a quarter century ago by Handyside and colleagues [33].

PGD is a highly invasive technique that requires IVF and biopsy of the polar body of the mature 
oocyte or the developing embryo (cleavage stage or blastocyst stage). Polar body biopsy involves 

biopsying the first only or the first and the second polar bodies. Neither the first polar body nor 
the second polar body is required for fertilization or a normal embryonic development [34]. Polar 

body biopsy is advantageous since it provides sufficient time for analysis. First polar body biopsy 
alone only allows analysis of meiotic errors (maternal origin only), and it does not give any infor-

mation on the mitotic errors. Although the biopsy of both polar bodies provides information on 
both the meiotic and mitotic errors, it is still limited to detect the maternal errors only [35].

Biopsy at the cleavage stage on day 3 postfertilization provides more complete diagnosis than 
polar body biopsy and with enough time to finish the diagnosis before the embryo transfer 
[36, 37]. However, mosaicism (presence of at least two cell lines) at this stage is a major issue 
for PGS. In mosaic embryos, one or two cells may not represent the rest of the embryo due to 
different cell types in every cell [38–43].

Blastocyst biopsy has been applied more frequently in PGS in the last years. Biopsy of 
trophectoderm cells provides more number of cells for diagnosis and therefore overcomes 

the trouble of the single cell diagnosis [44]. Even though some studies report mosaicism at 

the blastocyst stage [45–47], due to the activation of cell cycle control points by the 8-cell 

stage embryo, many mosaic embryos are arrested or are repaired [48]. The lower rates of 

mosaicism in addition to analysis of several cells instead of just one provide less diagnostic 

errors. Conversely, blastocyst stage biopsy is limited before the procedure can even begin as 
it depends on the development of the embryo into a blastocyst [49].
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4. Numerical chromosomal abnormalities in embryos and preimplantation 

genetic screening

Since the initial applications of PGD for sex-linked disorders and monogenic diseases, the 
indications have been expanded to aneuploidy screening by preimplantation genetic screen-

ing (PGS). PGS is applied to patients with advanced maternal age, recurrent miscarriages, 

repeated in vitro fertilization (IVF) failures or male infertility. Unlike PGD, patients undergo-

ing PGS do not carry a genetic disorder and they have a normal karyotype. The main goal of 

PGS is to test embryos for aneuploidies that arise spontaneously in human gametogenesis, 

more prevalent in female meiosis, or early embryonic development [50, 51]. Aneuploidy is a 
common feature in preimplantation embryos causing the low success rates and high miscar-

riage rates in assisted reproductive technology (ART) treatments [52, 53]. Although embryos 
with autosomal monosomies are mainly lethal; embryos with some trisomies (13, 18 and 21) 

have higher chances of survival with the risk of developing genetic disorders [54], and some 

trisomies (15, 16 and 22) can cause embryonic developmental arrest or implantation failures 

[55, 56]. Therefore, selecting an embryo with a normal chromosomal complement helps to 

improve the implantation rates and increases the chances of birth of a healthy child.

The first PGS was performed by fluorescence in situ hybridization (FISH) in polar bod-

ies and cleavage stage embryos in 1995 [57–59]. Up until recently, FISH was the preferred 
method of analysis in cleavage stage embryos [60]. As discussed earlier, although at cleavage 
stage, both maternal and paternal errors can be analyzed, it is complicated by high levels 
of mosaicsism. Mosaicsism is rare for monogenic diseases; however, it is very common for 

aneuploidies in the embryos at cleavage stage. There are more than ten randomized control 
trials showing that cleavage stage biopsy and FISH analysis does not improve the delivery 
rates [61–71]. In 2010, European Society of Human Reproduction and Embryology (ESHRE) 
reported that cleavage stage biopsy using FISH is not recommended for PGS [72]. The major-

ity of the aneuploidies in the embryos affecting the pregnancy rates are believed to occur 
in the oocyte, and therefore, polar body (PB) biopsy may have an added advantage in PGS, 

especially since PBs are not affected by mosaicim arising in mitosis [73]. However, biopsy of 
the first PB does not provide a complete aneuploidy screening since biopsy of first PB only 
gives errors occurring in meiosis I, and it does not reveal any information about meiosis II. 
Therefore, performing both PB I and PB II biopsies are recommended for better analysis. 
Biopsy of PBs is considered less invasive than biopsy of a blastomere or trophectoderm, 

and the use of aCGH in PB biopsy was shown to have improved implantation rates [74]. 

Furthermore, the multicenter randomized control trial set by the ESHRE Task force reported 
that PGS using the first and the second PB by aCGH increases the delivery rates significantly 
in patients with advanced maternal age [75]. One of the pitfalls of polar body biopsy is that 
oocytes diagnosed as aneuploid may actually form a euploid embryo due to a chromatid 

predivision error in MI with a balanced segregation at MII [75, 76]. Moreover, Geraedts and 

colleagues (2011) reported that at least 1 in 10 oocytes biopsied do not provide a diagnostic 

result [75]. Therefore, embryos with no diagnostic results and developed normally are either 

discarded or biopsied at a later stage. This increases the labor for both embryology and 

genetics teams, and it causes an added economical burden to the patients.
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With the recent improvements in IVF laboratories, blastocyst biopsy has become the pre-

ferred method for PGS. In the past, one of the main problems of performing blastocyst 
biopsy was the limited time allowed for the diagnosis since the embryonic cells are either 

biopsied on day 5 or on day 6 for the slow developing embryos. With the use of vitrifi-

cation, high embryo survival rates were reported [77–80], and many centers have opted 

performing PGS at blastocyst stage [81]. Furthermore, vitrifying embryos provide chance 
of an embryo transfer during an unstimulated cycle that was shown to result in high preg-

nancy rates [82–84]. In good prognosis patients, a pilot randomized clinical trial showed 
that trophectoderm biopsy and use of aCGH for PGS increases the implantation and ongo-

ing pregnancy rates [85]. The pitfall of trophectoderm biopsy is that some embryos may 

not reach to the blastocyst stage in vitro that may be viable in utero [86]. As an added 
evaluation of aneuploidy screening, mitochondrial DNA (mtDNA) copy number has been 
investigated in euploid embryos showing that high mtDNA copy number indicates lower 
embryo viability and implantation [87, 88].

In addition to the array comparative genomic hybridization (aCGH) platforms, validation 
and the initial applications of single-nucleotide polymorphism (SNP) arrays [22, 76, 89–91] 

and next generation sequencing (NGS) platforms [92–96] showed promising results for their 

use in PGS. With the use of SNP arrays, the aneuploidies including monosomies or partial 

deletions as well as parental origin of any chromosomal abnormality can be identified [97].

Although PGD is widely accepted and applied throughout the world, there is still an ongo-

ing debate on whether PGS is beneficial to infertile couples due to variable success rates 
depending on the maternal age, the technique used and the time of biopsy. Therefore, more 
and more studies are being developed for indirect aneuploidy assessment of the embryos.

5. PGD for translocations

Up until recently, the most common technique used to detect translocations in PGD was FISH. 
Polymerase chain reaction (PCR), which has been widely used to detect monogenic disorders, has 
also been used to detect translocations in PGD [98]. Other techniques that have been introduced 
to detect translocations in PGD are aCGH and more recently SNP arrays and NGS platforms.

5.1. PGD for translocations by FISH

FISH is a cytogenetic technique that had been used to detect structural chromosome analysis 
for patients with translocations and X-linked disorders. FISH is based on the hybridization of 
interphase chromosomes on specific DNA probes [99]. Although FISH is a rapid and accurate 
technique, it is limited as only a few chromosomes can be examined in a single cell. Moreover, 
it is restricted to analyze only the regions known to have imbalances. Signal interpretation is 
very important for correct diagnosis since the hybridization efficiency with each successive 
round could be lowered due to signal splitting and signal overlap. Additionally, loss of micro-

nuclei during fixation of the blastomere causes difficulties in diagnosis [100].
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5.2. PGD for translocations by PCR

PCR, a technique to amplify DNA by in vitro enzymatic replication, is mainly used to detect 
monogenic disorders [37] and recently, to detect translocations [98]. PCR is a technically 
demanding procedure, especially single cell PCR for PGD. The most important issues with 
PCR are the high risk of contamination, allele dropout (ADO) and amplification failure. ADO, 
which occurs when one of the alleles fails to amplify in a heterozygote cell for that particular 
region and is usually caused by a low amount of DNA in single cell PCR procedures, incom-

plete lysis or imperfect denaturation temperature [101], could lead to a misdiagnosis [101]. 

Fluorescent-PCR and multiplex PCR, which are more sensitive than conventional PCR, can be 
used to lower the ADO risk and amplification failure [102]. Although PCR has its limitations, 
it has the potential to conquer the drawbacks of FISH in detecting translocations.

Quantitative fluorescent PCR (QF-PCR) has been incorporated to the analysis of chromosomal 
imbalances. Studies have shown that QF-PCR is a sensitive, rapid and accurate technique 
that has been applied to study chromosomal abnormalities in spontaneous miscarriages [103] 

and in prenatal diagnosis [104]. Not only the parental and meiotic origin of aneuploidy can 

be detected by QF-PCR by using semi/fully informative short tandem repeat (STR) markers, 
but also the possible recombination events can be analyzed using informative STR markers. 
QF-PCR results of this study are preliminary, and more studies must be carried out.

5.3. PGD for translocations by array comparative genomic hybridization

aCGH, which is a similar technique to metaphase CGH, is used to determine total or partial 
aneuploidy by detecting chromosomal gains and losses of the entire genome [105]. Manual 

identification of chromosomes is not required with aCGH, and this technique has higher sen-

sitivity and specificity for small genomic changes [106]. aCGH not only is used in prenatal 
diagnoses for identification of translocations [107, 108] and being reported as a rapid tech-

nique to detect de novo chromosome imbalances [109] but also is used to detect translocations 

in PGD clinically [110–112].

The comprehensive chromosome screening using aCGH has an added advantage to FISH 
in detecting aneuploidies and interchromosomal effect. Interchromosomal effect is the phe-

nomenon known as the interference of chromosomes involved in rearrangement with the 

segregation of the structurally normal chromosomes [113–115]. Twenty-four chromosome 

aneuploidy screening revealed that segregation errors occur at high frequency even for the 
chromosomes not tested by FISH [8, 9, 20, 100, 116–120]. Furthermore, aCGH can detect copy 
number differences more precisely compared to FISH and PCR analyses since these methods 
are at much lower resolution than aCGH [121]. However, one of the limitations of aCGH is its 
inability to detect ploidy [122].

The methodology of aCGH is similar to metaphase-CGH, such that the only difference is that 
aCGH does not require metaphase chromosomes, and it can use target DNA for hybridiza-

tion from cloned DNA segments, such as PCR-generated sequences, bacterial artificial chro-

mosome (BAC) and cDNA clones [49]. More importantly, aCGH is much faster technique 
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compared to metaphase CGH in detecting chromosomal abnormalities within less than 1 day 
[123]. The test and reference DNA are labeled with green and red fluorochromes, respectively. 
After hybridizing the labeled test and reference DNA on the array covered with BAC/cDNA 
clones or PCR-generated sequences, an array scanner captures the scanned image and com-

puter systems are used to analyze the ratio of green to red fluorescence. If the test DNA is 
normal, the ratio of green to red signal should be 1:1. If the test DNA is monosomic, the green 
labeled chromosome will be less compared to the red labeled, and therefore, the ratio of green 

to red ratio is decreased and vice versa [124].

One of the most important advantages of aCGH is that it requires a small amount of genomic 
DNA for hybridization, as low as 2–4 μg [44]. However, in PGD/PGS, WGA, a technique used 
to amplify the whole genome for molecular analysis using small amounts of DNA [125], is 

fundamental. This technique can abolish DNA as being a limiting factor for genetic analysis 
by generating large quantities of DNA from starting material as small as 6pg, such as from 
a single blastomere [126]. Multiple WGA techniques have been used in the past, such as 
primer extension preamplification [127], linker-adaptor PCR [128], degenerate oligonucleotide 

primed-PCR [9, 129–131] and multiple displacement amplification [132–134].

5.4. PGD for translocations by single nucleotide polymorphism arrays

SNP arrays consist of oligonucleotide probes and most of them examine between 10,000–
500,000 SNPs with high accuracy and reproducibility. SNP arrays utilize an approach similar 
to metaphase-CGH, such that the labeled test sample is hybridized separately on a different 
area of the array than the reference sample that is analyzed in parallel. The alleles detected 
at each SNP locus for the embryo are compared with the SNPs detected for the parents, and 

then, fluorescence intensities obtained for the test (embryo) and reference samples are ana-

lyzed by the brightness of the signals obtained. Brighter signals of the test sample indicate 
excess of that chromosome and vice versa [135].

The main advantage of SNP arrays is that they can determine the inheritance of genes that 

can allow simultaneous analysis of monogenic diseases and chromosome rearrangements, 

such as translocations including the balanced translocations unlike aCGH or FISH [100]. The 

drawback of SNP arrays is their high susceptibility to noise and bias, especially with the 

amplified single cell samples. SNP arrays cannot detect duplications. When SNP arrays are 
used in PGD/PGS, vitrification of embryos is necessary to enable enough time to complete the 
procedure [135].

SNP arrays have been applied in research to detect total aneuploidy and structural chro-

mosomal imbalances to identify disease risks such as for type-2 diabetes, prostate cancer, 

glaucoma and some cardiovascular conditions [136]. SNP arrays were shown to analyze the 
copy number differences and chromosomal instability in studies following WGA of cells 
from cell lines [100] and amplified blastomeres from human cleavage-stage embryos [22, 137, 

138]. Clinical applications of SNP arrays have been reported for several cancers [139] and for 

Gaucher disease and Marfan syndrome following blastomere biopsy [140]. SNP arrays have 

also been clinically applied in PGD and PGS [141–143].
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5.5. PGD for translocations by next-generation sequencing

NGS is a technology that is used to sequence the nucleotides in a massively parallel man-

ner. With the use of NGS, higher throughput data with lower cost can be obtained in a faster 

way compared to Sanger sequencing. Furthermore, for NGS platforms, bacterial cloning pro-

cedures are not required. On the other hand, NGS technologies require complex alignment 
algorithms in order to assemble and map the genome using short reads [144]. Up until this 

year, three main NGS platforms have been introduced, Roche (454), Life technologies and 

Illumina. Roche (454) generates 700 base pair fragments of approximately 1 million reads 
[145]. With the Life Technologies platform, semiconductor-sequencing technology has been 
used with solid-state pH meter. In this platform, proton generates up to 200 bp fragments 
of about 60–80 million reads. This technology generates up to 10 Gb of sequence in every 
run [145]. Illumina’s platform generates up to 150 bp fragments of about 6 billion reads with 
approximately 1.8 Tb of sequence in each run over a period of 3 days [145]. Since NGS has 

become cost-effective, this comprehensive analysis has been applied in assessment of numeri-
cal and structural chromosomal abnormalities in PGS and PGD [96, 141, 146–149].

6. Conclusion

One of the most important reasons of the development of PGD was to avoid termination 
of pregnancy or avoid a severe congenital abnormality. Soon after the PGD implications 

have developed; PGS has been introduced aiming to select a euploid embryo to improve the 

implantation rates and avoid spontaneous abortions. However, PGD is not an easy reproduc-

tive option especially since there is no guarantee of pregnancy or even an embryo transfer in 

cases where all the embryos have the mutation or chromosomal imbalance [72]. Complex and 
multidisciplinary approaches are required for a successful PGD cycle combining the exper-

tise of geneticists, embryologists and fertility doctors. Each PGD cycle starts with genetic 

counseling, fertility assessment, hormonal ovarian stimulation, development of embryos in 

vitro, biopsy of these embryos and preimplantation genetic testing of the embryonic samples. 

Initial studies were performed by a molecular cytogenetic technique, FISH, with some limita-

tions including problems with fixation of the nucleus, hybridization problems and intensity 
of the fluorescence of the probes. As the newer technologies have been introduced, the fields 
of PGD and PGS have also improved. In the last past few years, with the development of 
aCGH, SNP arrays and NGS technologies, precise and reliable results have obtained from 
embryo biopsies with improvements in the implantation and take home baby rates.
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