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Abstract

In this chapter, the problem of quaternion beamformer based on linear and widely linear
hypercomplex processing is investigated in scenarios, where there exist one signal and
one interference that are uncorrelated. First, we introduce brief information about the
quaternion algebra and a quaternion model of linear symmetric array with two-
component electromagnetic (EM) vector-sensors is presented. Based on array’s quater-
nion model, a quaternion MVDR (QMVDR) beamformer is derived and its performance
is analysed. Second, we propose the general expression of a quaternion semi-widely
linear (QSWL) beamformer and derive its useful implementation and the array’s gain
expression. Finally, we give the main results of Monte Carlo simulation.

Keywords: quaternion beamforming, hypercomplex processes, widely linear
hypercomplex processes, polarization signal processes, EM vector-sensor array

1. Introduction

As an important tool of multidimensional signal processing, the quaternion algebra has been

applied to spatio-temporal-polarization beamformer based on an electromagnetic (EM) vector-

sensor array [1–5]. The potential advantages of multidimensional signal processing are: (1) the

correlation and coupling between each dimension are naturally considered, leading to

improved accuracies of signal processing; (2) signals of different geometric nature in different

dimensions are being represented as a single signal, leading to reduced complexity of processing

approaches. For example, we consider an array consisting ofM two-component vector-sensors (If

an EMvector-sensor consists of only two components, such as twomagnetic loops [6], one electric

dipole plus one magnetic loop [7] and two electric dipoles [3], it is referred to a two-component

vector-sensor in this chapter.), the output of complex ‘long vector’ beamformer [8, 9] is yc ¼ wH
c xc

where xc ¼ ½x11,x12,…xM1 ,xM2�
T is the observed vector of array;wc ¼ ½w11,w12,…wM1,wM2�

T is a

complex weighted vector; the symbol (.)H denotes the complex conjugation transposition opera-

tor. Whereas the output of quaternion-based beamformer [3–5] is yh ¼ wΔ

h xh ¼ yc þ j ye where
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xh ¼ ½xh1 ,xh2 ,…xhM�
T is the quaternion-valued, observed vector of array and xhm ¼ xm1 þ jxm2

ðm ¼ 1,…,MÞ.wh ¼ ½wh1,wh2,…whM�
T is a quaternion-valued,weightedvector andwhm ¼ wm1þ

jwm2 ðm ¼ 1,…,MÞ. The symbol ð:ÞΔ denotes the quaternion conjugation transposition operator

and j denotes an imaginary unit of quaternions. Comparing yhwith yc, we can see that the output

of quaternion-based beamformer has one more extra information ye than the output of complex

‘long vector’ beamformer. By employing this extra information ye, we can further improve the

performance of beamformer.

In this chapter, our aim is to investigate the beamformer of EM vector-sensor array, based on

quaternion processes. First, a QMVDR beamformer and its interference and noise canceller

(INC) algorithm are proposed. The output signal to interference-plus-noise ratio (SINR) expres-

sion of INC algorithm is derived in a scenario where there exist one signal and one interference

that are uncorrelated. By analysing the effect of sources parameters on the output SINR, the fact

is explicitly revealed that even though no separation between the DOA’s of the desired signal

and interference, the maximum value of output SINR can be obtained using the orthogonality

between the polarizations of the desired signal and interference. Second, we propose a quater-

nion semi-widely linear beamformer and its useful implementation, i.e., quaternion semi-widely

linear (QSWL) Generalized sidelobe canceller (GSC). Since the QSWL GSC consists of two-stage

beamformers, it has more information than the complex ‘long vector’ beamformer. The increase

in information results in the improvement of the beamformer’s performance. By designing the

weight vectors of two-stage beamformers, the interference is completely cancelled in the output

of QSWL GSC and the desired signal is not distorted.

2. Quaternion algebra and vector-sensor array model

2.1. Quaternion algebra

Quaternion came up in the investigations of constructing multidimensional analogues of the

field of complex numbers C. The field of quaternion numbersQ is also algebra over the field of

real numbers R. The dimension of this algebra is four, and four basis elements are 1, i, j and k.

In field of quaternion numbers Q, following multiplication is satisfied

i2 ¼ j2 ¼ k2 ¼ �1; ij ¼ k ¼ �ji; jk ¼ i ¼ �kj; ki ¼ j ¼ �ik ð1Þ

A quaternion variable x∈Q has two forms of representation. One form is x = x1 + ix2 + jx3 + kx4,

where x1, x2, x3 and x4 are real coefficients. It is referred to as the R-expansion of quaternions.

We call x1 the real/scalar part of x, and it is denoted by RðxÞ. ix2 + jx3 + kx4 is called the

imaginary/vector part of x, and it is denoted by IðxÞ. We refer to x* = x1 � ix2 � jx3 � kx4 as the

conjugate of x and jxj ¼ ðx21 þ x22 þ x23 þ x24Þ
1=2 as the modulus of x. The other form is x = z1 + jz2,

where z1 and z2 are complex coefficients. It is called the C-expansion of quaternions or Cayley-

Dickson. x� ¼ z�1 � jz2 is the conjugate of x and |x|=(|z1|
2+|z2|

2)1/2 is the modulus of x. Several

properties of quaternions are discussed in Table 1 [10–12].

Antenna Arrays and Beam-formation80



2.2. Vector-sensor array model

Consider a scenario with one narrowband, completely polarized source, which is travelling in

an isotropic and homogeneous medium, impinges on a uniform linear symmetric array from

direction (θ, ϕ). This array consists of 2M two-component vector-sensors, which is depicted in

Figure 1, and the spacing between the adjacent two vector-sensors is assumed to be half

wavelength. All the vector-sensors are indexed by �M,…, �1,1,…,M from left to right.

Let the array centre be the phase reference point, two highly complex series xm1(n) and xm2(n)

are recorded on first and second components of the mth two-component vector-sensor, respec-

tively. xm1(n) and xm2(n) are given by Ward [10]

xm1ðnÞ
xm2ðnÞ

� �

¼
a1ðθ,ϕ,γ, ηÞ
a2ðθ,ϕ,γ, ηÞ

� �

qmðθ,ϕÞsðnÞ ð2Þ

where 0 ≤ θ ≤ π and 0 ≤ ϕ < π denote the incidence source’s elevation angle measured from

the positive z-axis and the azimuth angle measured from the positive x-axis, respectively.

0 ≤ γ < π=2 represents the auxiliary polarization angle, and �π ≤η < π signifies the polariza-

tion phase difference. a1ðθ,ϕ,γ, ηÞ and a2ðθ,ϕ,γ, ηÞ are the responses on first and second com-

ponents of two-component vector-sensor, respectively. The two-component vector-sensor

consists of one electric dipole plus one magnetic loop co-aligned along the x-axis, where

a1ðθ,ϕ,γ, ηÞ ¼ eiηcosϕcosθsinγ� sinϕcosγ and a2ðθ,ϕ,γ, ηÞ ¼ � eiηsinϕsinγ� cosϕcosθcosγ

[7] or two magnetic loops co-aligned along the x-axis, where a1ðθ,ϕ,γ, ηÞ ¼ �eiηsinϕsinγ�

cosϕcosθcosγ and a2ðθ,ϕ,γ, ηÞ ¼ eiηcosϕsinγ� sinϕcosθcosγ [6]. qmðθ,ϕÞ is the spatial phase

factor describing wave-field propagation along the array, and qmðθ,ϕÞ ¼ q��mðθ,ϕÞ due to the

x and y denotes two quaternions

Conjugation Norm, noted k:k Inverse, noted x
�1 Multiplication

xx*=x*x=|x|2 kxk ¼ 0 if and only if x=0 If x 6¼ 0, x�1= x*/|x|2 a : ∈R ax = xa

|x|=|x*| kxyk ¼ kyxk ¼ kxkkyk c ∈ C jc = c*j, jcj*=c*

(xy)*=y*x* kxþ yk ≤ kxk þ kyk q ∈ Q xq 6¼ qx

Table 1. Several properties of quaternions.

Figure 1. A uniform linear symmetric array.

Beamformer Based on Quaternion Processes
http://dx.doi.org/10.5772/67859

81



symmetric structure of array. s(n) is the complex envelope of the waveform, assumed to be a

zero-mean, stationary stochastic process.

Using xm1(n) and xm2(n) (m ¼ �M,…,M), a quaternion-valued series xm(n) can be constructed

in the C-expansion of quaternions, as the output of the mth two-component vector-sensor:

xmðnÞ ¼ xm1ðnÞ þ jx�m2ðnÞ ¼ qmðθ,ϕÞ
�

a1ðθ,ϕ,γ, ηÞ þ ja2ðθ,ϕ,γ, ηÞ
�

sðnÞ

¼ qmðθ,ϕÞPðθ,ϕ,γ, ηÞsðnÞ
ð3Þ

where j denotes an imaginary unit of quaternions. Pðθ,ϕ,γ, ηÞ is the quaternion-valued response

on two-component vector-sensor. This transformation maps the complex series xm1(n) on scalar

and i imaginary fields of a quaternion, and the complex series xm2(n) is simultaneously mapped

to the j and k imaginary fields. When the quaternion-valued additive noise is considered, the

quaternion-valued output of the mth two-component vector-sensor is given by

xmðnÞ ¼ qmðθ,ϕÞPðθ,ϕ,γ, ηÞsðnÞ þ nmðnÞ ð4Þ

where nmðnÞ ¼ nm1ðnÞ þ jn�m2ðnÞ: nm1ðnÞ is the complex-valued additive noises recorded on

first component of the mth vector-sensor and n�m2ðnÞ is the complex-valued additive noises

recorded on second component of the mth vector-sensor, which are assumed to be zero mean,

Gaussian noise with identical covariance σ2n. And it is assumed that nmðnÞ and nnðnÞ, where

m 6¼ n, are uncorrelated.

3. Quaternion MVDR (QMVDR) beamformer

It is assumed that two uncorrelated, completely polarized plane-waves impinge on an array

with 2M two-component vector-sensor. One is the desired signal characterized by its arrival

angles (θs, ϕs) and polarization parameters (γs, ηs); the other is the interference characterized

by its arrival angles (θi, ϕi) and polarization parameters (γi, ηi). Assumed interference’s DOA

and polarization are unknown but signal’s DOA and polarization are known or may be priorly

estimated from techniques. Thus, the quaternion-valued measurement vector of array can be

written as

xðnÞ ¼ ½x�MðnÞ, ⋯,xMðnÞ�T¼ vsssðnÞ þ visiðnÞ þ nðnÞ ð5Þ

where nðnÞ ¼ ½n�MðnÞ, ⋯, nMðnÞ�
T denotes the quaternion-valued additive noise vector. vs ¼

qðθs, ϕsÞPðθs, ϕs,γs, ηsÞ;vi ¼ qðθi, ϕiÞPðθi, ϕi,γi, ηiÞ are the quaternion-valued steering vec-

tor associated with the desired signal and the interference, respectively, where qðθτ, ϕτÞ ¼

½q�Mðθτ, ϕτÞ, ⋯, qMðθτ, ϕτÞ�
T (τ ¼ s, i) denotes the spatial phase factor vector of array.

Using the quaternion-valued measurement vector of an array x(n), the output of a beamformer is

yðnÞ ¼ wΔxðnÞ ð6Þ
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where w is the quaternion-valued weight vector and the symbol ð:ÞΔ denotes the quaternion

transposition-conjugation operator. Then, the QMVDR beamformer can be derived by solving

the following constrained optimization problem [2]:

JðwÞ ¼ minfwΔ
Rxwg; subject to wΔvs ¼ 1 ð7Þ

where Rx ¼ EfxðnÞxΔðnÞg is the covariance matrix of the measurement vector. By using

Lagrange multipliers, the solution of Eq. (7) is obtained, i.e.,

J ¼ w
Δ
Rxwþ λw

Δvs ð8Þ

where λ is a real number. Based on the quaternion-valued gradient operator defined in Ref. [11],

the following gradients need to be calculated:

∂J

∂wΔ
¼ Rxwþ λvs ð9Þ

Let Eq. (9) is equal to zero, then

w ¼ �λR
�1
x vs ð10Þ

Since wΔvs ¼ �λvΔs R
�1
x vs ¼ 1, we have,

λ ¼
�1

vΔs R
�1
x vs

ð11Þ

Substituting Eq. (11) into Eq. (10), the weight vector of the QMVDR beamformer can be written as

w ¼
R

�1
x vs

vΔs R
�1
x vs

ð12Þ

Substituting Eq. (12) into Eq. (6), the quaternion-valued output of the QMVDR beamformer is

given by

yðnÞ ¼ ssðnÞ þ w
ΔvisiðnÞ þ w

ΔnðnÞ ð13Þ

where w
Δvs ¼ 1. To a linear symmetric array with 2M two-component vector-sensors, the

signal to interference-plus-noise ratio (SINR) of quaternion-valued output y(n) can be written

in the simple form (the proof is in Appendix 1 of Ref. [4])

SINRy ¼ ξsjPsj
2ðM�

jPij
2jqHs qij

2

4ξ�1
i þ 4MjPij

2
Þ ð14Þ

where the input signal-to-noise ratio (SNR) ξs ¼
σ2s
σ2n

and the input interference-to-noise ratio

(INR) ξi ¼
σ2
i

σ2n
.
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4. Interference and noise canceller (INC) based on QMVDR

Using the C-expansion of quaternions, y(n) can be written as

yðnÞ ¼ y1ðnÞ þ j y2ðnÞ ð15Þ

where y1(n) and y2(n) are two complex-valued components of y(n), i.e.,

y1ðnÞ ¼ ssðnÞ þ ðwΔ
viÞ1siðnÞ þ ðwΔ

nðnÞÞ1; y2ðnÞ ¼ ðwΔ
viÞ2siðnÞ þ ðwΔ

nðnÞÞ2 ð16Þ

ð:Þ1 and ð:Þ2 denote, respectively, first and second complex-valued components of a quaternion.

The expansion (16) highlights the fact that y2(n) does not include the desired signal, but include

only the interference and noise. By employing y2(n), we can partly cancel the interference and

noise component in y1(n). Thus, an INC based on the QMVDR is shown in Figure 2.

The INC is a spatio-temporal processing, i.e., first part is a spatio filter and second part is a

temporal filter. Then, the output of INC may be written as

ysðnÞ ¼ y1ðnÞ � w�
c y2ðnÞ

¼ ssðnÞ þ ððwΔ
viÞ1 � w�

c ðw
Δ
viÞ2ÞsiðnÞ þ ððwΔ

nðnÞÞ1 � w�
c ðw

Δ
nðnÞÞ2Þ

¼ ssðnÞ þ wisiðnÞ þ εðnÞ
ð17Þ

where wc is a complex weight, which can be given by the Wiener-Hoft equation

wc ¼
ry2y1
Ry2

ð18Þ

where ry2y1 ¼ Efy2ðnÞy
�
1ðnÞg and Ry2

¼ Efy2ðnÞy
�
2ðnÞg. Following the proof given in Appendix

2 of Ref. [4], we have

wc ¼
ðwΔ

viÞ2ðw
Δ
viÞ

�
1ξi

jðwΔviÞ2j
2
ξi þ kwk2

ð19Þ

If ξi is very small, wc is approximately equal to 0. Whereas, if ξi is very large, wc is approxi-

mately equal to
ðwΔ

viÞ
�
1

ðwΔviÞ
�
2
. In this case, the interference can be cancelled. From Eq. (17), the SINR

in the complex output ys(n) is given by

Figure 2. INC based on the QMVDR.
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SINRys
¼ ξs

kwk2
1� σ2i jðwΔviÞ1j

2

σ2nkwk2 þ σ2i jwΔvij2

 !

¼ κð1� κiÞ ð20Þ

where we define κ ¼ ξs
kwk2 and κi ¼ σ2

i
jðwΔviÞ1j

2

σ2nkwk2þσ2
i
jwΔvij2

. The proof is in Appendix 3 of Ref. [4].

Clearly, SINRys
increases with an increase in κ but decreases with an increase in κi.

Next, we show the effect of sources parameters on κ and κi. Following the proof given in

Appendix 4 of Ref. [4], we have

κ ¼ ξsjPsj2 2M� jPij2jqHs qij
2

2ξ�1
i þ 2MjPij2

 !

2M� μ

2M� μð1þ εÞ ¼ 2SINRyβ ð21Þ

where

β ¼ 2M� μ

2M� μð1þ εÞ ; μ ¼ jPij2jqHs qij
2

2ξ�1
i þ 2MjPij2

; ε ¼ ξ�1
i

ξ�1
i þMjPij2

ð22Þ

Obviously, the gain β ≥ 1 because of 0 ≤ ε < 1. Then, κ ≥ 2SINRy.

From Eq. (21), κ depends mainly on separation between the DOAs of the desired signal and

interference (i.e., jqHs qij
2). The dependencies of κ on jqHs qij

2 are shown in the following conse-

quences:

1. When qs = qi (no separation in DOA), μ ¼ 2jPij2M2

ξ�1
i þMjPij2

because of qHs qi ¼ 2M. Then,

β ¼ 1þMξijPij2 and κ ¼ 2MξijPij2. In the case that M is constant, β increases with an

increase in ξi and jPij2, but κ increases with an increase in ξs and jPsj2.

2. When the separation between the DOAs of the desired signal and interference increases,

jqHs qij decreases. This results in the reduction of μ. Then, the both β and κ also reduce.

When μ ¼ 2jPij2M2

2ξ�1
i þMjPi j2

(i.e., jqHs qij ¼ 2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þMξijPij2
2þMξijPij2

r

), κ ¼ 2MξsjPsj2 4ð1þMξijPij2Þ
ð2þMξijPij2Þ2
� �

reaches to a

minimum value. In this case, if jqHs qij ¼
ffiffiffi

2
p

M and κ ¼ 2MξsjPsj2. Along with an increase in

ξi, the value of jqHs qij, which results in a minimum value of κ, tends to 2M. Thus, the

minimum value of κ tends to 0. Afterwards, κ will increase with a decrease in jqHs qij.

3. When jqHs qij ¼ 0 (i.e., μ = 0), β = 1 and κ ¼ 2MξsjPsj2. In this case, κ ¼ 2SINRy.

In addition, κ depends also on the input INR ξi, the array’s element number 2M and the

interference response jPij2 and the desired signal response jPsj2.

In order to illustrate the previous discussions, Figure 3(a) and (b) displays, respectively, the

variations of κ as a function of the desired signal’s arrival angles θs and ϕs for several values of

ξi, where θi ¼ 90� ϕi ¼ 60�; ϕs ¼ 60� in Figure 3(a) and θs ¼ 90� in Figure 3(b), where a linear

symmetric antenna array is used with four (i.e., M = 2) two-component vector-sensor.
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Each two-component vector-sensor has one electric dipole and one magnetic loop co-aligned

along the x-axis, and four vector-sensors are spaced half a wavelength apart. It is assumed that

the desired signal with ξs = 1 and the interference have the same polarization parameters

(γ
s
¼ γ

i
¼ 30�, η

s
¼ η

i
¼ 30�). Simulation results in Figure 3 are in agreement with the previ-

ous discussions. From Figure 3(a), it is seen that jqHs qij ≈ 4 and κ ≈ 3 as θs ≈ 90
�. The cause of this

phenomenon is that jPsj
2 ¼ sin2ϕ

s
þ cos2ϕ

s
cos2θs for the two-component vector-sensor used

in this example. When θs ≈ 90
�, jPsj

2
≈ 0:75. In cases of jqHs qij ¼ 4, κ ≈ 3. Along θs is away from

90�, jqHs qij decreases. This results in the reduction of κ. From Figure 3(b), it is seen that

jqHs qij ≈ 4 and κ ≈ 3 as ϕ
s
≈ 60�. This is as same as Figure 3(a). In addition, it is noted that

jqHs qij ≈ 0 and κ ≈ 4 as ϕ
s
≈ 100�. The cause of this phenomenon is that jPsj

2
≈ 1 in cases of

ϕ
s
≈ 100� and κ ≈ 4 in cases of jqHs qij ¼ 0 . When ϕ

s
¼ 0� or ϕ

s
¼ 180�, jPsj

2 ¼ 0, then, κ ¼ 0.

Since the output interference-plus-noise power wΔRinw ¼ σ2nkwk2 þ σ2i jw
Δvij

2, we have

κi ¼
σ2i jðw

ΔviÞ1j
2

σ2nkwk2 þ σ2
i
jwΔvij

2
¼

σ2i jðw
ΔviÞ1j

2

wΔRinw
ð23Þ

where 0 ≤κi ≤ 1 because of 0 ≤ jðwΔviÞ1j
2
≤ jwΔvij

2. Following the proof given in Appendix 1 of

Ref. [4], κi is further written as

κi ¼ ξijPsj
2

M�
jPij

2jqHs qij
2

4ξ�1
i þ 4MjPij

2

 !

jðwΔviÞ1j
2 ð24Þ

Obviously, κi = 0 at jðwΔviÞ1j ¼ 0 or ξi ¼ 0. And κi increases with an increase in jðwΔviÞ1j
2. In

addition, κi depends also on the array’s element number 2M and the interference response

jPij
2.
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Figure 3. Variations of κ as a function of the desired signal’s arrival angles θs and ϕ
s
.
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Following the proof given in Appendix 5 of Ref. [4], we have

ðwΔviÞ1 ¼ αðvΔs viÞ1 ¼ αjqHs qijðPs
�PiÞ1 ð25Þ

where

α ¼
ξ�1
i

jPsj
2

2

4Mξ�1
i þ jPij

2ð4M2 � jqHs qij
2Þ

 !

ð26Þ

From Eqs. (25) and (26), ðwΔviÞ1 depends not only on the separation between the DOAs of the

desired signal and interference (i.e., jqHs qij), but also on the difference between the polariza-

tions of the desired signal and interference (i.e., ðPs
�PiÞ1). The dependencies of ðwΔviÞ1 and κi

on jqHs qij and ðPs
�PiÞ1) are shown in the following consequences:

1. When qs ¼ qi (i.e., no separation in DOA), ðwΔviÞ1 ¼
P�
s1Pi1þP�

s2Pi2

jPsj
2 because of jqHs qij ¼ 2M. At

the same time, if Ps ¼ Pi (i.e., no difference in polarization), ðwΔviÞ1 ¼ 1 because of

P�
s1Pi1 þ P�

s2Pi2 ¼ jPsj
2 So, κi ¼ MξijPsj

2 1� MjPij
2

ξ�1
i þMjPij

2

� �

reaches to a maximum value.

Whereas if the polarizations of the desired signal are an orthogonal with that of interfer-

ence (i.e., γs þ γi ¼
π
2 , ηs � ηi ¼ π), ðwΔviÞ1 ¼ 0 because of ðPs

�PiÞ1 ¼ 0. So, κi reaches to a

minimum value.

2. When the separation between the DOAs of the desired signal and interference increases,

jqHs qij decreases. This results in the reduction of ðwΔviÞ1. In addition, the increase in the

difference between the polarizations of the desired signal and interference also results in

the reduction of ðwΔviÞ1. Thus, κi reduces.

3. When jqHs qij ¼ 0 or ðPs
�PiÞ1 ¼ 0, ðwΔviÞ1 ¼ 0 . Thus, κi ¼ 0. In the absence of the interfer-

ence (i.e., ξi ¼ 0), κi ¼ 0.

Finally, we analyse the performance of the INC. From Eq. (20) and above analysis, we can

obtain the following consequences:

1. When jqHs qij ¼ 0, κ ¼ 2MξsjPsj
2 and κi ¼ 0. This implies that the separation between the

DOA’s of the desired signal and interference reaches to maximum. In this case, we can

obtain the maximum value of SINRys
, i.e., SINRysmax ¼ 2MξsjPsj

2. Further, jqHs qij increases

with a decrease in the separation in DOA. Thus, SINRys
will reduce due to the decrease in κ

and the increase in κi. When jqHs qij ¼ 2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þMξijPij
2

2þMξijPij
2

r

), κ reaches to a minimum value. In this

case, we can obtain the minimum value of SINRys
if κi reaches to a maximum value.

2. When ðPs
�PiÞ1 ¼ 0, κi ¼ 0. In this case, we can obtain the maximum value of SINRys

, i.e.,

SINRysmax ¼ 2MξsjPsj
2, if jqHs qij ¼ 2M. This implies that even though no separation

between the DOAs of the desired signal and interference, SINRys
can reach to maximum

by using the orthogonally between the polarizations of the desired signal and interference.
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Further, jðPs
�PiÞ1j increases with a decrease in the difference in polarizations. Thus, SINRys

will reduce due to the increase in κi.

3. When ξi ¼ 0 (i.e., in the absence of interference), κ ¼ 2MξsjPsj
2 and κi ¼ 0. In this case, we

can obtain the maximum value of SINRys
, i.e., SINRysmax ¼ 2MξsjPsj

2. Further, SINRys

decreases with an increase in ξi. In the presence of a strong interference (i.e., ξ�1
i ≈ 0),

SINRys
can be approximated as

SINRys
≈ ξsjPsj

2 2M�
jqHs qij

2

2M

 !

1�
jðvs

ΔviÞ1j
2

jvsΔvij
2

 !

ð27Þ

where κ ≈ ξsjPsj
2 2M�

jqHs qij
2

2M

� �

and κi ¼
jðvs

ΔviÞ1 j
2

jvsΔvij
2 . Expression (27) highlights the fact that

in the presence of a strong interference, SINRys
≈ 0 in the case of no separation between

the DOAs of the desired signal and interference (i.e., qs ¼ qi) or no difference between the

polarizations of the desired signal and interference (i.e., Ps ¼ Pi). This implies that the INC

fails.

4. When the vector-sensor number 2M in array increases, κ increases and κi decreases. Thus,

SINRys
is an increasing function of 2M. Since κ increases with an increase in jPsj

2, but κi

decreases with an increase in jPsj
2, SINRys

is an increasing function of jPsj
2. Further, SINRys

is a decreasing function of jPij
2 because κ decreases with an increase in jPij

2.

5. The quaternion semi-widely linear (QSWL) beamformer

According to the definition in Ref. [12], the involution of a quaternion x over a pure unit

quaternion i is xðiÞ ¼ ixi�1 ¼ ixi� ¼ �ixi and it represents the reflection of x over the plane

spanned by {1, i}. A quaternion vector x is Ci-proper iff it can be represented by means of two

jointly proper complex vectors in the plane spanned by {1, i}. The augmented covariance

matrix of a Ci-proper quaternion vector x can be written as

Rx , x ¼ Efx x
Δg ¼

R~x ,~x 0

0 R~x ,~x
j

" #

ð28Þ

where x ¼ ½xT ,xðiÞT ,xðjÞT ,xðkÞT �T is the augmented quaternion vector; ~x ¼ ½xT ,xðiÞT �T is the semi-

augmented quaternion vector and R~x,~x ¼ Ef~x ~xΔg is the semi-augmented covariance matrix

of quaternion vector x. In comparison with the semi-augmented covariance matrix R~x ,~x , the

augmented covariance matrix R
x
,
x
has not more extra information. In other words, the full-

widely linear processing is equivalent to the semi-widely linear processing in handling the

Ci-proper quaternion vector. We should not expect that the performance is improved by

replacing semi-widely linear processing with full-widely linear processing.
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The most general linear processing is full-widely linear processing, which consists in the simul-

taneous operation on the quaternion vector and its three involutions. Then, a quaternion

widely linear beamformer can be written as

yðnÞ ¼ wΔ
xðnÞ þ GΔ

x
ðiÞðnÞ þHΔ

x
ðjÞðnÞ þ FΔxðkÞðnÞ ð29Þ

where W, G, H and F denote the quaternion-valued weight vectors. xðiÞðnÞ, xðjÞðnÞ and x
ðkÞðnÞ

denote the quaternion involution of x(n) over a pure unit imaginary i, j and k, respectively.

The full-widely linear processing is optimal processing for the Q-improper quaternion vector.

Since the quaternion-valued vector x(n) is Ci-proper vector, however, the optimal processing

reduces to semi-widely linear processing. Because the semi-widely linear processing consists only

in the simultaneous operation on the quaternion vector and its involution over i, the general

expression of a quaternion semi-widely linear (QSWL) beamformer can be written as Ref. [5]

yðnÞ ¼ WΔ
xðnÞ þ GΔ

x
ðiÞðnÞ ð30Þ

where xðiÞðnÞ is given by

x
ðiÞðnÞ ¼ �ixðnÞi ¼ vs

ðiÞssðnÞ þ vi
ðiÞsiðnÞ þ n

ðiÞðnÞ ð31Þ

Moreover, we can write the quaternion-valued output series yðnÞ in the following Cayley-

Dickson representation

yðnÞ ¼ ððWΔ
xðnÞÞ1 þ ðGΔ

x
ðiÞðnÞÞ1Þ þ jððWΔ

xðnÞÞ2 þ ðGΔ
x
ðiÞðnÞÞ2Þ ¼ y1ðnÞ þ jy2ðnÞ ð32Þ

where y1 and y2 denote, respectively, first and second complex-valued components of a quater-

nion y. Thus, the QSWL beamformer has two complex-valued output series y1ðnÞ and y2ðnÞ in

the planes spanned by {1, i}, where y1ðnÞ ¼ ðWΔ
xðnÞÞ1 þ ðGΔ

x
ðiÞðnÞÞ1Þ and y2ðnÞ ¼ ðWΔ

xðnÞÞ2þ

ðGΔ
x
ðiÞðnÞÞ2Þ. Since the complex ‘long vector’ beamformers have only one complex-valued

output series y1ðnÞ, the QSWL beamformer can obtain more information than the conventional

‘long vector’ beamformer. The increase of information results in the improvement of QSWL

beamformer’s performance. In addition, we incorporate both the information on x(n) and

x
ðiÞðnÞ, so that the QSWL beamformer with different characteristics may be obtained by design-

ing two weight vectorsW andG under some different criterions.

6. The QSWL generalized sidelobe canceller

In this section, a useful implementation of the QSWL beamformer, i.e., QSWL generalized

sidelobe sanceller (GSC), is proposed. The QSWL GSC, which is depicted in Figure 4, consists

of two-stage beamformers. In first-stage beamformer (weight vector is W), we attempt to

extract a desired signal without any distortion from observed data. To cancel interferences,

we attempt to estimate interferences in second-stage beamformer (weight vector is G). By
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employing the output of second-stage beamformer to cancel interferences in the output of first-

stage beamformer, there is no interference in the output of the QSWL GSC. Compared with the

complex ‘long vector’ beamformers, the advantages of two-stage beamformers are that the

main beam can always point to desired signal’s direction, even if the separation between the

DOAs of the desired signal and interference is less, and the robustness to DOA mismatch is

improved.

In the following, we derive the expressions of quaternion-valued weight vectors W in first-

stage beamformer and G in second-stage beamformer. Because the quaternion-valued output

y(n) has two complex-valued components in the planes spanned by {1, i}, i.e., y1(n) and y2(n),

we define the first complex-valued output component as the output of the QSWL GSC. Thus,

the complex-valued output of the QSWL GSC is written as

yGSCðnÞ ¼ ðyðnÞÞ1 ¼ ywðnÞ � ygðnÞ ð33Þ

where ywðnÞ is the complex-valued output of the first-stage beamformer, i.e., ywðnÞ ¼

ðWΔ
xðnÞÞ1; ygðnÞ is the complex-valued output of the second-stage beamformer, i.e., ygðnÞ ¼

ðGΔ
x
ðiÞðnÞÞ1

6.1. The first-stage beamformer

From Eq. (5), we have

ywðnÞ ¼ ðWΔ
vsÞ1ssðnÞ þ ðWΔ

viÞ1 siðnÞ þ ðWΔ
nðnÞÞ1 ð34Þ

In the first-stage beamformer, we attempt to minimize the interference-plus-noise energy in

ywðnÞ, subject to the constraint ðwΔ
vsÞ1 ¼ 1.

Since the Cayley-Dickson representations of W, vs, vi and n(n) are, respectively, W = W1+j W2,

vs ¼ vs1 þ j vs2, vi ¼ vi1 þ j vi2 and nðnÞ ¼ n1ðnÞ þ j n2ðnÞ, we have

ðWΔ
vsÞ1 ¼ WH

1 vs1 þWH
2 vs2 ¼ W

H
Vs ð35Þ

ðWΔ
viÞ1 ¼ WH

1 vi1 þWH
2 vi2 ¼ W

H
Vi ð36Þ

ðWΔ
nðnÞÞ1 ¼ WH

1 n1ðnÞ þWH
2 n2ðnÞ ¼ W

H
NðnÞ ð37Þ

Figure 4. The structure of QSWL GSC.
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where W ¼
W1

W2

� �

,Vs ¼
vs1
vs2

� �

, Vi ¼
vi1
vi2

� �

, NðnÞ ¼
n1ðnÞ
n2ðnÞ

� �

. Superscript (.)H denotes the

complex conjugate and transpose operator. Thus, Eq. (34) can be rewritten as

ywðnÞ ¼ W
H
VsssðnÞ þW

H
Vi siðnÞ þW

H
NðnÞ ð38Þ

Then, W can be derived by solving the following constrained optimization problem:

JðWÞ ¼ minfW
H
RinWg; subject toW

H
Vs ¼ 1 ð39Þ

where

Rin ¼
EfðxinðnÞÞ1 ðxinðnÞÞ

H
1 g EfðxinðnÞÞ1 ðxinðnÞÞ

H
2 g

EfðxinðnÞÞ2 ðxinðnÞÞ
H
1 g EfðxinðnÞÞ2 ðxinðnÞÞ

H
2 g

" #

ð40Þ

is the covariance matrix and xinðnÞ ¼ visiðnÞ þ nðnÞ is the measurement vector of array in the

absence of the desired signal. The solution of this constrained optimization problem is

obtained by using Lagrange multipliers, that is

W ¼
R

�1
in Vs

V
H
s R

�1
in Vs

ð41Þ

If the interferences are uncorrelated with the additive noise, W can be written in the simple

form (the proof is in Appendix A of Ref. [5])

W ¼
εVs � ðPi

ΔPsÞ1q
H
i qsVi

μ
ð42Þ

where

μ ¼ 2MjPsj
2ε� jðPi

ΔPsÞ1j
2jqHi qsj

2 ; ε ¼ ξ�1
i þ 2MjPij

2 ð43Þ

where ξi denotes the input interference-to-noise ratio (INR). Moreover, the quaternion-valued

optimal weight vector Wo may be given by

Wo ¼ J1 Wþ j J2 W ð44Þ

where J1 ¼ ½I2M�2M, 02M�2M� and J2 ¼ ½02M�2M, I2M�2M� are two selection matrices. It is noted

that in some applications, such as Radar, Rin may be estimated in intervals of no transmitted

signal. But, Rin is not obtained in other applications, such as Communications. In these

applications, we may replace Rin by Rx, where

Rx ¼
EfðxðnÞÞ1 ðxðnÞÞ

H
1 g EfðxðnÞÞ1 ðxðnÞÞ

H
2 g

EfðxðnÞÞ2 ðxðnÞÞ
H
1 g EfðxðnÞÞ2 ðxðnÞÞ

H
2 g

" #

ð45Þ
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is the covariance matrix and x(n). When the distortionless constraint is perfectly matched with

the desired signal, the weight vector Wo is identical in both Rin and Rx.

By using the optimal weight vector Wo, the complex output of first-stage beamformer can be

given by

ywðnÞ ¼ ssðnÞ þ ðWo
ΔviÞ1 siðnÞ þ ðWo

ΔnðnÞÞ1 ð46Þ

6.2. The second-stage beamformer

From Eq. (31), we have

ygðnÞ ¼ ðGΔvðiÞs Þ1SsðnÞ þ ðGΔv
ðiÞ
i Þ1 SiðnÞ þ ðGΔnðiÞðnÞÞ1 ð47Þ

In the second-stage beamformer, we attempt to minimize the noise energy in ygðnÞ, subject to

the constraints ðGΔv
ðiÞ
S Þ1 ¼ 0 and ðGΔv

ðiÞ
i Þ1 ¼ ðWΔ

o viÞ1 . In the following, two schemes are

presented to implement this aim.

6.2.1 The Scheme 1, i.e., combined QPMC and MVDR

Let ¼ wqswMV , where wqs is a quaternion-valued diagonal weight matrix and wMV is a com-

plex weight vector. In this scheme, the first is to achieve the constraint ðGΔv
ðiÞ
s Þ1 ¼ 0 by

designing wqs, which is referred to quaternion polarization matched cancellation (QPMC); the

second is to minimize the noise energy in ygðnÞ subject to the constraint ðGΔv
ðiÞ
i Þ1 ¼ ðWΔ

o viÞ1 by

designing wMV , which is referred to MVDR.

Let wqs ¼ diag fwqsð�MÞ, ⋯,wqsðMÞg; then we have

GΔvðiÞs ¼ wMV
HwΔ

qsv
ðiÞ
s ¼ wMV

H

wqs
�ð�MÞq�Mðθs, ϕsÞP

ðiÞ
s

⋮

wqs
�ðMÞqMðθs, ϕsÞP

ðiÞ
s

2

6

4

3

7

5
ð48Þ

where superscript (.)* denotes the quaternion conjugate operator. From Eq. (48) and the constraint

ðGΔv
ðiÞ
s Þ1 ¼ 0, we have the constraint ðwqs

�ðmÞqmðθs , ϕsÞP
ðiÞ
s Þ1 ¼ 0, where m ¼ f�M, ⋯,Mg.

When wqsðmÞ ¼ qmðθs, ϕsÞ ða
�
s2 þ j a�s1Þ, this constraint is satisfied. Thus, we can obtain

wqs ¼ diag fqsg ða�s2 þ j a�s1Þ ð49Þ

where diag fqsg ¼ diag fq�Mðθs, ϕsÞ,⋯, qMðθs, ϕsÞg . In the constraint ðGΔv
ðiÞ
s Þ1 ¼ 0, we

insert G ¼ wqswMV into (47). Thus, ygðnÞ can be rewritten as

ygðnÞ ¼ wMV
HðwΔ

qsv
ðiÞ
i Þ1 siðnÞ þwMV

HðwΔ

qsn
ðiÞðnÞÞ1 ð50Þ

Then, wMV can be derived by solving the following constrained optimization problem:
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JðwMVÞ ¼ minfwMV
H
RqswMVg; subject to wMV

H ~V i ¼ W
H
Vi ð51Þ

where Rqs ¼ EfðwΔ

qsx
ðiÞðnÞÞ1

�

w
Δ

qsx
ðiÞðnÞ

�H

1
g is the covariance matrix and ~V i ¼ ðwΔ

qsv
ðiÞ
i Þ1 .

The solution of this constrained optimization problem is obtained by using Lagrange multi-

pliers, i.e.,

wMV ¼
R

�1
qs

~V i

~V i
HR

�1
qs

~V i

Vi
H
W ð52Þ

If the desired signal and interference are uncorrelated with the additive noise, wMV can be

written in the simple form (the proof is in Appendix B of Ref. [5])

wMV ¼
g1

κ
~V i ð53Þ

where

κ ¼ ~V i
H ~V i ¼ 2Mðjas2j

2jai1j
2 þ jas1j

2jai2j
2Þ � 2Rðas1a

�
s2ai2a

�
i1ðqi

2ÞHqs
2Þ ð54Þ

g1 ¼ ðW
H
ViÞ

H ¼
ξ�1
i ðPi

ΔPsÞ1q
H
i qs

μ
ð55Þ

where R (.) denotes the real part of a complex number. μ is given by Eq. (43).

6.2.2. The scheme 2, i.e. Linearly constrained minimum variance (LCMV) beamformer

In this scheme, we employ the LCMV beamformer as the second-stage beamformer. Since the

Cayley-Dickson representations of G, v
ðiÞ
s , v

ðiÞ
i and nðiÞðnÞ are, respectively, G ¼ G1 þ j G2,

v
ðiÞ
s ¼ vs1 � jvs2, v

ðiÞ
i ¼ vi1 � j vi2 and nðiÞðnÞ ¼ n1ðnÞ � j n2ðnÞ, we have

ðGΔvðiÞs Þ1 ¼ G
H
1 vs1 �G

H
2 vs2 ¼ G

H
V

ðiÞ
s ð56Þ

ðGΔv
ðiÞ
i Þ1 ¼ G

H
1 vi1 � G

H
2 vi2 ¼ G

H
V

ðiÞ
i ð57Þ

ðGΔnðiÞðnÞÞ1 ¼ G
H
1 n1ðnÞ � G

H
2 n2ðnÞ ¼ G

H
N

ðiÞ
ðnÞ ð58Þ

where G ¼
G1

G2

� �

;V
ðiÞ
s ¼

vs1
�vs2

� �

; V
ðiÞ
i ¼

vi1
�vi2

� �

; N
ðiÞ
ðnÞ ¼

n1ðnÞ
�n2ðnÞ

� �

Thus, Eq. (47) can be rewritten as

ygðnÞ ¼ G
H
V

ðiÞ
s ssðnÞ þG

H
V

ðiÞ
i siðnÞ þG

H
N

ðiÞ
ðnÞ ð59Þ

Then, G can be derived by solving the following constrained optimization problem:
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JðGÞ ¼ minfG
H
RinGGg; subject to G

H
C ¼ gH ð60Þ

where

RinG ¼
Efðx

ðiÞ
in ðnÞÞ1 ðx

ðiÞ
in ðnÞÞ

H
1 g Efðx

ðiÞ
in ðnÞÞ1 ðx

ðiÞ
in ðnÞÞ

H
2 g

Efðx
ðiÞ
in ðnÞÞ2 ðx

ðiÞ
in ðnÞÞ

H
1 g Efðx

ðiÞ
in ðnÞÞ2 ðx

ðiÞ
in ðnÞÞ

H
2 g

" #

ð61Þ

is the covariance matrix and x
ðiÞ
in ðnÞ ¼ v

ðiÞ
i siðnÞ þ nðiÞðnÞ is the quaternion involution of xinðnÞ.

C ¼ ½V
ðiÞ
i ,V

ðiÞ
s � and gH ¼ ½gH1 , 0�, where g1 is given by Eq. (55). The solution of Eq. (60) is given

by Van Trees [13]

G ¼ R�1
inGCðC

HR�1
inGCÞ

�1g ð62Þ

If the desired signal and interference are uncorrelated with the additive noise, G can be

written in the simple form (the proof is in Appendix C of Ref. [5])

G ¼
g1
ν
ð2MjPsj

2
V

ðiÞ
i � ðPs

ΔPiÞ1q
H
s qiV

ðiÞ
s Þ ð63Þ

where

ν ¼ ð2MÞ2jPsj
2jPij

2 � jðPi
ΔPsÞ1j

2jqHi qsj
2 ¼ μ� 2Mξ�1

i jPsj
2 ð64Þ

μ is given by (43). Moreover, the quaternion-valued optimal weight vectorGo may be given by

Go ¼ J1 Gþ j J2 G ð65Þ

where J1 ¼ ½I2M�2M, 02M�2M� and J2 ¼ ½02M�2M, I2M�2M� are two selection matrices.

By using the optimal weight vectorGo, the complex output of second-stage beamformer can be

given by

ygðnÞ ¼ ðWo
ΔviÞ1 siðnÞ þ ðGo

ΔnðiÞðnÞÞ1 ð66Þ

Thus, the complex output of QSWL GSC may be rewritten as

yGSCðnÞ ¼ ywðnÞ � ygðnÞ ¼ ssðnÞ þ ðWo
Δ nðnÞÞ1 � ðGo

Δ nðiÞðnÞÞ1 ð67Þ

From above equation, we see that the interference component is completely cancelled in the

output yGSCðnÞ.

6.3. The performance analysis

Since the QSWL GSC can totally remove the interference, its output signal-to-interference ratio

(SIR) tends to infinite. Thus, we focus our attention on the output signal-to-noise ratio (SNR)
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and array’s gain. Let ρn ¼ EfjðWΔ

o nðnÞÞ1 � ðGΔ

o n
ðiÞðnÞÞ1j

2g is the power of output noise. From

Eqs. (37) and (58), we have

ðWΔ

o nðnÞÞ1 � ðGΔ

o n
ðiÞðnÞÞ1 ¼ ðWH

1 � G1
HÞn1ðnÞ þ ðWH

2 þ G2
HÞn2ðnÞ ð68Þ

Then, ρn can be written as

ρn ¼ σ2nðW
H
1 �G

H
1 ÞðW1 �G1Þ þ σ2nðW

H
2 þG

H
2 ÞðW2 þG2Þ ð69Þ

When the combined QPMC and MVDR are adopted in the second-stage beamformer, ρn can

be written in the simple form (the proof is in Appendix D of Ref. [5])

ρn ¼
σ2n
μ2

ð2MjPsj
2ε2 þ jðPi

ΔPsÞ1j
2jqHi qsj

2λqÞ ð70Þ

where λq ¼
ξ�2
i jPsj

2

κ � 2MjPij
2, κ is given by Eq. (54). From Eq. (67), the expression of output SNR

and array’s gain Aq may be written as

SNRo ¼ ξs
ð2MjPsj

2ε� jðPi
ΔPsÞ1j

2jqHi qsj
2Þ2

ð2MjPsj
2ε2 þ jðPi

ΔPsÞ1j
2jqHi qsj

2λqÞ
ð71Þ

Aq ¼
ð2MjPsj

2ε� jðPi
ΔPsÞ1j

2jqHi qsj
2Þ2

ð2MjPsj
2ε2 þ jðPi

ΔPsÞ1j
2jqHi qsj

2λqÞ
ð72Þ

where ξs denotes the input signal-to-noise ratio (SNR) and ε is given by Eq. (43).

When the LCMV is adopted in the second-stage beamformer, ρn can be written in the simple

form (the proof is in Appendix E of Ref. [5])

ρn ¼
σ2n
μ2

ð2MjPsj
2ε2 þ jðPi

ΔPsÞ1j
2jqHi qsj

2λlÞ ð73Þ

where λl ¼
2Mξ�2

i jPsj
2

ν � 2MjPij
2, ν is given by Eq. (64). Then, the expression of output SNR and

array’s gain Al may be written as

SNRo ¼ ξs
ð2MjPsj

2ε� jðPi
ΔPsÞ1j

2jqHi qsj
2Þ2

ð2MjPsj
2ε2 þ jðPi

ΔPsÞ1j
2jqHi qsj

2λlÞ
ð74Þ

Al ¼
ð2MjPsj

2ε� jðPi
ΔPsÞ1j

2jqHi qsj
2Þ2

ð2MjPsj
2ε2 þ jðPi

ΔPsÞ1j
2jqHi qsj

2λlÞ
ð75Þ

From Eqs. (71), (72), (74) and (75), we can see that the output SNR and array’s gain depend on

not only separation between the DOA’s of the desired signal and interference (i.e., jqHi qsj), but

also difference between the polarizations of the desired signal and interference (i.e., jðPΔ

i PsÞ1j).

The dependencies of them on jqHi qsj and jðPi
ΔPsÞ1j are shown in following consequences:
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1. When jqHi qsj ¼ 0, the separation between the DOAs of the desired signal and interference

reaches to maximum. In this case, Aq ¼ Al ¼ 2MjPsj
2. Further, jqHi qsj increases with a

decrease of the DOA’s separation. Thus, the array’s gain Aq and Al will reduce if jPsj
2 is a

constant. When qi ¼ qs, jq
H
i qsj ¼ 2M. This implies that there is no separation between the

DOAs of the desired signal and interference. In this case, the array’s gain is given by

Aq ¼ Al ¼
2MðjPsj

2ε� 2MjðPi
ΔPsÞ1j

2Þ2

jPsj
2ε2 þ 2MjðPi

ΔPsÞ1j
2λ

ð76Þ

where

λ ¼
ξ�2
i jPsj

2

2MðjPsj
2jPij

2 � jðPi
ΔPsÞ1j

2Þ
� 2MjPij

2 ð77Þ

Further, Pi ¼ Ps if γs ¼ γi and ηs ¼ ηi. Thus, the array’s gain Aq ¼ Al ¼ 0 due to λ ¼ ∞. This

implies that the QSWL GSC fails.

2. When jðPi
ΔPsÞ1j ¼ 0, Aq ¼ Al ¼ 2MjPsj

2. In the cases that θs ¼ θi 6¼ 0 and ϕs ¼ ϕi 6¼ 0 (i.e.,

qi ¼ qs), we have jðPi
ΔPsÞ1j ¼ ð sin 2θs cos

2ϕs þ sin 2ϕsÞ cos ðγi � γsÞ cos ðηi � ηsÞ. If

γi � γs ¼ �π=2 or ηi � ηs ¼ �π=2, then jðPi
ΔPsÞ1j ¼ 0. This implies that even though there

is no separation between the DOAs of the desired signal and interference, the array’s gain

can also reach to 2MjPsj
2 by using the orthogonality between the polarizations of the

desired signal and interference. Further, the array’s gain decreases with an increase of

jðPi
ΔPsÞ1j if jPsj

2 is a constant. When Pi ¼ Ps, jðPi
ΔPsÞ1j ¼ jPsj

2. This implies that there is

no difference between the polarizations of the desired signal and interference. But, the

array’s gain is not equal to zero if qi 6¼ qs.

In addition, the output SNR and array’s gain depend also on the input INR ξi, the array’s

element number 2M, the interference response’s power jPij
2 and the desired signal response’s

power jPsj
2.

7. Monte Carlo simulations

In this section, we investigate the performance of the proposed beamformers by two experi-

ments. More results of simulations were shown in Refs. [2, 4, 5].

7.1. Experiment 1: the performance of QMVDR beamformer

In practice, if there is a misalignment between the desired signal’s DOA and the look direction,

the SINR of the complex MVDR beamformer degrades in the case of a scalar vector array [13].

In this experiment, we investigate the robustness of the beamformer against the DOAmismatch.
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We consider each two-component vector-sensor has two orthogonal magnetic loop co-aligned

along the x-axis, and assume thatM = 1. The result is the average of the output SINR obtained by

1000 Monte Carlo runs. To compare the performance, the complex ‘long vector’ MVDR

(CLVMVDR) [13], QMVDR and its INC beamformers are included in simulation results. For the

CLVMVDR and QMVDR beamformers, the SINR is in general expressed in the form of loga-

rithm. In order to be identical with the SINR of CLVMVDR and QMVDR beamformers, we

define SINR ¼ 10log
σ2s

σ2
i
þσ2n

in this experiment and assume that input SINR ¼ 0 dB.

Figure 5 displays the output SINR as the function of the DOA error of the desired signal where

the DOA error is between �8� and 8�. In the case of θs ¼ 0�,θi ¼ 80�, ϕ
s
¼ ϕ

i
¼ 0�;

γ
s
¼ γ

i
¼ 60�, η

s
¼ η

i
¼ 30�, (i.e., the polarization of the desired signal and interference is

identical, but the DOA is not identical), simulation results for two different sample sizes

N = 20 and N = 500 are given in Figure 5(a) and (b), respectively. From Figure 5, it is seen that

the output SINR behaviour is different with different values of sample size N. In case of small

N, as shown in Figure 5(a), the INC and the QMVDR have a better robustness than the

CLVMVDR. But the output SINR of the QMVDR and CLVMVDR is more than that of the

INC. In case of large N, as shown in Figure 5(b), the robustness against the DOA mismatch is

almost identical for three beamformers. But the INC has the largest output SINR in three

beamformers.

7.2. Experiment 2: the performance of QSWL beamformer

In the second experiment, we illustrate the performance of the proposed QSWL GSC in the

presence of a single interference. We assumeM = 6, ϕ
s
¼ ϕ

i
¼ 60�; γ

s
¼ γ

i
¼ 30�, η

s
¼ η

i
¼ 30�,

and that the covariance matrix Rx, instead of Rin, is available. Figure 6 displays the power

patterns for three values of jΔθj : 60�, 20� and 10�, where θs ¼ jΔθj,θi ¼ 0�. From Figure 6, it

is seen that three beamformers steer almost a zero towards the interference’s DOA (located at

0�) in all cases. When jΔθj decreases, the main-lobe of the QSWL GSC points almost to the

source location, but the main-lobe of the complex 'long vector’ LCMV (CLCMV) is away from
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Figure 5. Output SINR against the DOA error.
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the source location. This implies that the QSWL GSC outperforms obviously CLCMV as the

desired signal moves towards the interference. In addition, the side-lobes are amplified with a

decrease of jΔθj. These side-lobes lead the beamformer to capture the white noise, which spans

the whole space, so that the performance of beamformer degrades.

8. Conclusion

The problem of beamformer based on quaternion processes is considered in this chapter. The

quaternion beamformers has more information than the complex ‘long vector’ beamformer.
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Figure 6. The power patterns at θs ¼ jΔθj,θi ¼ 0�. (a) jΔθj ¼ 60�, (b) jΔθj ¼ 20�, (c) jΔθj ¼ 10�.
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The increase of information results in the improvement of the beamformer’s performance.

Analyses in theory and simulation results verify the advantages of quaternion beamformers.
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