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Abstract

In this chapter, the problem of quaternion beamformer based on linear and widely linear
hypercomplex processing is investigated in scenarios, where there exist one signal and
one interference that are uncorrelated. First, we introduce brief information about the
quaternion algebra and a quaternion model of linear symmetric array with two-
component electromagnetic (EM) vector-sensors is presented. Based on array’s quater-
nion model, a quaternion MVDR (QMVDR) beamformer is derived and its performance
is analysed. Second, we propose the general expression of a quaternion semi-widely
linear (QSWL) beamformer and derive its useful implementation and the array’s gain
expression. Finally, we give the main results of Monte Carlo simulation.

Keywords: quaternion beamforming, hypercomplex processes, widely linear
hypercomplex processes, polarization signal processes, EM vector-sensor array

1. Introduction

As an important tool of multidimensional signal processing, the quaternion algebra has been
applied to spatio-temporal-polarization beamformer based on an electromagnetic (EM) vector-
sensor array [1-5]. The potential advantages of multidimensional signal processing are: (1) the
correlation and coupling between each dimension are naturally considered, leading to
improved accuracies of signal processing; (2) signals of different geometric nature in different
dimensions are being represented as a single signal, leading to reduced complexity of processing
approaches. For example, we consider an array consisting of M two-component vector-sensors (If
an EM vector-sensor consists of only two components, such as two magnetic loops [6], one electric
dipole plus one magnetic loop [7] and two electric dipoles [3], it is referred to a two-component

vector-sensor in this chapter.), the output of complex ‘long vector’ beamformer [8, 9] isy, = wx,
T . T .
where x; = [x11,X12, ...Xm1,X0M2] " is the observed vector of array; w, = [w11, W12, ... W, Wa2]” 1S a

complex weighted vector; the symbol ()" denotes the complex conjugation transposition opera-
tor. Whereas the output of quaternion-based beamformer [3-5] is y, = wix;, =y, +j y, where
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80 Antenna Arrays and Beam-formation

Xp = [Xn1, X2, ...th]T is the quaternion-valued, observed vector of array and Xy, = X1 + jXm2
(m=1,..., M).wy = [wp1, Wy, ...th]T is a quaternion-valued, weighted vector and wy,, = w1+
jwua (m=1,..., M). The symbol (.)* denotes the quaternion conjugation transposition operator
and j denotes an imaginary unit of quaternions. Comparing y;, with i, we can see that the output
of quaternion-based beamformer has one more extra information v, than the output of complex
‘long vector” beamformer. By employing this extra information y,, we can further improve the

performance of beamformer.

In this chapter, our aim is to investigate the beamformer of EM vector-sensor array, based on
quaternion processes. First, a QMVDR beamformer and its interference and noise canceller
(INC) algorithm are proposed. The output signal to interference-plus-noise ratio (SINR) expres-
sion of INC algorithm is derived in a scenario where there exist one signal and one interference
that are uncorrelated. By analysing the effect of sources parameters on the output SINR, the fact
is explicitly revealed that even though no separation between the DOA’s of the desired signal
and interference, the maximum value of output SINR can be obtained using the orthogonality
between the polarizations of the desired signal and interference. Second, we propose a quater-
nion semi-widely linear beamformer and its useful implementation, i.e., quaternion semi-widely
linear (QSWL) Generalized sidelobe canceller (GSC). Since the QSWL GSC consists of two-stage
beamformers, it has more information than the complex ‘long vector” beamformer. The increase
in information results in the improvement of the beamformer’s performance. By designing the
weight vectors of two-stage beamformers, the interference is completely cancelled in the output
of QSWL GSC and the desired signal is not distorted.

2. Quaternion algebra and vector-sensor array model

2.1. Quaternion algebra

Quaternion came up in the investigations of constructing multidimensional analogues of the
tield of complex numbers C. The field of quaternion numbers Q is also algebra over the field of
real numbers R. The dimension of this algebra is four, and four basis elements are 1, 7, j and k.
In field of quaternion numbers Q, following multiplication is satisfied

P=P=KRP=-1Li=k=—jijk=i=—kjjki=j=—ik (1)

A quaternion variable x € Q has two forms of representation. One form is x = x; + ix, + jxz + kxs,
where x1, x5, x3 and x4 are real coefficients. It is referred to as the R-expansion of quaternions.
We call x; the real/scalar part of x, and it is denoted by PR(x). ix, + jxz + kx4 is called the
imaginary/vector part of x, and it is denoted by J(x). We refer to x* = xy — ix, — jx3 — kx4 as the
conjugate of x and |x| = (x7 +x3 4+ x5 + x2)1/?
where z; and z, are complex coefficients. It is called the C-expansion of quaternions or Cayley-
Dickson. x* = zj — jz, is the conjugate of x and Ix1=(1z;1%+1z,1%)"? is the modulus of x. Several

as the modulus of x. The other form is x = z; + jz,,

properties of quaternions are discussed in Table 1 [10-12].
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x and y denotes two quaternions

Conjugation Norm, noted ||.|| Inverse, noted x~* Multiplication

xxt=x*y=|x|? |lx|| = 0 if and only if x=0 Ifx #0,x '=x*/IxI? a: €R ax = xa
Lel=lx*l eyl = llyx[l = [lx [yl ceC je=c%j, jef=c*
(y)=y*x* I+ yll<[lx]l + llyl 7€Q xq # qx

Table 1. Several properties of quaternions.

2.2. Vector-sensor array model

Consider a scenario with one narrowband, completely polarized source, which is travelling in
an isotropic and homogeneous medium, impinges on a uniform linear symmetric array from
direction (0, ¢). This array consists of 2M two-component vector-sensors, which is depicted in
Figure 1, and the spacing between the adjacent two vector-sensors is assumed to be half
wavelength. All the vector-sensors are indexed by —M, ..., —1,1,...,M from left to right.

Let the array centre be the phase reference point, two highly complex series x,1(1) and x(1)
are recorded on first and second components of the mth two-component vector-sensor, respec-
tively. x;,1(1) and x,,(n) are given by Ward [10]

Xm1(n) - a1(6, QY T])
[xmz(n)] - le(@/ 0,7, ,,)]qm(& p)s(n) (2)

where 0< 0 < mand 0< ¢ < 7 denote the incidence source’s elevation angle measured from
the positive z-axis and the azimuth angle measured from the positive x-axis, respectively.
0< v < 7/2 represents the auxiliary polarization angle, and —mt<1 < 7 signifies the polariza-
tion phase difference. a1(6, ¢, ¥, ) and a2(6, ¢, y, 1) are the responses on first and second com-
ponents of two-component vector-sensor, respectively. The two-component vector-sensor
consists of one electric dipole plus one magnetic loop co-aligned along the x-axis, where
a1(0,p,y,n) = e"cospcosOsiny — singpcosy and a,(0, ¢, y, 1) = — elsingsiny — cospcosOcosy
[7] or two magnetic loops co-aligned along the x-axis, where a1(6, @, y, 1) = —e'lsingsiny —
cospcosOcosy and a,(6, @, y, 1) = e'lcospsiny — sinpcosOcosy [6]. g, (6, @) is the spatial phase
factor describing wave-field propagation along the array, and q,,(0, ) = g ,,(0, @) due to the

z A

L 4
-M ) -1 1 2 cee M

Figure 1. A uniform linear symmetric array.
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82 Antenna Arrays and Beam-formation

symmetric structure of array. s(n) is the complex envelope of the waveform, assumed to be a
zero-mean, stationary stochastic process.

Using x1(1) and xm(n) (m = —M, ..., M), a quaternion-valued series x,(1) can be constructed
in the C-expansion of quaternions, as the output of the mth two-component vector-sensor:

in(1) = T (1) + (1) = 7,0, @) (02(6, 9,7, 1) +jaa(6, 9,7, ) ) s() 6)
= 4,,(0, @)P(6, ¢, y,n)s(n)

where j denotes an imaginary unit of quaternions. P(6, ¢, y, ) is the quaternion-valued response
on two-component vector-sensor. This transformation maps the complex series x,1(1) on scalar
and 7 imaginary fields of a quaternion, and the complex series x,5(1) is simultaneously mapped
to the j and k imaginary fields. When the quaternion-valued additive noise is considered, the
quaternion-valued output of the mth two-component vector-sensor is given by

Xn(n) = 4,,(0, )P0, @, 7, m)s(1) + 1 (1) (4)

where n,,(n) = ny1(n) + jn_yp(n). ny1(n) is the complex-valued additive noises recorded on
first component of the mth vector-sensor and n_,,(n) is the complex-valued additive noises
recorded on second component of the mth vector-sensor, which are assumed to be zero mean,
Gaussian noise with identical covariance 2. And it is assumed that n,,(1n) and n,(n), where
m # n, are uncorrelated.

3. Quaternion MVDR (QMVDR) beamformer

It is assumed that two uncorrelated, completely polarized plane-waves impinge on an array
with 2M two-component vector-sensor. One is the desired signal characterized by its arrival
angles (0,, ;) and polarization parameters (y,, 1); the other is the interference characterized
by its arrival angles (0;, ¢;) and polarization parameters (y;, 1;). Assumed interference’s DOA
and polarization are unknown but signal’s DOA and polarization are known or may be priorly
estimated from techniques. Thus, the quaternion-valued measurement vector of array can be
written as

x(n) = [x_p(n), - xp(n)] = vess(n) + visi(n) + n(n) (5)

where n(n) = [n_yp(n), -, nu(n)]" denotes the quaternion-valued additive noise vector. vy =
q(0s, @, )P(Os, ¢, v, 1,)vi=q(0;, ¢;)P(0; ¢, y; n;) are the quaternion-valued steering vec-
tor associated with the desired signal and the interference, respectively, where ¢(0., ¢_) =

7 (O, @), = gy (O, (pT)]T (T = s, i) denotes the spatial phase factor vector of array.

Using the quaternion-valued measurement vector of an array x(1), the output of a beamformer is

y(n) = whx(n) (6)
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where w is the quaternion-valued weight vector and the symbol (.)* denotes the quaternion
transposition-conjugation operator. Then, the QMVDR beamformer can be derived by solving
the following constrained optimization problem [2]:

J(w) = min{w"R,w}; subject to w"v, = 1 (7)

where R, = E{x(n)x*(n)} is the covariance matrix of the measurement vector. By using
Lagrange multipliers, the solution of Eq. (7) is obtained, i.e.,
] = WAR W + Aw’y, (8)

where A is a real number. Based on the quaternion-valued gradient operator defined in Ref. [11],
the following gradients need to be calculated:

o
W = RxW + Avs (9)
Let Eq. (9) is equal to zero, then
w = —AR v, (10)
Since wr, = —Ar®R 'y, = 1, we have,
-1
A= ———— 11
vAR 1y (1)

Substituting Eq. (11) into Eq. (10), the weight vector of the QMVDR beamformer can be written as

-1
R v,

W =
AR —1
vaR g

(12)

Substituting Eq. (12) into Eq. (6), the quaternion-valued output of the QMVDR beamformer is
given by

y(n) = ss(n) + whris;(n) + wn(n) (13)

where w2

vy = 1. To a linear symmetric array with 2M two-component vector-sensors, the
signal to interference-plus-noise ratio (SINR) of quaternion-valued output y(1) can be written

in the simple form (the proof is in Appendix 1 of Ref. [4])

2 2
Pi|" 14" q;]

SINRy = &|Psf (M — 2 4M|P;?

) (14)

2
where the input signal-to-noise ratio (SNR) & =% and the input interference-to-noise ratio

[S]

(o

(INR) &; =

(o

=N
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4. Interference and noise canceller (INC) based on QM VDR

Using the C-expansion of quaternions, y(1) can be written as
y(n) =y, (n) +jy,(n) (15)

where y1(n) and y,(n) are two complex-valued components of y(n), i.e.,

Yy (n) = ss(m) + (Whvi)ysi(n) + (Whn(n))y; yy(n) = (Wvi)ysi(n) + (Whn(n)), — (16)

(.); and (.), denote, respectively, first and second complex-valued components of a quaternion.
The expansion (16) highlights the fact that y,(11) does not include the desired signal, but include
only the interference and noise. By employing y,(1), we can partly cancel the interference and
noise component in y4(r). Thus, an INC based on the QMVDR is shown in Figure 2.

The INC is a spatio-temporal processing, i.e., first part is a spatio filter and second part is a
temporal filter. Then, the output of INC may be written as

Ys(n) = yy(n) — w y,(n)
= s5(11) + (Whni)y — wi (W), )si(n) + (Wha(n)); — wi(whn(n)),) (17)
= ss(n) + w;si(n) + €(n)

where w, is a complex weight, which can be given by the Wiener-Hoft equation

r
we = % (18)
2

where 7 =FE nyyi(n)}l and R,. = E n)yi(n)}. Following the proof given in Appendix
Yol Y1)y Y, Yo\n)y, g P g pp

2 of Ref. [4], we have

(WAVi)z(WAVi)Iéi

2 2
|[(Whvi)p|"&; + [[w]]

- (19)
If &; is very small, w, is approximately equal to 0. Whereas, if &; is very large, w,. is approxi-

(W) In this case, the interference can be cancelled. From Eq. (17), the SINR

(Whvi),

mately equal to

in the complex output y,(n) is given by

S |
X | ! J
M LN —
| | We
'QMVDR ' \ivigE

Figure 2. INC based on the QMVDR.
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£ oF|(whni), |
SINRy, = =5 (1———3 ;1A - =x(1—x) (20)
[Iwl] o lwl” + o [whvil
N2
where we define x = Hf;‘Hz and x; = ﬁ% The proof is in Appendix 3 of Ref. [4].

Clearly, SINR, increases with an increase in x but decreases with an increase in ;.

Next, we show the effect of sources parameters on x and ;. Following the proof given in
Appendix 4 of Ref. [4], we have

Pi gt gl oM —
K:ESP 2 M — s 4i _ 5SINR .
" ( 267"+ 2M|P* ) 2M — p(1 + ¢) 7 (21)
where
2 — Piz H '2 ‘,1
8 M—u PPl el 3 -

= 7 - 4 E=—"T 77
oM —u(l+e) ! 2871 4 2M (P &'+ MPJ

Obviously, the gain f > 1 because of 0 < ¢ <1. Then, k >2SINR,,.

From Eq. (21), x depends mainly on separation between the DOAs of the desired signal and

interference (i.e., |¢!! ¢:]*). The dependencies of « on |¢! ¢;|* are shown in the following conse-
quences:

2|P; P M?
& +MIP;
B =1+ ME]|P;|* and « = 2ME&;|P;*. In the case that M is constant, f increases with an

) . 2 . . . . 2
increase in &; and |P;|°, but k increases with an increase in & and |P;|".

1. When g, = g; (no separation in DOA), u= because of ¢'lg; =2M. Then,

2. When the separation between the DOAs of the desired signal and interference increases,
lqtq;] decreases. This results in the reduction of u. Then, the both g and «x also reduce.

2P PV . H 1+M&|Pif 2 (4(1+ME,|P;?
When p = wuw (e. |giq;| =2M m), K = 2M&;|Ps| W reaches to a

minimum value. In this case, if |¢/g;| = vV2M and x = 2M&, P, . Along with an increase in

&;, the value of |¢llg;|, which results in a minimum value of x, tends to 2M. Thus, the
minimum value of « tends to 0. Afterwards, x will increase with a decrease in |¢!¢;|.

3. When |¢lg;| =0 (i.e., u=0),f=1and k = 2ME,|P,|*. In this case, k = 2SINR,,.

In addition, ¥ depends also on the input INR &, the array’s element number 2M and the

interference response |P;|* and the desired signal response |P;|*.

In order to illustrate the previous discussions, Figure 3(a) and (b) displays, respectively, the
variations of k as a function of the desired signal’s arrival angles 0, and ¢, for several values of
&, where 0; = 90° ¢, = 60°; ¢, = 60° in Figure 3(a) and 6, = 90° in Figure 3(b), where a linear
symmetric antenna array is used with four (i.e., M = 2) two-component vector-sensor.
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Figure 3. Variations of « as a function of the desired signal’s arrival angles 05 and ¢,.

Each two-component vector-sensor has one electric dipole and one magnetic loop co-aligned
along the x-axis, and four vector-sensors are spaced half a wavelength apart. It is assumed that
the desired signal with & = 1 and the interference have the same polarization parameters
(y, =7, = 30° n, = n, = 30°). Simulation results in Figure 3 are in agreement with the previ-

ous discussions. From Figure 3(a), it is seen that |¢/'¢;| =4 and x = 3 as O, =90°. The cause of this
phenomenon is that |Py|* = sinp, + cos?p, cos?0; for the two-component vector-sensor used
in this example. When 6, ~90°, |P,|*=0.75. In cases of lqtq;| = 4, x=3. Along 6; is away from
90°, |¢fq;| decreases. This results in the reduction of x. From Figure 3(b), it is seen that
lgfq;|=4 and k=3 as @, =60°. This is as same as Figure 3(a). In addition, it is noted that
Ig7¢;|=0 and k=4 as ¢,=100°. The cause of this phenomenon is that |P;[*=1 in cases of

®,~100° and k=4 in cases of |¢l'g;| = 0. When ¢, = 0° or ¢, = 180°, P> = 0, then, x = 0.
Since the output interference-plus-noise power w”R;,w = o2 ||w]|* + o?|w”v;|*>, we have

2 2
U?‘(WA"I'M [ ‘71‘2|(WA"1')1‘

2w+ 2 whn? wAREw

(23)

i

where 0< ;<1 because of 0<|(w"r;),|><|w”"v;|*. Following the proof given in Appendix 1 of
Ref. [4], «x; is further written as

Ki = &P M — '_;' 19 4i w2 (24)
4 + 4M|Pi|

Obviously, x; =0 at |[(w™r;),| = 0 or & = 0. And «; increases with an increase in |(w”v;),|>. In

addition, k; depends also on the array’s element number 2M and the interference response
2

|P;|”.
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Following the proof given in Appendix 5 of Ref. [4], we have
(WA"i)l = 0‘("?"1‘)1 = 0‘|‘I?q1‘|(Ps*Pi)1 (25)

where

&t 2
[Ps[” \4M&; + [ Pif(4M” — [qqi")

From Egs. (25) and (26), (W"v;); depends not only on the separation between the DOAs of the
desired signal and interference (i.e., |¢!lg;]), but also on the difference between the polariza-
tions of the desired signal and interference (i.e., (Ps*P;);). The dependencies of (w"v;); and «;
on |¢g;| and (Ps*P;),) are shown in the following consequences:

1. When ¢, = ¢; (i.e., no separation in DOA), (W’y;), = % because of |¢}'q;| = 2M. At

the same time, if P; = P; (i.e., no difference in polarization), (wAv,-)1 =1 because of

* D x P _ 2 o 2 M|P;? .
PPy + P,Pp = |Ps|” So, xj = ME&;|Ps| (1 _W) reaches to a maximum value.

Whereas if the polarizations of the desired signal are an orthogonal with that of interfer-
ence (ie, y, +y,=5,n,—1n, =), (wAv,')1 = 0 because of (P;*P;); = 0. So, «; reaches to a
minimum value.

2. When the separation between the DOAs of the desired signal and interference increases,
lqq;] decreases. This results in the reduction of (w”y;);. In addition, the increase in the
difference between the polarizations of the desired signal and interference also results in
the reduction of (w”;);. Thus, k; reduces.

3. When |¢flq;| = 0 or (P;*P;); =0, (Why;); = 0. Thus, x; = 0. In the absence of the interfer-
ence (i.e., &; = 0), k; = 0.

Finally, we analyse the performance of the INC. From Eq. (20) and above analysis, we can

obtain the following consequences:

1. When |¢llg)| =0, x = 2M&,|P,|* and «x; = 0. This implies that the separation between the
DOA’s of the desired signal and interference reaches to maximum. In this case, we can
obtain the maximum value of SINR,, i.e., SINRy max = 2M£S\Ps]2. Further, |qf ¢;| increases
with a decrease in the separation in DOA. Thus, SIN Ry, will reduce due to the decrease in «

and the increase in x;. When |¢llg;| = 2M
case, we can obtain the minimum value of SIN Ry, if x; reaches to a maximum value.

2. When (P;*P;); =0, x; = 0. In this case, we can obtain the maximum value of SINRy, i.e.,
SINRy max = 2ME|P,J?, if l¢tq;| = 2M. This implies that even though no separation
between the DOAs of the desired signal and interference, SINR, can reach to maximum
by using the orthogonally between the polarizations of the desired signal and interference.

87
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Further, |(Ps*P;),| increases with a decrease in the difference in polarizations. Thus, SINR,,
will reduce due to the increase in ;.

3. When &; = 0 (i.e., in the absence of interference), k = 2M£S|Ps|2 and x; = 0. In this case, we
can obtain the maximum value of SINR,, i.e., SINRy max = 2M£S|Ps|2. Further, SINR,

decreases with an increase in &;. In the presence of a strong interference (i.e., &; 1 =(),
SINR,, can be approximated as

H, |2 Ay P

[vsAv;

where «=&|P,[* <2M — %) and «; = % Expression (27) highlights the fact that
in the presence of a strong interference, SINR, =0 in the case of no separation between
the DOAs of the desired signal and interference (i.e., ¢, = ¢;) or no difference between the
polarizations of the desired signal and interference (i.e., P; = P;). This implies that the INC

fails.

4. When the vector-sensor number 2M in array increases, k increases and «x; decreases. Thus,

SINR,, is an increasing function of 2M. Since k increases with an increase in \Ps\z, but «;
decreases with an increase in |Ps|?, SIN R, is an increasing function of |Ps . Further, SIN Ry,

. . . 2 . . . 2
is a decreasing function of |P;|” because k decreases with an increase in |P;|".

5. The quaternion semi-widely linear (QSWL) beamformer

According to the definition in Ref. [12], the involution of a quaternion x over a pure unit

quaternion i is x') = ixi ™' = ixi* = —ixi and it represents the reflection of x over the plane
spanned by {1, i}. A quaternion vector x is C'-proper iff it can be represented by means of two

jointly proper complex vectors in the plane spanned by {1, i}. The augmented covariance

matrix of a C'-proper quaternion vector x can be written as

7 A Ry % 0
Ry x =E{xx"} = 0 R; ¢ (28)
where ¥ = [xT, x0T x0T x®T]" is the augmented quaternion vector; ¥ = [x7, x?7]" is the semi-

augmented quaternion vector and Ry 5 = E{% ¥*} is the semi-augmented covariance matrix
of quaternion vector x. In comparison with the semi-augmented covariance matrix Ry 3, the
augmented covariance matrix Ry, 3 has not more extra information. In other words, the full-
widely linear processing is equivalent to the semi-widely linear processing in handling the

C'-proper quaternion vector. We should not expect that the performance is improved by
replacing semi-widely linear processing with full-widely linear processing.



Beamformer Based on Quaternion Processes
http://dx.doi.org/10.5772/67859

The most general linear processing is full-widely linear processing, which consists in the simul-
taneous operation on the quaternion vector and its three involutions. Then, a quaternion
widely linear beamformer can be written as

y(n) = whx(n) + G2x(n) + HAxY (n) + FAx® (n) (29)

where W, G, H and F denote the quaternion-valued weight vectors. x (1), x/)(n) and x® (n)
denote the quaternion involution of x(17) over a pure unit imaginary i, j and k, respectively.

The full-widely linear processing is optimal processing for the Q-improper quaternion vector.
Since the quaternion-valued vector x(11) is C'-proper vector, however, the optimal processing
reduces to semi-widely linear processing. Because the semi-widely linear processing consists only
in the simultaneous operation on the quaternion vector and its involution over i, the general
expression of a quaternion semi-widely linear (QSWL) beamformer can be written as Ref. [5]

y(n) = W2x(n) + G x® (n) (30)

where x()(n) is given by
xD(n) = —ix(n)i = v,Ds,(n) + v;Vs;(n) + n (n) (31)

Moreover, we can write the quaternion-valued output series y(n) in the following Cayley-
Dickson representation

y(n) = (Whx(n); + (G2 (m)y) +j(Whx(n), + (G x(n)),) = yy(n) +jyy () (32)

where 1, and y, denote, respectively, first and second complex-valued components of a quater-
nion y. Thus, the QSWL beamformer has two complex-valued output series y, (1) and y,(n) in
the planes spanned by {1, i}, where y, (n) = (W*x(n)); + (G*x(n)),) and y,(n) = (Wx(n)),+
(G*x(n)),). Since the complex ‘long vector’ beamformers have only one complex-valued
output series y, (1), the QSWL beamformer can obtain more information than the conventional
‘long vector’ beamformer. The increase of information results in the improvement of QSWL
beamformer’s performance. In addition, we incorporate both the information on x(n) and
x)(n), so that the QSWL beamformer with different characteristics may be obtained by design-
ing two weight vectors W and G under some different criterions.

6. The QSWL generalized sidelobe canceller

In this section, a useful implementation of the QSWL beamformer, i.e., QSWL generalized
sidelobe sanceller (GSC), is proposed. The QSWL GSC, which is depicted in Figure 4, consists
of two-stage beamformers. In first-stage beamformer (weight vector is W), we attempt to
extract a desired signal without any distortion from observed data. To cancel interferences,
we attempt to estimate interferences in second-stage beamformer (weight vector is G). By

89



90 Antenna Arrays and Beam-formation

x(n) Yy (1) »(n)
—  » W

) (n) v, (n) B
4’. G

Figure 4. The structure of QSWL GSC.

employing the output of second-stage beamformer to cancel interferences in the output of first-
stage beamformer, there is no interference in the output of the QSWL GSC. Compared with the
complex ‘long vector’ beamformers, the advantages of two-stage beamformers are that the
main beam can always point to desired signal’s direction, even if the separation between the
DOAs of the desired signal and interference is less, and the robustness to DOA mismatch is
improved.

In the following, we derive the expressions of quaternion-valued weight vectors W in first-
stage beamformer and G in second-stage beamformer. Because the quaternion-valued output
y(n) has two complex-valued components in the planes spanned by {1, i}, i.e., y1(n) and y»(n),
we define the first complex-valued output component as the output of the QSWL GSC. Thus,
the complex-valued output of the QSWL GSC is written as

Yasc(m) = (), =y, (1) = y,(n) (33)

where y, (1) is the complex-valued output of the first-stage beamformer, ie. y, (1) =

(Whx(n))y; yg(n) is the complex-valued output of the second-stage beamformer, i.e., yg(n) =
(GPx(n))y

6.1. The first-stage beamformer

From Eq. (5), we have

Yo (1) = (Whr)yss(n) + (W), si(n) + (Wn(n)), (34)

In the first-stage beamformer, we attempt to minimize the interference-plus-noise energy in
y,, (1), subject to the constraint (w”v,); = 1.

Since the Cayley-Dickson representations of W, v,, v; and n(n) are, respectively, W = Wy+j W,
Vs = V1 + ] v, Vi = vio +j vip and n(n) = n1(n) +j ny(n), we have

_H_
(Whyy), = Wiyg + Wiy, = WV (35)
(WAv,-)l = W?Vil + W?V,Q = WHV,' (36)

(W2n(n)), = Wilny (n) + Whlny(n) = W'N(n) (37)
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where W = [w;],vs = {:ﬁﬂ, V= [:g}, N(n) = [Z;EZ;] . Superscript ()" denotes the

complex conjugate and transpose operator. Thus, Eq. (34) can be rewritten as
wHo wHo woH
Y,(n) =W Vsi(n) + W V;s;(n) + W N(n) (38)

Then, W can be derived by solving the following constrained optimization problem:

J(W) = min{W' R, W}; subject to WV, =1 (39)
where
R, — E{(xin(n)), (xin(”))z} E{(xin(n)); (xm("))g} (40)
E{(xin (1)) (xin(n))7} E{(xin (1)), (xin(1))3 }

is the covariance matrix and x;,(n) = v;si(n) + n(n) is the measurement vector of array in the
absence of the desired signal. The solution of this constrained optimization problem is
obtained by using Lagrange multipliers, that is

R,'V,

W = —
VR, V,

(41)

If the interferences are uncorrelated with the additive noise, W can be written in the simple
form (the proof is in Appendix A of Ref. [5])

eVy — (P2P5),41¢,V

W= . i (42)

where

u=2M|Ps"e — |(P"Ps) laf'q.* s € = &1 + 2M|P;|° (43)

where ¢&; denotes the input interference-to-noise ratio (INR). Moreover, the quaternion-valued
optimal weight vector W, may be given by

Wo=LW+jhW (44)

where J1 = [Iaxom, Oovixom] and Jo = [Oomsom, Iomixonm| are two selection matrices. It is noted
that in some applications, such as Radar, R;, may be estimated in intervals of no transmitted
signal. But, R;,, is not obtained in other applications, such as Communications. In these
applications, we may replace R;, by R,, where

(45)
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is the covariance matrix and x(17). When the distortionless constraint is perfectly matched with
the desired signal, the weight vector W, is identical in both R;,, and R,.

By using the optimal weight vector W,, the complex output of first-stage beamformer can be
given by

Yoo (1) = 55(1) + (Wovi)y 5i(n) + (Wo™n(n)), (46)

6.2. The second-stage beamformer

From Eq. (31), we have

yo(n) = (G, 8,(n) + (GM), Si(m) + (GPn) (), (47)

In the second-stage beamformer, we attempt to minimize the noise energy in y, (1), subject to

the constraints (GAl)(Si))1 =0 and (GAv,@)1 = (W), . In the following, two schemes are

presented to implement this aim.

6.2.1 The Scheme 1, i.e., combined QPMC and MVDR

Let = wyswyy, where wys is a quaternion-valued diagonal weight matrix and wyy is a com-

plex weight vector. In this scheme, the first is to achieve the constraint (GAvg"))1 =0 by
designing wy,, which is referred to quaternion polarization matched cancellation (QPMC); the

second is to minimize the noise energy in y, (1) subject to the constraint (G* "1@)1 = (Whv;), by

designing wyy, which is referred to MVDR.
Let wys = diag {wys(—M), ---, wys(M)}; then we have

qu*(—M)q_M(Qs, %)Pgi)

A0 H_ A (i) __ H
G%y = WMy W V' = WMpy

s g (48)

Wys" (M), (65, @s)Pgi)

where superscript (.)* denotes the quaternion conjugate operator. From Eq. (48) and the constraint
(GAV‘E'.))l =0, we have the constraint (wys*(m)q,,(0;, qoS)Pg"))l =0, where m = {-M, ---, M}.
When ws(m) = q,,(0s, @,) (al, + ] aj;), this constraint is satisfied. Thus, we can obtain

wys = diag {q,} (2 +jag) (49)

where diag {¢,} = diag {q_,,(0s, ¢,), -+, 9),(0s, @,)} . In the constraint (GAv‘gi))l =0, we
insert G = wywyy into (47). Thus, y g(n) can be rewritten as

yo () = wan™ (W) si(n) + wary (whn (), (50)

Then, wyy can be derived by solving the following constrained optimization problem:
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J(wiv) = min{wa/ " Ryswarv }; subject to wyr" Vi= WHV,- (51)

. . H - .
where Ry = E{(Wqux(l)(n))1 (qusx(l)(n))l} is the covariance matrix and V; = (Wqu"Et))r

The solution of this constrained optimization problem is obtained by using Lagrange multi-
pliers, i.e.,

Wiy = —8 L VHW 52
=t L (52)

If the desired signal and interference are uncorrelated with the additive noise, wyy can be
written in the simple form (the proof is in Appendix B of Ref. [5])

~

where
k= VAV = 2M(Jag |*|an |* + |as |*|an]*) — 2R (aaa5a0a% (¢2) ¢,2) (54)

i & (PAP) gy,

_H_
g1 =WV U

(55)
where R (.) denotes the real part of a complex number. i is given by Eq. (43).

6.2.2. The scheme 2, i.e. Linearly constrained minimum variance (LCMV) beamformer

In this scheme, we employ the LCMV beamformer as the second-stage beamformer. Since the

Cayley-Dickson representations of G, w, vl(.i) and n')(n) are, respectively, G = G; +j Gy,

vgi) = Vg — Vs, vl@ =i —]vpand n® (n) = ny(n) — j ny(n), we have

(G*{), = GHvy — Gllvy = @HVE,'.) (56)
(GAvl@)l = Gllqvil T G?viz = aHV,@ (57)
(G™n (), = Gi'm (n) — Gilmy(n) = G'N"(n) (58)

. A R A R

G, —V ! —v

Thus, Eq. (47) can be rewritten as
v, (n) =G Vs, () + GV si(n) +G "N (n) (59)

Then, G can be derived by solving the following constrained optimization problem:
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J(G) = min{ﬁHR,-,,GE}; subject to G'c= gl (60)

where

(7)

is the covariance matrix and x,@,’} (n) =v"si(n) + nY(n) is the quaternion involution of x;,(n).

C= [V,@, Vgi)] and g = [¢/!, 0], where g, is given by Eq. (55). The solution of Eq. (60) is given
by Van Trees [13]
G =R;;C(C"R,cO) 'g (62)

If the desired signal and interference are uncorrelated with the additive noise, G can be
written in the simple form (the proof is in Appendix C of Ref. [5])

G =S mpv) - (P P)gl'g V) (63)
where
v = 2M)*|P;*|P;|* — |(P~Py), Pla'q,)> = p —2M&™ P, (64)

u is given by (43). Moreover, the quaternion-valued optimal weight vector G, may be given by

GOIJ1E—|—jJ2€ (65)

where J1 = [Iopsom, Oomxom] and Jo = [Ooarom, Iomxonm] are two selection matrices.

By using the optimal weight vector G, the complex output of second-stage beamformer can be
given by

Yg(n) = (Woni)y si(n) + (Go™n (1), (66)
Thus, the complex output of QSWL GSC may be rewritten as

Vesc (1) = Yy (1) =y (n) = s5(n) + (Wo™ m(n)); — (Go* ' (n)), (67)

From above equation, we see that the interference component is completely cancelled in the
output ygsc(1)-

6.3. The performance analysis

Since the QSWL GSC can totally remove the interference, its output signal-to-interference ratio
(SIR) tends to infinite. Thus, we focus our attention on the output signal-to-noise ratio (SNR)
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and array’s gain. Let p, = E{|(W5n(n)), — (Gﬁn(")(n))ﬂz} is the power of output noise. From
Egs. (37) and (58), we have

(Won(n); — (Gon' (n)); = (Wi — Gi"m(n) + (W3 + Go")ma(m) (68)

Then, p, can be written as

p, = 05(Wi' — Gl (W1 — Gy) + (WY + GY)(W; + Gy) (69)

When the combined QPMC and MVDR are adopted in the second-stage beamformer, p, can
be written in the simple form (the proof is in Appendix D of Ref. [5])

2
o
Pn= (2MIPe[*e* + [(P*Ps); laf'q,*Aq) (70)
_ 2
where A; = ;2% — 2M|P;|, « is given by Eq. (54). From Eq. (67), the expression of output SNR

and array’s gain A, may be written as

(2M[Ps[e — |(PAPs), [Plql'q. )
(2M|PS|2€2 + ‘(PiAPS)1’2|qu%|2/\q)

SNR, = &, (71)

_ (@M|P’e — |(P Ps),la}'q.")’
.=
(2MPs[e? + (PAPy), lgf gs* Ag)

(72)

where & denotes the input signal-to-noise ratio (SNR) and ¢ is given by Eq. (43).

When the LCMV is adopted in the second-stage beamformer, p, can be written in the simple
form (the proof is in Appendix E of Ref. [5])

2
In

5 2MIPs[*e® + |(P"Ps), "} qc" A1) (73)

Pn =

=

2ME7? P
where A; = —Elv‘ d

— 2M|P;[*, v is given by Eq. (64). Then, the expression of output SNR and
array’s gain A; may be written as
(2M|Ps*e = |(PPs), gt ¢*)’

SNR, = &
° T @MIPPe? + [(PAP), Platlq M)

(74)

4 (2M|Py|*e — |(P{*P;), [*|qq.|*)? 75)
(2M|Ps*e2 + |(PAPs), [P g g, 1)

From Egs. (71), (72), (74) and (75), we can see that the output SNR and array’s gain depend on
not only separation between the DOA'’s of the desired signal and interference (i.e., |¢f¢,|), but
also difference between the polarizations of the desired signal and interference (i.e., |(P2P;), ).
The dependencies of them on |¢!’g,| and |(P;*P;),| are shown in following consequences:
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1. When |¢f¢,| = 0, the separation between the DOAs of the desired signal and interference
reaches to maximum. In this case, Aq = A; = 2M|P,|*. Further, lqfq,| increases with a
decrease of the DOA’s separation. Thus, the array’s gain A; and A; will reduce if ]PS]2 isa

constant. When ¢; = ¢,, |¢!'q,| = 2M. This implies that there is no separation between the
DOAs of the desired signal and interference. In this case, the array’s gain is given by

_ 2M(|PS|25 - 2M|(PiAPS)1’2)2

A, = A = (76)
g |Ps?e2 + 2M|(PAP;), [*A

where

&P

_ — 2M|P;|? (77)
2M(|Ps*[P;|* — |(PAPy), %)

Further, P; = P, if y, = y; and n, = 7;. Thus, the array’s gain A; = A; = 0 due to A = <. This
implies that the QSWL GSC fails.

2. When |(P~P,);| = 0, A, = A; = 2M|P;|*. In the cases that 6, = 0; # 0and ¢, = ¢, # 0 (i.e.,
q; =4q,), we have [(PPs);| = (sin?0;cos?p,+ sin’p,)cos(y; —y,)cos(n, —n,). If
y.—y,=*mn/2orn, —n, = £n/2, then |(PP;),| = 0. This implies that even though there
is no separation between the DOAs of the desired signal and interference, the array’s gain

can also reach to 2M|P;|* by using the orthogonality between the polarizations of the
desired signal and interference. Further, the array’s gain decreases with an increase of

|(PAPs), | if |P,|* is a constant. When P; = P;, |(PAPs),| = |P,|*. This implies that there is
no difference between the polarizations of the desired signal and interference. But, the
array’s gain is not equal to zero if ¢; # ¢,.

In addition, the output SNR and array’s gain depend also on the input INR ¢&;, the array’s
element number 2M,, the interference response’s power |P;|* and the desired signal response’s

power |P,|*.

7. Monte Carlo simulations

In this section, we investigate the performance of the proposed beamformers by two experi-
ments. More results of simulations were shown in Refs. [2, 4, 5].

7.1. Experiment 1: the performance of QM VDR beamformer

In practice, if there is a misalignment between the desired signal’s DOA and the look direction,
the SINR of the complex MVDR beamformer degrades in the case of a scalar vector array [13].
In this experiment, we investigate the robustness of the beamformer against the DOA mismatch.
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We consider each two-component vector-sensor has two orthogonal magnetic loop co-aligned
along the x-axis, and assume that M = 1. The result is the average of the output SINR obtained by
1000 Monte Carlo runs. To compare the performance, the complex ‘long vector’” MVDR
(CLVMVDR) [13], OQMVDR and its INC beamformers are included in simulation results. For the
CLVMVDR and QMVDR beamformers, the SINR is in general expressed in the form of loga-
rithm. In order to be identical with the SINR of CLVMVDR and QMVDR beamformers, we

define SINR = 1010g0;i—?a2 in this experiment and assume that input SINR = 0 dB.

Figure 5 displays the output SINR as the function of the DOA error of the desired signal where
the DOA error is between —8° and 8°. In the case of 0, =0°0; =80° ¢, = ¢, =0
Yy, =7y; =60°1n, =n =30° (ie, the polarization of the desired signal and interference is
identical, but the DOA is not identical), simulation results for two different sample sizes
N =20 and N =500 are given in Figure 5(a) and (b), respectively. From Figure 5, it is seen that
the output SINR behaviour is different with different values of sample size N. In case of small
N, as shown in Figure 5(a), the INC and the QMVDR have a better robustness than the
CLVMVDR. But the output SINR of the QMVDR and CLVMVDR is more than that of the
INC. In case of large N, as shown in Figure 5(b), the robustness against the DOA mismatch is
almost identical for three beamformers. But the INC has the largest output SINR in three
beamformers.

(a) 15 : : : : (b) 25
g8 B EO00-8 8 g .
LD/D O—p_ - 24__,__,’4——4——r —— |
145 E
23}
149,
L ‘0 —+—INC 2ot
3 ‘@, —0O - QMVDR y e
o 135} 09, | © 1 CLVMVDR| { QE: o1 —O0 —QMVDR | |
z o, ° z ' ® ' CLVMVDR
%] , =
e [} K 20}
13 /°/ ]
(-
/°,° 19m__n_|:|—u-E-E—E—E|—E|—EI—E-E-E_D_D_D_m
,
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M “l -
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tl—_XC* ° 2 4 6 8 s 5 4 = 0 2 p 6 8
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Figure 5. Output SINR against the DOA error.

7.2. Experiment 2: the performance of QSWL beamformer

In the second experiment, we illustrate the performance of the proposed QSWL GSC in the
presence of a single interference. We assume M =6, ¢, = ¢, = 60°; y, =y, = 30°,n, = n;, = 30°,
and that the covariance matrix R,, instead of R;,, is available. Figure 6 displays the power
patterns for three values of [AQ| : 60°, 20° and 10°, where 0, = |A0)|, 6; = 0°. From Figure 6, it
is seen that three beamformers steer almost a zero towards the interference’s DOA (located at
0°) in all cases. When |A6| decreases, the main-lobe of the QSWL GSC points almost to the
source location, but the main-lobe of the complex 'long vector’ LCMV (CLCMYV) is away from
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Figure 6. The power patterns at 6; = |A6|, 6; = 0°. (a) |AB] = 60°, (b) |AB| = 20°, (c) |AB| = 10°.

the source location. This implies that the QSWL GSC outperforms obviously CLCMV as the
desired signal moves towards the interference. In addition, the side-lobes are amplified with a
decrease of |A6|. These side-lobes lead the beamformer to capture the white noise, which spans
the whole space, so that the performance of beamformer degrades.

8. Conclusion

The problem of beamformer based on quaternion processes is considered in this chapter. The
quaternion beamformers has more information than the complex ‘long vector’ beamformer.
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The increase of information results in the improvement of the beamformer’s performance.
Analyses in theory and simulation results verify the advantages of quaternion beamformers.
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