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Abstract

Flavonoids are natural products widely distributed in the plant kingdom and form one 
of the main classes of secondary metabolites. They display a large range of structures 
and ecological significance (e.g., such as the colored pigments in many flower petals), 
serve as chemotaxonomic marker compounds and have a variety of biological activi-
ties. Therefore, they have been extensively investigated but the interest in them is still 
increasing. The topics that will be discussed in this chapter describe the regulation of fla-
vonoid biosynthesis, the roles of flavonoids in flowers, fruits and roots and mechanisms 
involved in pollination and their specific functions in the plant.
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1. Introduction

Flavonoids represent a highly diverse class of polyphenolic secondary metabolites, which 
are abundant in spermatophytes (seed-bearing vascular land plants: gymnosperms (cycades, 
conifers, ginkos and gnetophytes) and angiosperms) [1–3] but have also been reported from 

primitive taxa, such as bryophytes (nonvascular land plants, including liverworts, hornworts 
and mosses) [4, 5], pteridophytes (seedless vascular land plants, i.e., lycophytes, horsetails 
and all ferns) [6, 7] and algae [8, 9]. Overall, about 10,000 flavonoids have been recorded 
which represent the third largest group of natural products following the alkaloids (12,000) 
and terpenoids (30,000) [1, 10].

Flavonoids are essential constituents of the cells of all higher plants [11]. Plants have evolved 

to produce flavonoids to protect themselves against fungal parasites, herbivores, pathogens 
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and ultraviolet (UV) radiation [10]. They resemble in their regulatory properties most of 

the lipid-soluble vitamins but serve, in addition, due to their color, as communicators with 
the environment. Flavonoids are recognized by pollinators, for example, insects, birds and 
animals, which contribute to the dispersion of seeds [11]. They act as symbionts, as allelo-

chemicals, as antimicrobial and antiherbivory factors [10, 12]. Many studies have shown that 

flavonoids exhibit biological and pharmacological activities, including antioxidant, cytotoxic, 
anticancer, antiviral, antibacterial, anti-inflammatory, antiallergic, antithrombotic, cardiopro-

tective, hepatoprotective, neuroprotective, antimalarial, antileishmanial, antitrypanosomal 
and antiamebial properties [13–15].

The topics that will be discussed in this chapter describe the regulation of flavonoid biosyn-

thesis, the roles of flavonoids in flowers, fruits and roots and mechanisms involved in pollina-

tion and their specific functions in the plant.

2. The classification and biosynthesis of flavonoids

Flavonoids can be classified according to biosynthetic origin. Flavonoids are characterized 
by the presence of 15 carbon atoms in their basic skeleton, arranged in the form C6-C3-C6, 
which corresponds to two aromatic rings A and B linked by a unit of three carbon atoms, 
which may or may not give rise to a third ring. The rings are labeled A, B and C [15, 16]. The 

initial step in the biosynthesis of most flavonoids is the condensation of one p-coumaroyl-

CoA molecule (shikimate derived, B ring) with three molecules of malonyl-CoA (polyketid 
origin, A ring) to give chalcone (2′, 4′, 6′, 4-tetrahydroxychalcone). This reaction is carried out 
by the enzyme chalcone synthase (CHS) [14–16]. Chalcone is subsequently isomerized by the 
enzyme chalcone flavanone isomerase (CHI) to flavanone. From these central intermediates, 
the pathway diverges into several side branches, each yielding a different class of flavonoids 
(Figure 1) [14, 16, 17].

Although the central pathway for flavonoid biosynthesis was conserved in plants, depending 
on the species, a group of enzymes, such as isomerases, reductases, hydroxylases, modifies 
the basic flavonoid skeleton, leading to the different flavonoid classes [1, 16], including chal-
cones and flavanones which are intermediary compounds in biosynthesis and final products 
present in various parts of the plant. Anthocyanins, proanthocyanidins, flavones and flavo-

nols are other classes only known as end products of biosynthesis. The other important class 

is the isoflavonoids, which are formed by migration reaction of 2-aryl side chain to 3-position 
mediated by isoflavone synthase [1, 16, 18].

The retrochalcones are unusual flavonoids and have reversed A and B rings. The biosynthesis 
is not yet clearly defined but is likely to be derived from the common C

15
 intermediate of gen-

eral flavonoid biosynthesis, more specifically from the reduction of dibenzoylmethanes [19–21] 

or by 2-hydroxylation of a flavanone [22, 23]. These compounds are restricted to relatively 

few plant species and have been isolated from some species of the families Leguminosae [24], 
Annonaceae and Basellaceae [25–28].
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Several species reported the presence of chalcone dimers bound by a cyclobutane (Figure 2) 
[29–35]. The phytochemical study of the roots of Dahlstedtia grandiflora was observed, and for 
the first time, the occurrence of dimerization in retrochalcones was noted [24]. The mecha-

nisms of [2 + 2] cycloaddition involved in the formation of these compounds are suggested 
[30, 35]. In spite of the lack of biosynthetic studies of these natural products, much effort has 
been made in elucidating the biosynthetic pathways of flavonoids from a genetic perspective.

Figure 1.  A diagram of the flavonoid biosynthetic pathway. Key enzymes catalyzing some reactions: PAL, phenylalanine 
amonialyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumaroyl-coenzyme A ligase; CHS, chalcone synthase; CHI, 
chalcone flavanone synthase; F3H, flavanone 3β-hydroxylase; DFR, dihydroflavonol 4-reductase; FLS, flavonol synthase; 
IFS, isoflavonoid synthase; AS, anthocianin synthase and UF3GT, UDP glucose: flavonoid 3-O-glucosyltransferase. 
Adapted from Ref. [17].
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Flavonoids occur naturally as compounds associated with sugar in conjugated forms (glyco-

sides), without attached sugar as aglycones [1, 36]. They are often hydroxylated in positions 3, 5, 
7, 3′, 4′ and 5′. Some of these hydroxyl groups are frequently methylated, acetylated or sulfated. 
Prenylation usually occurs directly at a carbon atom in the aromatic rings, but O-prenylation has 
also been found [11]. When glycosides are formed, the glycosidic linkage is normally located in 
position 3 or 7, and the carbohydrates are commonly L-rhamnose, D-glucose, glucose rhamnose, 
galactose or arabinose [1, 11]. These changes often alter their solubility, reactivity and stability. 
The majority of flavonoids are present in the form of glycosides under natural conditions [1].

2.1. The chemical structure of flavonoids

The chemical nature of flavonoids varies according to the hydroxylation pattern, conjuga-

tion between the aromatic rings, glycosidic moieties, methoxy groups and other substituents 
[37–39]. Flavonoids contain conjugated double bonds and groups (hydroxyl or other sub-

stituents) that can donate electrons through resonance to stabilize the free radicals, which 
originate in the electronic spectra of flavonoids [40].

Studies on flavonoids by UV spectroscopy have shown that most flavonoids consist of two major 
absorption maxima: band II (240–285 nm) which corresponds to the benzoyl system of the A ring, 
while band I (300–400 nm) represents the cinnamoyl system of the B ring (Figure 3) [36, 41].

Functional groups attached to the flavonoid skeleton may cause a shift in absorption. The 
application of standardized UV (or UV-Vis) spectroscopy has for years been used in analyses 
of flavonoids [11].

Flavonoids have the ability to sequester free radicals, are natural antioxidants derived from 
plants and are commonly found in foods and beverages [40]. The main structural features of 

flavonoids required for antioxidant activity can be determined by three fundamental factors: 
(1) a 3′,4′-dihydroxy (catechol) structure in the B ring favors the electron delocalization (A), 
(2) an unsaturated 2-3 bond in conjugation with a 4-keto group provides electron delocaliza-

tion from the B ring (B) and (3) hydroxyl groups at positions 3 and 5 form intramolecular 
hydrogen bonding to the keto group (C) (Figure 4). These effects lead to the increases of the 
radical scavenging by delocalization of electrons or by donation of hydrogen [42].

Figure 2.  Chalcone dimmers isolated from Combretum albopunctatum [31], Helichrysum zivojinii [29] and Agapanthus 
africanus [30].

Flavonoids - From Biosynthesis to Human Health6



Flavonoids have different activity mechanisms such as free radical scavenging, inactivation of 
peroxides and other reactive oxygen species, chelation of metals and quenching of secondary 

Figure 3.  Band II absorption (originated from A-ring benzoyl system) and band I (from the B-ring cinnamoyl system). 
Adapted from Ref. [41].

Figure 4.  Structural groups for radical scavenging [42].
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lipid oxidation products [40]. The radical scavenging properties associated with the structure 

of flavonoids defend against oxidative stress and in doing so reduce heart disease, prevent can-

cer and slow down the aging processes in cells responsible for degenerative diseases [40, 42].

3. Ecology chemicals

3.1. Pigments and pollination

Plant compounds that are perceived by humans to have color are generally referred to as 

“pigments.” The three main classes of pigments for coloration in plants are: betalains, carot-
enoids and flavonoids (anthocyanins) [43, 44]. All three classes of pigments act as visible sig-

nals to attract insects, birds and animals for pollination and seed dispersal [11, 43].

The pigments that color most flowers, fruits and seeds are flavonoids, which have the widest 
color range, from pale-yellow to blue [12]. Anthocyanins occur in all plant tissues and provide 

a wide range of colors ranging from orange/red to violet/blue [44]. They are formed by glyco-

sides that may have several sugars in position 3; when there are no glycosides, the pigments 
are called anthocyanidins [12]. In addition to various modifications to their structures, their 
specific color also depends on pH, copigments and metal ions [11, 45].

The basic chromophore of anthocyanins is the flavylium ion [45, 46]. In acidic medium (pH 
below 2.5), anthocyanins show intensely reddish coloration or orange due the presence of 
flavylium cation form. When the pH increases from 2.5 to 4–6, the violet anhydrobase is 
formed first, but it decolorizes rapidly due the predominance of pseudobase carbinol formed 
by hydration (Figure 5) [11, 39, 47].

Since the flower cell sap is usually weakly acidic, in this pH region, most of the anthocyanins 
are in colorless form Ref. [47]. Hydration of the flavylium cation, which causes decoloration, 
may be prevented by formation of a complex between this ion and other substances. This 

phenomenon is called copigmenting [11, 47]. Such complexes are formed by intermolecular, 
intramolecular rearrangements and self-association, with organic molecules such as flavo-

noids, tannins, aromatic acids or metal for chelation [46, 47]. The copigmentation has a sta-

bilizing effect as well as a bathochromic effect on anthocyanins [47]. Various flavonols and 
flavones act as copigments, with anthocyanins leading to an intensification of flower color 
[32, 45, 46]. So far, the main pigments targeted for flower and fruit color modifications are 
anthocyanins that contribute to a variety of colors such as red, pink and blue [44].

Humans recognize the color of a compound by perceiving reflected or transmitted light of 
wavelengths between 380 and 730 nm, while insects recognize light of shorter wavelengths 
[43]. Anthocyanins contribute to the UV patterns that are visible to insects and serve to signal 
flowers and fruits that are attractive to pollinators [45]. The light absorption of anthocyanins 

extends over most of the spectrum. Particularly, anthocyanins have an intense absorption in 
the 450–560 nm region (visible region), attributed to the hydroxyl cinnamoyl system of the B 
ring, while the absorption in the 240–280 nm region (UV region), characteristic of all flavo-

noids, corresponds to the A ring [32, 39].

Flavonoids - From Biosynthesis to Human Health8



The different colors produced by pigments are visible only to animals with the right photore-

ceptors, and many insects have limited color vision at the red end of the spectrum [40]. Due 
to the structural diversity of anthocyanins, the presence of one determined anthocyanin in the 
flower might affect the type of pollinators visiting the plant. The color preferences are differ-

ent for different pollinators, and blue anthocyanins, for example, appear to attract bees more 
than red ones. Some butterfly and birds species visit red flowers, suggesting that both groups 
of animals are attracted to red anthocyanins [12, 40, 48].

A study of anthocyanins in two species of the genus Schizanthus Ruiz & Pav (Solanaceae) 
showed that the hummingbird-pollinated red flowers of S. grahamii contained a higher pro-

portion of delphinidin 3-O-rutinoside (anthocyanin), whereas the bee-pollinated bluish-pink 
flowers of S. hookeri contained a higher proportion of petanin-derivatives (anthocyanin) [48].

Flavones and flavonols also contribute to flower color hue. Both groups of compounds com-

prise unpigmented or pale yellow flavonoids and are mostly invisible to the human eye [43, 44]. 

Studies on flavonoids by spectroscopy have revealed that most flavones and flavonols exhibit 
two major absorption bands: band I (320–385 nm) represents the B ring absorption, while band 
II (250–285 nm) corresponds to the A ring absorption [39]. As they absorb UV, which insects 
recognize, they give color and patterns to flowers to attract insects [43].

Figure 5.  A change in the structure of an anthocyanin in aqueous solution as a function of pH [47].
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Chalcones and aurones, which provide yellow pigmentation in the flowers of several orna-

mental species, are relatively rare types of flavonoids [49]. The UV spectra of both compounds 
are characterized by an intense band I and diminished band II absorption [50]. The major 

absorption band in chalcones (band I) usually occurs in the range 340–390 nm. Band II is 
usually a minor peak in the 220–270 nm region, while the long wavelength absorption band 
in aurones is usually found in the 370–430 nm region. They produce the strongest yellow 
colors owing to their absorbance at longer wavelengths compared to the other types [50, 51]. 

Chalcones, flavonols, flavones or anthocyanins usually accumulate in sex organs of flowers, 
including the pollen. In contrast to man, some insects, especially bees, can perceive in the 
near ultraviolet (340–380 nm) as well as in the visible region. However, insects are possibly 
attracted to pollen whose color contrasts against petals due to UV reflective or absorptive 
flavonoids [46].

Pollination is an essential step in the reproductive process of the world’s nearly 300,000 species 
of flowering plants because it is usually required for the production of seeds. Pollination can 
result from the action of abiotic forces such as wind and water, but 80% of the Angiosperms 
rely on animals, including bats, flies, butterflies, beetles and other insects [52]. Such diversity 
is acquired through evolutionary processes to ensure successful reproduction [44].

3.2. Allelopathy

The interactions between organisms are fundamental for the determination of plant abun-

dance and distribution pattern in the community, of the productivity of several cultivated 
species and of the degree of interference on weeds [53]. Weeds are one of the most important 

factors that impose limitations on the development of agricultural activity in the world and 

are difficult to eradicate. The success of weeds in different cropping systems is associated, 
in part, with their ability to produce, store and release to the environment chemicals with 
allelopathic properties [54].

Allelopathy can be defined as a process by which compounds from the metabolism of a plant 
are released, preventing the germination, growth and development of other neighboring 
plants [55]. These compounds are involved in plant-plant interactions or allelopathy [56] and 

may influence, for example, in the vegetation of a local, in the succession of plants, in the 
germination of seeds and in the cultures productivity, among others [57]. Among the main 

groups of compounds with allelopathic potential are highlighted the benzoquinones, couma-

rins, flavonoids, terpenoids, glycosides, phenolic acids, alkaloids, rotenoids, catechins and 
tannins [58, 59].

Although flavonoids have many roles in plants, in relation to their role in allelopathy and the 
inhibition of seedling root growth [56], the activity of flavonoids in plant-plant interactions 
can be positive or negative [60]. The negative relations are mainly based on inhibiting germi-

nation and growth of other plants seedlings [56], as depicted in Table 1.

Some flavonoids present a level of phytotoxicity, indicating that allelopathy could be a ben-

eficial function of the flavonoids to the producing plant [65]. Although the relative role of fla-

vonoids in allelopathic interference has been less well-characterized than of some secondary 

metabolites, some examples of their involvement in autotoxicity and allelopathy are reported 

Flavonoids - From Biosynthesis to Human Health10



[56]. In a previous study, see [65], presented flavonoids as are at least partly responsible 
for the strong phytotoxic effects of Stellera chamaejasme L. The potential allelopathic behav-

ior may facilitate this weed to become a good competitor against other plant species in the 

environment.

Allied to the need for understanding the mechanism action of flavonoids, the importance of 
the study of allelopathy gains more and more attention in agriculture because these interac-

tions could be employed for reducing weed growth.

Biopesticides based on flavonoids displaying allelopathic properties against weeds can poten-

tially be an efficient natural defense against them [62]. In the study [63], the inhibiting activity 
against weeds of the species Echinochloa crus-galli, Cyperus difformis and Cyperus iria using the 

5,7,4′-trihydroxy-3′,5′-dimethoxyflavone is shown.

4. Conclusion

Flavonoids are found in most plant tissues, provide a range of colors that attract pollinators, 
and, in fruit, they probably serve to attract frugivores that assist in seed dispersal. All of 
these pigments also function as antioxidants and sunscreens, absorbing wavelengths of ultra-

violet. Their biosynthesis appears to be ubiquitous in plants and evolved early during land 
plant (from primitive green algae) evolution, aiding in plant protection and signaling. The 
precise mechanism by which flavonoids participate in allelopathy is still unknown, but the 
significance of allelopathy has gained more attention in agriculture, for example. Plant-plant 
interactions can influence or determine diversity, productivity and reproduction of a plant 
community beyond reduction or inhibition of weed growth.

Plant organism Flavonoid Function References

Oryza sativa L. Allelopathic inhibitor of 

weeds and pathogens

[61]

- Allelopathic inhibitor of 

seed germination 

[62]

Helianthus annuus Inhibitor of seedling 
growth

[63]

- Allelopathic inhibitor of 

seedling growth

[64]

Table 1. Flavonoids of different classes with allelopathic potential.
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