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Abstract

Development of herbicide-resistant (HR) crops is way to overcome problems in weed 
control due to weed resistance to herbicides and absence of new herbicides with a new 
mode of action for their control. Three types of HR crops were developed: nontransgenic, 
transgenic, and multiple HR crops. Cultivation of HR crops is associated not only with 
many benefits (simplification of weed control, more effective and efficient weed control, 
higher yields, etc.) but also with various risks (development of HR weeds, development 
of HR volunteer crops, gene flow from HR crops to susceptible relatives, etc.). The great-
est risk is gene flow from HR crops to related weed species, wild relatives or conventional 
crops of the same species. Unwanted gene flow could be prevented or reduced using dif-
ferent barriers such as isolation in space or time, protective vegetation barriers, male ste-
rility, etc. Sunflower hybrids resistant to herbicides (imidazolinones and sulfonilureas) 
was developed by conventional breeding methods, and their introduction in Serbian 
fields has enabled a more efficient control of harmful weed species, but the presence of 
huge populations of weedy sunflower is the main concern associated with their cultiva-
tion, because numerous studies have confirmed gene flow from sunflower to its relatives.

Keywords: gene flow, herbicide resistant crops, wild relatives

1. Introduction

The main aim of plant breeding is creating new varieties and hybrids, which would enable 

us to overcome different problems of contemporary agriculture and achieve high yields and 
productivity. Research in the fields of molecular genetics, biochemistry, and physiology is 
leading to development of plants with additional agronomic properties, such as herbicide 
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resistance, pathogen and pest resistance, salt and dryness tolerance, certain food quality 

parameters, etc. [1–4]. The predominant resistances used in crops are herbicide resistance, 

both in nontransgenic and in transgenic crops. Owing to the novel insights into the mecha-

nisms and site of action of herbicides on a molecular level, and the development of new bio-

technology methods, breeding of herbicide-resistant (HR) crops has been enabled. Thanks to 

that it is possible to use herbicides, which are preferable from agronomic, environmental, or 

genetic viewpoint. This new biotechnology gives many benefits in food production such as 
higher yield through high efficiency of weed control, less unit cost of food production, better 
quality through removal of existing volunteers of the some species, the possibility of using 

low-tillage systems, etc. But, this new biotechnology also has some disadvantages such as 

development herbicide-resistant weed species due to high selection pressure, potential for 

development of herbicide-resistant volunteer crops, risks of cross-pollination and gene flow 
from resistant to susceptible relatives, etc.

The focus of this chapter is review of risks associated with HR crops growing with special 

attention on gene flow from crops to their wild relatives. We first discuss development of 
HR crops and technologies of weed control based on resistant crops. Also, we briefly discuss 
gene flow from HR crops to their wild relatives and barriers, which can prevent it. Finally, we 
discuss transfer of genes responsible for resistance from sunflower hybrids (present resistant 
crop in Serbia and in Europe) to wild sunflower forms.

2. Herbicide-resistant crops

Discovery of new herbicides, especially with a new mode of action is difficult and expensive. 
During the last few decades, no one herbicide with novel site of action was found and there are 

no expectations for its appearance in the near future [5, 6]. One way to overcome this problem 

was development HR crops, which provide expanding the utility of existing herbicides and 

improve weed control with them. The study on developing HR crops started soon after the 

discovery of first herbicide-resistant weeds [7, 8]. These type of crops are designed to tolerate 

specific broad-spectrum herbicides, which kill the surrounding weeds, but leave the cultivated 
crop intact. There were two directions in HR crops development, which resulted with two 

groups of crops: transgenic (genetically modified, GM) and nontransgenic HR crops. The first 
nontransgenic program for HR crops breeding transferred resistance to herbicide triazines 
from a Brassica rapa to canola [9]. Although several triazine-resistant canola varieties were 
developed, farmer interest for these varieties was poor due to pleiotropic effects of mutation 
responsible for resistance, which caused lower yielding and poorer seedling vigor [10]. Also, 

nontransgenic methods like whole-cell selection, mutagenesis, and plant selection from natu-

ral populations have been used for breeding of crops resistant to sulfonylurea, sethoxydim, 

and imidazolinone herbicides. At the same period (1980s), tools for producing transgenic 
crops were becoming available and many companies start to work on their development. 

Bromoxynil-resistant cotton was one of the first transgenic HR crops available to farmers in 
1995 [11], followed by glyphosate-resistant maize, canola, cotton, soybean, and other crops 
known as “Roundup Ready” crops. After period of effective, simple, and inexpensive weed 
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management with cultivation glyphosate-resistant crops, glyphosate-resistant weeds becom-

ing a problem in weed control, which increase the use of crops resistant to glufosinate [12], fol-

lowed by initiation of new approach in HR crops development, which was based on building 

of multiple resistance in crop plants.

Significant number of crop plants resistant to different ALS (acetolactate synthase; also known 
as AHAS—acetohydroxyacid synthase) inhibiting herbicides were developed using conven-

tional breeding methods (Table 1). These groups of herbicides have very good characteristics 

for utilization in weed control in HR crops, which include low use rates, broad spectrum weed 
control, low mammalian toxicity and environmental compatibility. Immediately after discov-

ery of this group of herbicides, ALS resistant tobacco and maize lines were developed using tis-

sue culture selection [13, 14], while ALS-resistant soybean developed using mutagenesis [15]. 

Herbicide Crop First market

Non-transgenic Photosystem II inhibitors Soybean ~1991

Canola 1984

Imidazolinones Maize 1992

Canola 1995

Wheat 2001

Rice 2001

Sunflower 2003

Sulfonylureas Soybean 1994

Sunflower 2006

Sorghum ~2013

ACCase inhibitor sethoxydim Maize 1996

Transgenic Glyphosate Soybean 1996

Canola 1996

Cotton 1997

Maize 1998

Alfalfa 2006

Sugarbeet 2007

Glufosinate Canola 1995

Maize 1996

Cotton 2005

Rice 2006

Soybean 2009

Table 1. Some commercialized HR crops, modified from reference [20].
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After that, three technologies of weed control, which include crop resistance to this group of 

herbicides, were developed. The Clearfield® and the Clearfield Plus® system have been devel-

oped with the aim to grow crops resistant to IMI herbicides [16], while ExpresSun® system has 

been developed with the aim to grow sunflower hybrids resistant to tribenuron-methyl [17]. 

As there is no “alien” genes introduced into these crops, this group of HR crops is not consid-

ered as transgenic and has been accepted in countries where the cultivation of GM crops is 
prohibited [16], like many European countries, as well as in Serbia.

Transgenic (GM) crops developed based on the use of different transgenes, mainly respon-

sible for resistance to glyphosate, which introduced into many crop species (Table 1). 

These crops became popular thanks to simplification of weed control and reduction of 
production costs, making the crop more profitable. Between more than a hundred GM 
products, which have been authorized for commercialization only 13 are crops [18]. The 

main GM crops are maize, soybean, cotton, and rapeseed, which grow on more than 90 
million ha distributed in 14 countries in which these crops have been authorized [19]. 

These crops are grown in America, Australia, China, South Africa, but distribution is the 

highest in the USA, where it covers more than 49.8 million ha [19]. In Europe, GM crops 
(maize, rapeseed, endive, soybean, and flowers) adopted for the production and/or con-

sumption only in few countries, between which Spain is major producer, growing GM 
maize on more than 100,000 ha [19].

New approach in development of HR crops is technology, which combines glyphosate 

resistance with resistance to other herbicides resulting in multiple HR crops (Table 2). 

This technology developed with the aim to overcome increasing development of multi-

ple HR weeds and based on engineering crops that are able to express multiple HR traits 

and tolerate multiple herbicides. This new concept using stacked (contains more than 

one transgene) genes as a tool for postoccurrence and future resistance management is 

the equivalent to using a single herbicide in case when weed is already resistant to one 

member of a dual stack [21]. Appropriate transgene stacks should delay resistance longer 

than approach, which use each component separately and sequentially because each weed 

resistant to either herbicide will be killed by the other herbicide in the stack. However, that 

stacking multiple HR into crops may or may not delay the evolution of herbicide resis-

tance because effectiveness of the transgene stacks depends on the management decisions 

Herbicide types Crops

Glyphosate and glufosinate Soybean, maize, cotton

Glyphosate and ALS inhibitors Soybean, maize

Glyphosate, glufosinate and 2,4-D analogs Soybean, cotton

Glyphosate, glufosinate and dicamba Soybean, cotton

Glyphosate, glufosinate and HPPD inhibitors Soybean, cotton

Glyphosate, glufosinate, 2,4-D and ACCase inhibitors Maize

Table 2. Multiple HR crops under development [20].
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and adoption of the accompanying stewardship programs [21]. Namely, it depends on the 

effectiveness of each included herbicide in control of each target weed species. Some soy-

bean multiple resistant cultivars have recently been approved for commercial use, such as 

cultivars resistant to glyphosate, glufosinate, and 2,4-D, as well as resistant to glyphosate 

and dicamba [21]. Except that it is possible to develop stacks of transgenes for different 
traits. For example, maize containing transgenes for resistance to insects and to herbicides 
is commercialized [22].

3. Benefits and risks associated with growing of herbicide-resistance 
crops

Cultivation of HR crops is associated not only with numerous benefits but also with various 
risk factors. The most important benefit is simplification of weed control using herbicides 
(including nonselective herbicides in many HR crops), in which some crops are able to control 

weeds that other herbicide that cannot control without concern for crop injury. Also, HR crops 

are good solution for control of parasitic weed species, in which control is more complex due 

to their attachment for host (mainly crop) plants [23]. Thanks to flexibility to the time of herbi-
cide application, possible combination with other herbicides and integration with nonchemical 

methods, this weed control approach made weed management more effective and efficient, 
which results in higher and more profitable yields. For example, the average increase of yield 
of glyphosate-resistant soybean in developed countries was 7%, while in developing countries, 

it was 21% [24]. The higher yield with better quality of seed is not a direct result of HR crop 
traits per se, but it is the result of improved weed control, which is mainly more effective than 
the conventional weed management systems [20]. These approach to weed control also became 

popular thanks to the absence of new herbicides with novel sites of action during the last few 

decades and no prediction for its appearance in the near future [5, 6]. Also, weed resistance 

to herbicides becomes widely spread and still growing problem, which is difficult to man-

age. In conventional weed management systems control of weeds which are closely related to 

the crop is difficult or impossible. ALS-inhibiting resistant sunflower would allow to use this 
group of herbicides to control Ambrosia trifida, Ambrosia artemisiifolia, Cirsium arvense, Xanthium 

strumarium, weedy Helianthus annuus, and other weeds belonging Asteraceae family, without 

injuring the crop [25]. Although there are controversial views about HR crops impacts on envi-

ronment, it is evident that this weed control system is more beneficial to the environment than 
conventional systems. Namely, herbicides used in HR crops are usually more environmen-

tally friendly than herbicides used in conventional crops. ALS-inhibiting herbicides, which 
are used in many nontransgenic HR crops, are very effective with relatively low use rates and 
low mammalian toxicity [26]. Also, it is clearly shown that glyphosate-resistant crops are ben-

eficial to the environment by reducing fuel use and soil erosion and residues of herbicides in 
ground waters [20] with the help of reduced tillage. Also, glyphosate-resistant crop cultivation 

has decreased herbicide use by 17 million kg per yr in the USA [27]. Except described, there 

are additional benefits growing HR crops to which farmers also give great importance. For 
example, in case of glyphosate-resistant maize, soybean and cotton, growers highlighted as 
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very important (Figure 1) consistency and protection from yield loss, application frequency 

and flexibility, a clean field, cost, crop safety, family and public health, water quality, etc. [28].

The cultivation of HR crops, whether they have been developed through genetic engineer-

ing or classical breeding methods, is fraught with risks, i.e., potential serious economic and 

ecological consequences. Unlike the HR crops, which have been obtained through con-

ventional breeding methods, the cultivation of GM crops has been a cause of a number of 
debates, pertaining to the health safety of these products and the risks they present to the 

environment. The questions, which cause the greatest concern, are those which relate to: 

(1) direct and indirect toxic effects of products containing transgenes for nonspecific organ-

isms; (2) the impact of modified genes and GM plants on biodiversity, ecosystems, and soil 
microorganisms; and (3) gene transfer from GM crops to their wild relatives and ecologi-
cal consequences of this phenomenon [29]. Contrary to this, in the case of HR crops devel-

oped by conventional breeding methods, the greatest risk is transfer of genes responsible for 

resistance from those crops to related weed species, wild relatives, or conventional crops of 

the same species. Namely, described gene flow creating the hybrids between HR crops and 
weeds, the so-called “super weeds”, resistant to herbicides. Their eradication subsequently 

becomes one of the major problems in agriculture. Also, gene flow can change the fitness of 
recipient biotype/species, whereby increase of fitness resulting in greater weediness, while 
its decreases lead to extinction [30]. In addition, genes responsible for resistance can flow 
from HR crops to conventional varieties, which could be the source for resistant genes flow 
to wild or weedy relatives [31]. Gene flow from transgenic to nontransgenic crops of the 
same species has been a major controversy, the cause of law suits, and a factor influencing 
commercialization of some transgenic crops. Some authors [32] highlighted that the risks 

associated with transgenic crops cultivation may be more pronounced in the centers of ori-

gin of crops than in the other territories because of the presence of wild progenitors and 

other wild relatives in centers of origin.

The occurrences of volunteer populations of HR crops can also be leading to high risk. Namely, 

seed dissipation during harvest lead to the appearance of volunteer plants the next season 

Figure 1. The important benefits growing of HR crops from the farmer point of view, made based on survey between 
1176 glyphosate-resistant maize, soybean, and cotton growers [28].
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generally in crop production of some crops. Negative consequences of volunteer plants are 

yield and quality reduction of the crop which they have invaded, contamination of harvested 

seeds, and maintenance of harmful insects and diseases. In the case of HR crops that volunteer 

plants basically represent resistant weed populations, which can be a source of pollen, which 

can contaminate the nonresistant crops or pass the resistance traits onto the related weed 

species. The control of volunteer plants, which has originated from HR crops, is impossible 

in the following cultures in which these herbicides are applied as a weed control measure. 

Therefore, volunteer plants of glyphosate-resistant cotton could be a problem in glyphosate-
resistant soybean as subsequent crop [33] or volunteer glyphosate-resistant canola and wheat 

could be problem in weed control in conservation tillage system [34]. Also, seeds from volun-

teer plants of GM crop can contaminate harvest of conventional subsequent crop [35].

Intensive and repeated use of the same herbicides with the same mode of action in HR crops 

mainly increase selection pressure on weeds, which would most likely lead to an increase in 

the selection of HR weed populations. Today, at least 36 weed species have evolved resistance 

to glyphosate, EPSPS inhibitor (the main herbicide in transgenic HR crops), and at least 159 to 

ALS-inhibiting herbicides (the main group of herbicides in nontransgenic HR crops) [36]. In 

addition to these concerns, other negative effects are also possible: herbicide drift can damage 
conventional crops of the same species, the genes responsible for resistance can be transferred 

onto conventional crops, characteristics of nontarget plants can be modified, biodiversity may 
be damaged, and the environment and soil properties can be changed due to the changes in 

the crop production technologies.

Due to the dangers of the mentioned potential risks, the research into these issues, with the aim 

of developing suitable prevention strategies, as well as solutions to these problems, should they 

arise, has been intensified. Consequently, plenty have dealt with the issue of the gene transfer 
from HR crops to their relatives (wild/weedy forms or conventional crops) [37–42], the study of 

gene stability in recipients [43, 44], the study of crop-weed hybrid's fitness [41, 45–47] and the 

competition between crop-weed hybrids and sensitive weed plants of the same species [45, 46, 48].

4. Gene flow from herbicide-resistant crops to wild or weedy relatives

Hybridization and introgression are normal processes, which have continuously occurred 
between crops and wild or weedy relatives [49, 50], as well as between relative populations of 

weedy and/or wild species [51, 52]. Even though the hybridization of crops and weeds has an 
important role in the evolution of many weed species [53], it can also result in the extinction of 

certain species related to the crops or the rise of new weed forms, which are more aggressive and 

better adapted to artificial habitats [30]. There are three types of gene flow: vertical (between sex-

ually compatible individuals), horizontal (between distant related species), and diagonal (between 

related but incompletely incompatible species) [54], but introgression of genes from cultivated 

to wild or weedy forms of the same species is possible through vertical and diagonal gene flow.

The ecological consequences of gene transfer from crops to their wild relatives are determined 

by the quantity of genes, which are being transferred into the populations of wild plants and 

weeds and the phenotypic characteristics controlled by these genes. Some of the characteris-

tics are insignificant for the fitness of wild relatives, while others (herbicide resistance, disease 
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resistance, and tolerance to the environmental stress factors) mostly improve it. For example, 
the first generation crop-wild hybrids produced through hybridization between cultivated and 
wild radish populations [53, 55, 56] was relatively fecund, produced large quantities of seeds 

and rapidly evolved increased pollen fertility. Contrary to this, if the introduced genes weaken 

the fitness of their wild relatives, their invisibility will also decrease. This process can be accel-
erated by introgression and the introduction of new genes from neighboring crops, which ulti-

mately leads to the extinction of the initial populations of wild relatives [57]. Except ecological 

consequences, gene flow from crops to weedy relatives is associated with many problems in 
crop production. Namely, the development of HR crops has given rise to the situation where 

the hybridization is often seen as a problem, particularly when it relates to the hybridization 
between GM crops and related species. Also, it is important to bear in mind that in some coun-

tries coexist different cropping systems, which cultivate conventional, organic, and GM crops. 
In that situation, there is risk for gene flow between GM and non-GM cultivars through cross-
fertilization due to pollen flow between neighboring fields. Progeny of HR crops and weedy/
wild relatives or volunteers will be resistant weeds, in which control is difficult.

Genes responsible for crop's herbicide resistance can be spread in the environment as a result 
of three mechanisms, including gene transfer across a pollen (as a result of allogamy), seeds (as 

a result of their dispersal) and for perennial species by the vegetative propagules. Potential for 

pollen-mediated gene flow is higher for both wind and insect pollinated out-crossing crops than 
for self-pollinated crops [58]. Although gene flow across a pollen is more studied, gene flow by 
seeds during commerce may be very important for the long-distance dispersal of genes respon-

sible for resistance to herbicides [59]. The both ways of gene flow from HR crops including both 
GM and conventionally bred HR crops have been confirmed in many cases [37–40, 60, 61].

The transfer of genes from HR crops to their relatives is dependent on multiple factors 

(Figure 2), such as the coexistence and proximity of the crop and its close relatives, their biol-

ogy and phenology, type of vector, development of F1 generation, which is fertile and capable 
of survival, the production of fertile subsequent generations, the potential for gene transmis-

sion, chromosome recombination and movement of genes of one species into the genome of 

another, due to introgressive hybridization and gene persistence in volunteer crop popula-

tions [58, 62]. Also, in study about gene flow from glufosinate-resistant rice to improved rice 
cultivars and weedy rice in China, the conclusion was that gene flow depends on the height of 
pollen recipient plants [63]. They found that the gene flow was lesser if recipients were taller 
than in situation when they were shorter.

Cross-pollination between HR crops and sexually compatible wild or conventional cultivated 

crops of the same species is the major pathway for gene escape. Therefore, transfer of genes 

responsible for HR between sexually compatible individuals is most often done through pollen, 

whether within the same population or between different populations [38, 64]. This  occurrence 

is dependent on different factors of which autoincompatibility that enhances allogamy in wild 
forms, environmental conditions (wind speed and direction, temperature, light intensity, and 

humidity) as well as the type (wind and/or insect) of pollination vector [37, 38, 65, 66]. In addi-

tion to this, the crucial role in gene transfer through pollen lies in the coincidence of the flow-

ering period between the HR crop and its wild relatives. Although experimental data suggest 
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that the flowering period of wild populations is generally longer than the flowering period of 
crops, which makes the overlap highly likely [67], in some cases, gene flow between HR crops 
and relatives was disabled due to flowering period not overlapping or time of overlapping 
was short. For example, hybridization between imazamox-resistant and weedy sunflower was 
not confirmed in experiments in Serbia when period of flowering overlapping was short [42]. 

Also, it was confirmed that the gene transfer from the cultivated onto the wild sunflower in 

Figure 2. Comparison of the requirements and factors affecting gene flow via pollen, seed, and vegetative propagules, 
modified figure from reference [58].
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Argentina depended on the overlap between the flowering period and the presence of com-

mon pollinators [68, 69]. Pollen dispersal from HR crops onto their wild relatives is also depen-

dent on their mutual distance, the size of populations from which the pollen originates and 
where it is delivered, plant density, number of flowers per plant, and the location of wild rela-

tives in relation to the crop [70].

Although numerous studies have confirmed the transfer of genes relevant for HR to their wild 
relatives, hybridization level mainly was low. Some authors [60] studied the transfer of genes 

responsible for imazethapyr-resistance, from the rice cultivars to the weedy rice species in 22 
field sites. They confirmed that even though gene transfer occurs, in the majority of sites (18) 
less than 1% of hybrid progeny was present, while in the remaining four sites that percentage 

was somewhat higher (up to 3%). Also, low levels of hybridization (1–2%) were confirmed 
between rice and its wild congener Oryza rufipogon [71]. Similarly, Ref. [72] confirmed a low 
level of hybridization between HR rapeseed and related weed species Raphanus raphanistrum. 

Their research has shown that the proportion of crop-weed hybrids in the F1 generation was 
at the level of 10−7 to 3 × 10−5, depending on the geographic position of the weed species in the 

experimental plot. Gene flow from glyphosate-resistant canola to B. rapa in commercial fields 
was confirmed, but the genes were apparently not fully introgressed [73]. Contrary to that, in 

study of transgene escaping from canola to B. rapa, the gene frequency in the first backcross 
generation was 50%. But, in the fourth backcross generation, it was 0.1% in conditions without 

herbicide application, while in conditions with glyphosate application, gene frequency was 

about 5.5% within six successive backcross generations [44].

Despite the fact that the gene transfer from crops to their wild relatives is widely studied, 

there are no detailed data available on what happens with these genes, which have been 

introduced into wild populations after a longer period of time. Namely, the majority of this 

research concludes with the first generation of hybrids. However, genes originating from the 
cultivated sunflower can persist in wild populations over the five-year period, following the 
hybridization [43]. Some authors [74] have also studied the effects of a 40-year long gene 
transfer from the cultivated to the wild sunflower populations.

Importance of crop-weed hybrids produced as result of gene flow from HR crops to wild or 
weedy relatives for future crop production can be different depending on traits introduced 
into progeny. Therefore, assessment of gene flow occurrence requires not only estimating the 
degree of gene flow, but also evaluating the relative fitness of hybrids. It long dominated the 
view that crop-wild hybrids have a lower fitness than their wild parent [75, 76]. But, many 

studies confirmed that some hybrids display increased [47], while the other display reduced 

[77] fitness in comparison with their parents. Displayed fitness depends not only on the crop 
traits introduced to wild relatives, but also on environmental conditions. Namely, fitness of 
hybrids between crop and wild sunflower increases in stressful conditions common to con-

ventional agroecosystem like competition and herbicide application [77].

The role of seeds in the transfer of HR genes from crops to their wild relatives is evident in their 

spread into new areas where volunteer populations are formed. After that HR genes can be 

transferred from these volunteer populations to their wild relatives through the pollen. Also, 

hybrids resulting from spontaneous crosses of HR crops and their wild relatives through seeds 

can be carried into new areas, where they subsequently present a source of pollen, which  carries 
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the resistance genes. Unlike pollen, the seeds usually remain in the close proximity of the plants 

from which they have originated. But, as seeds are more persistent than pollen, movement of 

seeds is possible to further distances by human activities then pollen movement [59]. In gen-

eral, seed dispersal of HR crops or progeny created through their spontaneous crossing with 

wild relatives, depends on the biological properties of the crop, the ecological conditions, crop 

production technology and the agrotechnical measures applied on these fields, following with 
harvest. Nevertheless, it is possible to monitor the dispersal of these seeds in space and time. 

Some authors [78] have confirmed the gene transfer of sugar beet to their wild relatives through 
the seeds whose dispersal resulted from soil transport. Namely, although spontaneous spatial 

dispersal is often considered as irrelevant since the seeds of a majority of crop cultures have lost 

this ability, seed dispersal is also possible as a result of spillage during the harvest and their 

transport and storage operations, which enables the spread to great distances. The dispersal 

of seeds containing the genes responsible for resistance over time depends on the dormancy 

characteristics and the seed’s longevity in the soil, as well as the ecological requirements for its 

germination. Also, it should be considered that, in addition to pollen and seeds, soil seedbank 

has an important role in the plant dispersal [79]. Namely, when considering different life forms 
of sugar beet (cultivated, wild, and weedy), it is well known that they form long-term seedbanks 

[80], which, over a longer period of time, can provide the plants which are then a source of HR 

genes.

Gene flow by the vegetative propagules (stolons, rhizomes, roots, crowns, and bulbs) is pos-

sible on short distance via natural means or on equipment moved between fields, while long-
distance movement could be possible only with human activities or through the waterways 

[58]. As HR crops are mainly annual species, gene flow via vegetative propagules can be 
interesting only for perennials like glyphosate-resistant alfalfa (commercially available) and 

creeping bentgrass (Agrostis stolonifera, under consideration) [58].

Gene flow risk assessment is a procedure, which helps determine whether the transfer will 

occur, and if it will, in which degree, with a goal to reduce such a risk to the minimal possible 

level. Furthermore, such estimates are also significant due to the possibility that the transfer of 
genes responsible for HR will lead to an increase in the survival and adaptability of the intro-

duced weed species. Also, it is considered that certain plants can attain the traits of invasive 
species as a result of introduced genes, making the assessments of long-term consequences of 

gene transfer from crops to their wild relatives a necessity. There is no same potential for gene 

flow for all HR crops. For example gene flow from maize is theoretically possible to teosinte, 
but these species only exist in Mexico and Central America and not yet been reported for con-

tamination with transgenes [81]. On the other hand, there is good potential for introgression 

from sunflower [74], sugarbeet [82] and rice [83] to wild relatives. Namely, the dangers of the 

transfer of genes responsible for HR and the ecological consequences of this must be evalu-

ated individually for each specific case (herbicide, plant, wild relatives, etc.), regardless of the 
fact whether the crop resistance has been achieved through conventional breeding methods 

or genetic engineering. Crucial steps in the rational assessment of ecological consequences of 

this phenomenon include the understanding of the following: (1) gene transfer from crops 

to wild relatives; (2) gene expression and inheritance in hybrids, which have resulted from 
the gene transfer from crops to wild relatives; (3) changes in fitness in wild relatives caused 
by the introduction of genes; and (4) the dynamics of the gene transfer from crops to wild 

Gene Flow from Herbicide-Resistant Crops to Wild Relatives
http://dx.doi.org/10.5772/67645

47



 populations. The invasibility of crop-weed hybrids, which have originated as a result of gene 

transfer from HR crops to wild relatives, is dependent on all of these aspects.

Pollen flow from crop to the relative seems as relatively simply process, but gene introgres-

sion is complex, occurring in several steps which mean several hybrid generations, which can 

exchange genes among themselves and coexist many years simultaneously (Figure 3). The 

likelihood of gene transfer from crops to their wild relatives depends on the genetic charac-

teristics of crops and their wild relatives, as well as the homology of their genomes [62]. In the 

cases where the degree of the homology between the crops and their wild relatives is higher, 

as in the case of Beta vulgaris × B. maritima or Raphanus sativus × R. raphanistrum, the likelihood 

that the introduction of transferred genes will occur is higher. Additionally, the introduction 

of genes is dependent on the part of the genome, in which the gene is positioned. Some authors 

[30] found a possibility of gene introduction from 13 most important crops into wild relatives 

and determined that 12 of the studied crops can hybridize with their wild relatives. Of the 12 
listed crops, cases of introduction have been confirmed for 7, while in the remaining five there 
is a possibility that the introduction will occur. Also, based on the potential danger of trans-

genic introgression into their wild relatives, some authors [76] have grouped GM crops based 
on their risk levels into four categories: high, middle, low, and very low (Table 3). A similar 

categorization pertaining to the risk assessment was also applied by other authors [84, 85].

In order to prevent or reduce the unwanted transfer of pollen from HR crops onto their rela-

tives, different barriers can be used, although there is no absolute guarantee that the gene 
transfer can be prevented in this manner. The most often used barriers are isolation in space 

or time, protective vegetation barriers made up of one or more different species, male sterility 
as a genetic mechanism for the prevention of gene transfer, etc.

Spatial (distance) isolation means increasing the distance between fields sown by HR crops 
and populations of its relatives. Also, spatial isolation is applied as preventive measure in 

production of GM and non-GM crops in coexistence with the aim to avoid contamination 
products of non-GM crops. It has been known that by increasing the distance between crops 

Figure 3. Gene flow and its potential resources, modified from reference [76].
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and its relatives, the dispersal of pollen is reduced, i.e., the level of hybridization is reduced. 
Thus, the frequency of pollen originating from a transgene oilseed rape decrease from 1.5 

to 0.00033%, as distance increase from 1 to 47 m [87]. Also, frequency of crop-wild relative 

hybrid decreased from 0.156 to 0.0038% with increase in distance from pollen source between 

200 and 400 m [88]. Distances between pollen source and gene occurrence can be very valu-

able in the planning of spatial isolation of HR varieties, in order to prevent the gene flow to 
their relatives. This distance depends on many factors such as the presence of local barri-

ers, the local climate, and the topography of the area. In the case of sunflower, the isolation 
distance should be greater than 1000 m [89]. Also, maize pollen can be detected at distances 
greater than 800 m from the pollen source [90]. But, pollen of maize has short flight range 
[91], after which it settles to the ground rapidly [92] due to relatively heavy and large grains. 

Due to that cross-fertilization mainly occurs within 50 m of the pollen source [93]. Therefore, 

measure for keeping seed purity of non-GM maize, which coexists with GM maize, suggests 
isolation distance between 10 and 50 m to achieve EU admissible threshold of 0.9% in the 

harvest [37, 93, 94].

Temporal isolation is a measure, which should prevent overlapping flowering times of crop and 
wild relatives with the aim to avoid gene flow. About 5 days lag in flowering of imazamox-
resistant in comparison with tribenuron-methyl resistant sunflower resulted in lack of gene 
flow to weedy sunflower probably due to the short period of overlapping flowering time 
between the resistant hybrid and the weedy sunflower [42]. Temporal isolation is very suitable 

to prevent non-GM crop contamination with GM when grow in coexistence. Study of maize 

Crop Risk level Wild relatives for which the introgression of gene has been confirmed

Johnson grass High Sorghum halepense, S. almum, S. propinquum

Oilseed rape Medium Brassica rapa, B. juncea, B. oleraceae, B. campestris

Sinapis arvensis

Raphanus raphanistrum

Sugar-beet Medium Beta vulgaris ssp. vulgaris*

Beta vulgaris ssp. maritima

Wheat Medium Triticum turgidum
Aegilops sp. (Aegilops cylindrica)

Sunflower Medium Helianthus sp. (H. annuus* and H. petiolaris)

Alfalfa Medium Medicago sativa*

Rice Low Oryza rufipogon

Maize Low Zea mexicana

Potato Very low

Soybean Very low

Barley Very low

Common Bean Very low

*Weedy crop forms.

Table 3. The risk level of the introgression of genes from crops to their wild relatives ([86] made based on data reviewed 

by [76]).
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pollen mediated gene flow in Italy and showed that if time of flowering differs from 4 to 5 days 
the cross-pollination is reduced by 25%, while difference of 6 days provides 50% reduction [95]. 

Also, temporal separation in sowing days improves the coexistence of maize [96]. Contrary to 

that, temporal isolation based on selection of hybrid varieties in which flowering noncoincide 
achieves the same results although sowing date was the same [97]. Temporal separation and 

isolation distance together can be a good solution to minimize unwanted gene flow.

Protective vegetation barriers, made up of one or more different species, can prevent the gene 
flow by physically stopping pollen in the case of wind pollination. The sowing of conven-

tional crops of the same species, also known as pollen traps, in the vicinity of HR hybrids is an 

efficient measure, as their role is to attract pollinating insects in order to leave pollen on these 
pollen traps. This type of barrier can be much more effective than isolation distance. Namely, 
the sowing of pollen traps between GM and conventional crops is the most efficient measure 
for the prevention of gene flow [98]. Also, gene flow through pollen from the HR oilseed rape 
decreases rapidly with the increase of pollen source distance, with the added necessity of a 

protective vegetation barrier or pollen traps [99]. Some authors [95] studied pollen-mediated 

gene flow between GM and non-GM maize and concluded that effect of two maize rows 
surrounding the recipient field in reduction of cross-fertilization is the same like effect of 12 
maize rows surrounding the pollen donor.

The use of biological barriers achieves the best results in the prevention of gene flow, and so 
far the barriers based on cytoplasmatic male sterility, maternal inheritance, and seed sterility 

have mostly been used. Cytoplasmic male sterility is based on the inability of plants to pro-

duce viable pollen. This type of barrier is suitable option to reduce gene flow in sunflower and 
maize [43, 66, 100]. Maternal inheritance is successfully used in the prevention of gene flow 
across the pollen, in the case of several species, including tobacco and tomato [101, 102]. The 

control of embryo and seed fertility is known as GURT (Gene Use Restriction Technology), 
i.e., terminator technology, which is considered to be a better control measure, in comparison 
with sterile pollen production. However, this strategy is seen as the most controversial control 

measure for limiting genes flow. Additionally, strategies, which include apomixis (vegetative 
reproduction and asexual seed formation), cleistogamy (self-fertilization without the opening 
of flowers), genome incompatibility, chemical induction/deletion, etc., are also used in limiting 
the gene flow [103]. None of these strategies can be applied in all crops, therefore using com-

binations of different approaches for the prevention of unwanted gene flow is recommended.

All mentioned measures for prevention and reduction of gene flow are important separately, 
but their integration and combination with stewardship production system could be the best 

solution.

5. Gene flow from herbicide-resistance sunflower to wild or weedy 
sunflower

Options for chemical control of broadleaf weed species, especially weeds belonging to Asteraceae 

family, without injuring the crop are quite limited in sunflower compared to most other row 
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crops [104]. Due to that, sunflower hybrids resistant to ALS-inhibiting herbicides, including 
imidazolinone (IMI) and sulfonylurea (SU), was developed by conventional breeding methods, 
with the aim to improve weed control. The Clearfield_system [16] and the Clearfield-Plus_sys-

tem [105] have been developed with the aim to grow sunflower hybrids resistant to IMI herbi-
cides. For development of those hybrids were used for subsequent crossings between cultivated 
sunflower and wild resistant sunflower [106] or seed mutagenesis [105]. Also, ExpresSun sys-

tem has been developed as result of mutagenesis breeding [107] with the aim to grow sunflower 
hybrids resistant to tribenuron-methyl [17].

The breeding of sunflower hybrids resistant to herbicides belonging to IMI and SU groups 
in Serbia was started in 2000, and since 2003, this technology has been applied in the pro-

duction. As a donor of imazamox-resistance gene, the wild sunflower originating from the 
USA was used, in which the resistance to herbicides of the imidazolinone group was devel-
oped following a seven-year consecutive application of imazethapyr [106]. The produced 

hybrid has shown a high level of resistance toward imazethapyr [108] and imazamox [109], 

not only regarding different vegetative parameters, but also considering the activity of ALS 
enzymes in vivo, and in vitro. Source populations SURES-1 and SURES-2 were used as a 

source of genes responsible for the resistance to tribenuron-methyl [1, 110], producing also 

a hybrid with a highly distinguished resistance for this herbicide [109, 111]. The introduc-

tion of such crops in the production in Serbian fields has enabled a more efficient control 
of economic harmful weed species, such as Sorghum halepense, A. trifida, A. artemisiifolia, 

C. arvense, X. strumarium and weedy forms of Helianthus annuus, their cultivation is also 

linked with a very high risk of herbicide-resistance gene flow, from these hybrids onto the 
weedy form of H. annuus. Although the presence of four species from the genus Helianthus 

(H. annuus, Helianthus tuberosus, Helianthus decapetalus, Helianthus scaberimus) has been con-

firmed for Serbia, in both crop fields and nonarable lands [112], weedy populations of H. 

annuus occupy the biggest areas, which according to some estimates reach up to 1000 ha in 

Southern Srem and around 7–8000 ha in Southern Banat [113]. The origin of these popu-

lations is not known, but it is possible to determine. For example, origin of French and 
Spanish weedy populations was determined based on molecular analysis, which has shown 

that these populations originated from the unintentional introduction of crop-wild hybrids 

through contaminated seed lots [114]. Difficult eradication of weedy populations due to a 
high population variability [113, 115, 116] and pronounced invasibility caused by strong 

vegetative and generative potential [117, 118] presents an additional problem. Besides a 

reduced sensitivity of this species to nicosulfuron, which is often used as a weed control 

measure in maize fields where weedy sunflower is present in high densities, has also been 
detected [119, 120]. Therefore, even though the research into the transfer of HR genes from 

HR sunflower hybrids to weedy sunflower is in initial stages in Serbia [42, 121], there is high 

potential for its risk.

The main concern associated with cultivation of HR sunflower is potential gene flow from 
crop to weedy or wild relatives. Although wild sunflower populations are self-incompatible 
[122], new crop sunflower varieties are about 65% autogamous [123] and weedy population 

as a result of their hybridization are self-incompatible. Therefore, there is great potential for 
pollen-mediated gene flow. For example, seed-mediated gene flow from cultivated sunflowers 
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to wild sunflowers may be common [124]. Also, it has been known that there are inter- and 

intraspecific hybridization between H. annuus and its close relatives including its related spe-

cies [41, 64, 74, 125] or its volunteer plants [65, 69]. In case of gene flow between cultivated 
sunflower and Helianthus petiolaris, the proportion of crop-weed hybrids in the F1 generation 
varies between 0.3 and 0.5%, depending on flowering period and the presence of common pol-
linators [68], while in case of gene flow between cultivated and wild sunflower, it was reached 
as high as 33% [69].

Gene flow from sunflower crops onto their wild relatives mediated by pollen is dependent 
on different factors. The overlap of flowering periods of cultivated sunflower and its wild 
relatives, the pollinators which they share, self-incompatibility of the wild species, diploidy, 

and high levels of cross-fertilization are all factors which contribute to the spontaneous 
hybridization [66]. However, the hybridization between the sunflower and its relatives can 
be absent due to the mismatch of the flowering periods, incompatibility, physical distance, 
differences in the genetic structure between the species and interspecific competition of pollen 
[89, 125]. Many studies [42, 70, 121] confirmed that the pollen transfer from the resistant crops 
to their relatives primarily depends on their distance to the pollen source and the plot size. 
Consequently, some authors [64] have confirmed, when studying gene flow from sunflower 
imidazolinones-resistant hybrids to their wild relatives, that the HR gene was transported 
to a distance greater than 30 m from the pollen source, while the percentage of the surviv-

ing offspring of wild relatives was reduced with the increase in the distance from the HR 
hybrid. Also, it has been confirmed that the gene flow from the crop sunflower to its wild 
form is reduced with an increase in their mutual distance, with it being 27% at a 3 m distance. 

However, gene flow has also been confirmed at a distance of over 1000 m from the pollen 
sources [89]. Additionally, it was determined that 42% of the wild offspring sunflower at a 3 
m distance from the crop sunflower represented its hybrids, while at a distance of 200 m, this 
percentage was 10%, and 4% at a distance of 400 m [43]. Several authors [42, 45, 64] indicate 

that the wind direction affects the gene flow, which is ascribed to its influence on the flight 
of bees.

The main consequence of gene flow between crop and their wild relatives is the increas-

ing of wild relative fitness as a consequence of introgressed genes, which can lead to the 
development of invasive weeds. Some studies confirmed fitness increase of hybrids between 
sunflower crop and their relatives [47], while the other [77] confirmed hybrids in the first 
generation after crossing had lower fitness than wild parent in natural habitats, but in the 
following generations, fitness of hybrid was recovered. Also, hybrids between crop and wild 
populations of sunflower express lower fertility than their wild counterparts [75]. Although, 

crop hybridization can reduce dormancy in a wild species, hybridization IMI-resistant hybrid 
and wild sunflower in Argentina did not alter seed dormancy [41], while F1 germination was 
greater in wild sunflower populations [126].

Strategies for prevention or reduction of gene flow between crop sunflower and its relatives 
can be developed based on understanding seed and pollen dispersal and influence of dif-
ferent factors on that processes. The biological barriers based on cytoplasmic male sterility, 

which disable of plants to produce viable pollen, could be good option to reduce gene flow 
in sunflower.
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