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Abstract

Endothelial activity reflects the balance of endogenous factors regulating vasoconstric-
tion and vasodilation. Among these factors, nitric oxide (NO) is the most important 
contributor to the acute regulation of vascular tone. Altered nitric oxide synthesis by 
the vascular endothelium plays several important roles in the pathogenesis of neona-
tal disease through its effects on vascular homeostasis. However, the role of NO in the 
pathogenesis of perinatal brain injury has not been fully investigated. The present chap-
ter explores how NO synthesis is regulated under physiological and pathological condi-
tions, the impact of acute and chronic hypoxia on NO synthase activity in the vascular 
endothelium, and the role of perinatal endothelial dysfunction in the pathogenesis of 
neurodevelopmental disorders later in life.

Keywords: endothelial dysfunction, eNOS, perinatal hypoxia, neuronal injury, 
neurodevelopmental disorders

1. Introduction

Endothelial function and the associated production of nitric oxide (NO) play a key role in the 
pathogenesis of diseases involving the disturbance of vascular homeostasis [1]. Enzymatic 
generation of NO in mammalian systems is accomplished by the oxidation of l‐arginine to 
l‐citrulline with the participation of NADPH as a cofactor. Thus, NO is produced by NO 
synthase isoforms including endothelial NO synthase (eNOS) and neuronal NO synthase 
(nNOS), with eNOS being the dominant isoform in the vasculature under physiological con-
ditions [2]. eNOS, also known as nitric oxide synthase 3 (NOS3), participates in the regulation 
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of vascular tone and has a wide range of actions that control cerebral blood flow and metabo-
lism. In contrast, the main role of nNOS is the production of NO for retrograde signaling 
across neuronal synapses.

Altered NO production by the vascular endothelium contributes to the pathogenesis of 
neonatal disease and may influence developmental growth [3]. The actions of eNOS in 
endothelial dysfunction lead to vascular and metabolic disorders and are also implicated 
in hypoxic‐ischemic brain injury [4]. Studies have shown that hypoxic brain injury is charac-
terized by changes in vascular growth and endothelial dysfunction [5–8]. Despite the wide-
spread confirmation a significant role for NO in physiological and pathological vascular 
homeostasis, the role of NO in the pathogenesis of perinatal brain injury has not been fully 
investigated. Specifically, the impact of chronic hypoxia on NO synthase isoenzymes in the 
neonatal brain is unknown. Therefore, the goal of this chapter is to present the results of 
recent investigations of the pathological role of eNOS in endothelial dysfunction in preterm 
infants with hypoxic‐ischemic encephalopathy (HIE) and in early‐age neurodevelopmental 
disorders.

2. Specification and function of vascular endothelium  
in fetoplacental circulation

The formation of the mammalian vasculature involves many interdependent processes, 
including the maturation of multiple cell types within tissue compartments, pulsatile blood 
flow, blood pressure, the activity of smooth muscle cells in vessel walls, and the transmigra-
tion of immune cells. Scientific investigations of endothelial remodeling have confirmed its 
relevance to vascular barrier function, inflammation, and vascular disease [9].

During embryonic development, the first endothelial cells are derived from the extraembry-
onic mesoderm and appear around embryonic day 7. The placental barrier to the maternal 
blood is gradually breached between 8 and 12 weeks of gestation owing to invasion of the 
uteroplacental spiral arteries of the placental bed by the extravillous trophoblast. Accordingly, 
placental oxygen tension rises and leads to a phase of branching angiogenesis that lasts 24 
weeks [10]. The fetoplacental endothelium is continuous with the fetal circulation, such that 
its function and potential dysfunction have a profound impact on fetal development [11]. To 
this end, successful pregnancies are highly dependent on effective vasculogenesis.

The regulatory sites and mechanisms responsible for endothelial function in the uteropla-
cental and fetal circulation remain unclear; however, it is obvious that endothelial activity 
is regulated through the balanced production and action of local endogenous constricting 
and dilating factors. Among vasodilatory factors, NO appears to be a chief regulator of acute 
vascular tone. NO generated by NO synthase expressed in the uterine artery endothelium is 
a diffusible gas molecule that produces smooth muscle relaxation and therefore vasodilation 
in a cGMP‐dependent manner [12]. In general, NO is essential for the formation of endo-
thelial function. In pregnancy, NO promotes endovascular invasion by the cytotrophoblast; 
interstitial trophoblasts produce NO as they invade the maternal spiral arteries in the uterine 
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wall in order to maintain a low‐resistance and high‐caliber uteroplacental unit. If this process 
fails, endothelial dysfunction associated with increased vascular resistance and reduced feto-
placental blood flow results in placental ischemia, pregnancy complications, and restrictive 
effects on fetal growth [13, 14]. Moreover, placental hypoperfusion and ischemia lead to the 
release of antiangiogenic factors that cause oxidative stress and inflammation, further contrib-
uting to endothelial dysfunction.

eNOS is well established as a primary physiological source of NO. eNOS affects vascular 
tone, reduces uteroplacental resistance, regulates uterine and fetoplacental blood flow, and 
is involved in uterine quiescence prior to parturition in normal pregnancy. Several studies 
have confirmed that eNOS activity is increased in the uterine artery during pregnancy in 
several species. Yet, investigations of the role of NO modulators in normal and abnormal 
pregnancies have shown conflicting results. The concentration of NO in the fetoplacental 
system depends on many factors including l‐arginine availability, the activity levels of NO 
synthase isoforms, the presence of endogenous NO synthase inhibitors, and species‐depen-
dent variation. While some studies have reported lower eNOS expression in preeclamptic 
syncytiotrophoblasts than in normal syncytiotrophoblasts [15, 16], a series of clinical studies 
revealed that increased NO concentration primarily caused altered fetoplacental circulation, 
endothelial dysfunction, and reduced flow‐mediated vasodilatation in different pregnancy 
pathologies [17–19]. Moreover, these studies identified increased endothelial permeability 
and decreased eNOS expression in the peripheral vasculature under pathological conditions 
[17]. Norris et al. reported increased NO production in the uteroplacental and fetoplacental 
circulation during preeclampsia compared to normotensive pregnancies and reasoned that 
this increase was a compensatory mechanism to offset the pathological effects of preeclampsia 
[18]. In support of this hypothesis, uterine arteries of pregnant rats exposed to plasma from 
women with preeclampsia were found to have increased eNOS expression and decreased 
inducible nitric oxide synthase (iNOS) expression [19]. In contrast, Leiva et al. purported that 
the bioavailability of NO in the fetoplacental system is decreased in pregnancy pathologies 
such as preeclampsia, gestational diabetes mellitus, and maternal supraphysiological hyper-
cholesterolemia [20]; the authors hypothesized that altered NO synthesis and bioavailability 
in these cases are owing to the transcriptional and posttranslational modulation of NO syn-
thases during hypoxia and oxidative stress.

One controversial question regards the putative effect of eNOS depression on fetoplacental 
blood flow in acute and chronic pathological processes. This topic was investigated in a series 
of experimental animal models; systemic NO synthase inhibitor administration was found 
to decrease uteroplacental blood flow and increase peripheral vascular resistance in several 
species [21]. Rosenfeld and Roy argued that the uteroplacental vasculature is less sensitive 
to prolonged systemic NO synthase inhibition than the peripheral circulation, which might 
be explained by the activation of compensatory mechanisms such as those reported for NO 
synthase in ovine uterine artery smooth muscle [22].

Several studies have investigated eNOS gene polymorphisms and their effects in different 
pregnancy pathologies. Whereas chronic hypoxia selectively augments the pregnancy‐associ-
ated upregulation of eNOS gene expression and endothelium‐dependent relaxation of the 
uterine artery [23], women with eNOS gene mutations were found to be at risk for  developing 
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preeclampsia in a study of Egyptian families [24]. However, other studies do not support a 
major role for eNOS gene variants in preeclampsia [25, 26]. Comparing the results of studies 
conducted worldwide, Ma et al. concluded that an eNOS gene polymorphism was related 
to pregnancy‐induced hypertension risk in Asian populations but not in European and 
American populations [27].

In summary, altered functionality of the fetal endothelium likely contributes to the forma-
tion of extrauterine pathologies from the neonatal period onward. However, the mechanisms 
underlying fetoplacental vascular development and pathologies thereof remain incompletely 
defined, such that further studies are necessary to understand the exact role of eNOS in preg-
nancy pathologies and fetal growth problems.

3. The role of endothelial nitric oxide synthase activity  
in the pathophysiology of perinatal brain injury

Perinatal hypoxic‐ischemic brain injury is a major cause of neonatal death and long‐term dis-
ability. Approximately 15–25% of newborns with hypoxic‐ischemic encephalopathy (HIE) die 
during the postnatal period, and surviving infants are at risk for the development of severe 
and permanent neuropsychological sequelae such as cerebral palsy, seizures, visual impair-
ment, mental retardation, and learning and cognitive impairments [28–30]. Decreased cere-
bral perfusion, hypoxia, hypoglycemia, and severe anemia can cause critical energy shortages 
in newborn infants, and accordingly severe hypoxia/ischemia can also affect other tissues of 
the body [31]. Disorders affecting the peripheral organs are often caused by hemodynamic 
disturbances resulting from the centralization of the bloodstream and/or poor circulation to 
the internal organs [32].

In the early days of extrauterine life, the vascular endothelium is exposed to high concentra-
tions of inflammatory stimuli and can become dysfunctional if exposed to a hypoxic envi-
ronment [33]. Cerebral ischemia induces an inflammatory response in the brain parenchyma 
and systemic circulation [34, 35], resulting in the augmented secretion of proinflammatory 
cytokines and chemotactic molecules by the vascular endothelium in newborn infants with 
hypoxic‐ischemic injury. Hence, cytokines are important upstream effector of brain injury 
after ischemia [36]. Vasoregulatory mechanisms play essential roles in brain injury and tissue 
reperfusion in critically ill children; endothelial dysfunction results in an imbalance between 
vasoconstriction and vasodilatation, which causes tissue reperfusion, cytotoxic edema, and 
brain injury [37]. A previous study determined that hypoxic inflammation was regulated via 
bioactive mediators synthesized by endothelium, whereas NO and the sources of its synthesis 
play a special role in the pathophysiology of leukocyte‐endothelial interactions [38]. To this 
end, studies show that growth‐retarded fetuses and infants with severe and long‐lasting neu-
ronal injuries exhibit decreased vascular growth and endothelial dysfunction [39].

Of note, brain injury after hypoxic‐ischemic injury progresses over many days even after 
reperfusion has been achieved. For example, oxygenated blood flow is restored to ischemic 
brain areas after severe perinatal asphyxia; however, while reperfusion temporarily  corrects 
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energy failure, excitotoxicity, and the generation of reactive oxygen species during the isch-
emic period are together responsible for a significant degree of brain damage. Brain damage 
after hypoxia‐ischemia includes the primary insult and secondary damage such as delayed 
neuronal death related to cerebral edema [40]. Primary perinatal insults resulting from 
hypoxia‐ischemia are associated with the failure of ATPase‐dependent ions channels, which 
can disrupt synaptic function and lead to the accumulation of extracellular glutamate [41]. The 
increased availability of reactive oxygen metabolites after reperfusion is also directly involved 
in augmented glutamate release after injury. Increase in extracellular glutamate concentra-
tions and the activation of glutamate receptors lead to excitotoxicity [42], which involves 
increased intracellular flux of calcium through open NMDA receptor channels and the release 
of calcium from intracellular stores. Elevations in intracellular calcium activate lipases, pro-
teases, and endonucleases that lead to cellular damage and death [43]. Moreover, the post-
hypoxic reperfusion process results in oxidative stress; energy failure activates nNOS and 
increases NO production, increasing the likelihood of its reaction with superoxide anion to 
form the powerful oxidant peroxynitrite [44]. Together, cellular energy failure, acidosis, glu-
tamate excitotoxicity, and oxidative stress lead to cytotoxic edema and neuronal death after 
hypoxia‐ischemia injury [45]. Additionally, there is a continuum of necrosis and apoptosis 
after such injury: often, early (primary) cell death appears necrotic, whereas later (secondary) 
cell death appears apoptotic. Therefore, while severe insult results in cell necrosis, more mod-
erate asphyxia can cause delayed neuronal death through apoptosis [46]. Secondary apoptosis 
involves multiple pathophysiological processes such as excitatory neurotransmission, altered 
growth factor production, and changes in protein synthesis [47].

NO serves diverse functions in the perinatal brain, including neuronal differentiation and 
survival and synaptic formation and plasticity [48]. NO also affects these processes in patho-
logical contexts by (in part) mediating neuronal death and neurodegeneration [49]. Previous 
studies in growth‐restricted infants demonstrated that elevated NO production was associated 
with decreased endogenous antioxidant activity, increased lipid peroxidation, and impaired 
neuronal function [50]. NO supplementation was also found to increase uteroplacental cir-
culation and decrease biomarkers of neuronal injury in the cord blood of infants diagnosed 
with intrauterine growth retardation [51, 52]. Therefore, it is difficult to interpret the role of 
NO in the pathogenesis of perinatal neuronal injury: is the concentration of NO increased as 
a defensive mechanism or does it point to a more profound impairment? Clinical and experi-
mental investigations describing the roles of different NO sources in the pathogenesis of brain 
injury have provided insight on this problem. In the prospective clinical trial conducted by 
the Azerbaijan Medical University Neonatology group (ACTRN12612000342819), NO, eNOS, 
and endotelin‐1 were quantified in 240 preterm infants with high risk for perinatal HIE; the 
results indicated that while eNOS expression was reduced, NO concentrations were increased 
in accordance with the severity of HIE (Figure 1).

This result provided foundation evidence for nonendothelial sources of NO synthesis in tissue 
hypoperfusion and hypoxia. Thereafter, the balance of NO/eNOS and its effect on neuronal 
injury in preterm infants was investigated. An important finding was that infants with severe 
HIE had higher NO/eNOS ratios compared with mild/moderate HIE and control infants, sug-
gesting a relationship between nonendothelial NO production and neuronal injury (Figure 2).
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Figure 1. Mean total eNOS and NO values in preterm infants with HIE. Error bars indicate the standard error of the 
mean. Black bars show results from days 1 to 3 and grey bars show results from days 5 to 7. *p < 0.05 compared with the 
control group.

Figure 2. NO/eNOS ratios in preterm infants with HIE. *p < 0.05 compared with the control group.
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Significantly higher NO/eNOS ratios in preterm infants with severe HIE suggest that the activa-
tion of neuronal and inducible NO synthases is related to long‐term and severe intrauterine and 
birth distress in infants. Moreover, increased NO in tandem with eNOS activation in infants 
with low risk for perinatal HIE might represent a compensatory or defensive strategy in the 
preterm brain. It should be noted that increased NO generation is not necessarily solely derived 
from areas of neuronal injury in HIE. Under hypoxic conditions, NO is also produced by the 
activated endothelium in all injured vasculature. Therefore, it might be difficult to accept the 
idea that NO/eNOS balance is a good predictor of neuronal injury. Yet, consistent with our pre-
vious investigation [53], we observed a statistically significant positive correlation between neu-
ron‐specific enolase (NSE) and NO/eNOS ratio, which suggests that decreased synthesis of NO 
by endothelial sources is related to more severe hypoxic changes and neuronal injury (Figure 3).

It was also found that growth‐restricted infants are subject to significant endothelial dysfunc-
tion and eNOS depression, implicating NO in the pathogenesis of intrauterine hypoxic injury 
[53]. Together, these results provide a strong support for NO/eNOS balance as a marker of 
endothelial inflammation under hypoxic conditions. Previous experimental and clinical inves-
tigations have demonstrated that eNOS is responsible for preserving the functional integrity 
of the neurovascular unit [54, 55] and may have antiinflammatory effects in aging and other 
pathological contexts [56, 57].

The follow‐up of newborn infants in the aforementioned study identified significant relation-
ships between peripheral endothelial vasoregulatory markers in the perinatal period and the 
onset of neurodevelopmental disorders at an early age. It was found that, in the presence of high 
concentrations of NO, early eNOS activity was insufficient in infants diagnosed with cerebral 
palsy later in life compared to neonates who did not show neurodevelopmental delays associated 
with HIE (Figure 4). These findings suggest that depressed eNOS activity and increased non-
endothelial NO synthesis play important roles in the formation of developmental impairments.

Figure 3. Spearman rank‐order correlation between NO/eNOS ratio and NSE in preterm infants with HIE (r = 0.67; 
p = 0.001).
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Figure 4. Peripheral vasoregulatory markers in the early neonatal period in preterm infants with neurodevelopmental 
disorders (NDs). Error bars indicate the standard error of the mean. Black bars show results from days 1 to 3 and grey 
bars show results from days 5 to 7. Control 1: data from infants with HIE who did not develop a ND; Control 2: data from 
healthy infants. *p < 0.05 compared with Control 1; ^p < 0.05 compared with Control 2.
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As shown in Figure 4, cases with substantial eNOS and endothelin‐1 depression during the 
perinatal period exhibited more profound neurodevelopmental delay and cerebral palsy. 
In contrast, when eNOS was depressed but vasoconstriction was maintained (i.e., increased 
endothelin‐1 expression), functional impairments were more moderate, including mild motor 
and cognitive deviations and minimal brain dysfunction later in life. Therefore, insufficient 
eNOS activation in combination with the absence of a compensatory mechanism (e.g., periph-
eral vasospasm and/or the centralization of circulation in vital organs during the early stages 
of pathology) might ultimately drive the more serious and irreversible injury of brain tissue.

The abovementioned findings are consistent with those of several studies of different NO 
synthases in the pathogenesis of brain injury. In one study, chronic hypoxia decreased eNOS 
expression in the hippocampus and increased nNOS expression in neuronal and glial cells of 
the thalamus [5]. Moreover, in addition to elevated glutamate synthesis, long‐term and severe 
hypoxemic processes have been reported to alter NO synthase enzyme activity in a manner 
related to DNA structure, resulting in iNOS and nNOS activation [58, 59]. Wei et al. determined 
that endothelial NO production by eNOS can decrease ischemic injury by inducing vasodilation, 
while neuronal NO production can exacerbate neuronal injury [6]. Therefore, several researchers 
have suggested the potential neuroprotective utility of nNOS inhibitors after brain injury [7, 8].

Many specific biochemical markers of neuronal injury are being investigated as indicators 
of brain damage in neonates [60]. Some neuron‐specific proteins and cytokines show prom-

ise for identifying infants who are at risk for perinatal encephalopathy, although the exact 
value of these markers for predicting severe brain damage and neurodevelopmental disor-
ders remains controversial [61, 62]. The early assessment of acute cerebral lesions in preterm 
infants may provide useful information regarding appropriate therapeutic intervention strat-
egies and allow the prevention of future neurological complications. One possibility is that 
the severity of brain injury in newborns can be assessed by measuring the activity of NO syn-
thases. Future studies are required to validate this hypothesis and better elucidate the clinical 
significance of NO synthesis in perinatal injury.

4. Conclusion

Autoregulation in the neonatal brain is tightly coupled with neuronal and endothelial regulatory 
mechanisms. Clinical and experimental investigations confirm that neuronal injury is in part 
mediated by the activation of endothelial and nonendothelial sources of NO synthesis. eNOS 
activity plays a fundamental role in the autoregulation of vascular tone in the perinatal period 
and is additionally involved in the formation of hypoxic brain damage during this period; how-

ever, the various roles of NO in neuroprotection and metabolism in the brain complicate our 
exact understanding of the relationship between NO and brain injury. Recent investigations 
suggest that eNOS plays a protective role in perinatal brain injury whereas other endogenous 
sources of NO (e.g., iNOS and nNOS) may participate in the pathogenesis of perinatal patholo-
gies and neurodevelopmental disorders. Future studies should further delineate the molecular 
pathways responsible for the roles of NO synthase isoforms in brain injury and neuroprotection. 
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Finally, the ratio of NO/eNOS expression may indicate the severity of neuronal injury and have 
clinical utility for predicting long‐term outcomes in infants after perinatal brain injury.
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