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Abstract

Urinary tract infections (UTIs) are considered to be the most frequent bacterial infections. 
Escherichia coli is the major factor of community-acquired UTI (80–90%) and a large part of 
nosocomial UTI (30%), including cystitis, pyelonephritis, prostatitis, and asymptomatic 
bacteriuria. Uropathogenic E. coli (UPEC) shows a variety of virulence factors that allow 
their transition from the intestinal tract to the urinary tract and causing infection. The 
virulence factors responsible for pathogenesis outside the gastrointestinal tract belong to 
various functional groups. Antimicrobial resistance among E. coli causing UTIs is increas-
ing in many countries around the world. This paper presents key virulence factors of 
UPEC such as adhesins, toxins, iron acquisition systems, and biofilm formation by UPEC, 
which are major problems in patients with long-term catheterization. The resistance of 
UPEC to antibiotics and innovative strategies of treatment and control of UPEC includ-
ing drug therapy, preventive vaccines, probiotics, cranberry as source of antimicrobial 
metabolites, bacteriophages, new therapeutic antibiofilm treatment such as engineered 
phages, nanoparticles, and plant-derived antibacterial agents are also presented.

Keywords: UPEC, UTI, virulence factors, biofilm, antimicrobial resistance, treatment of 
UPEC, prevention

1. Introduction

Urinary tract infections (UTIs) are considered the most frequent bacterial infections in humans 

usually caused by Enterobacteriaceae. Among them, Escherichia coli is a predominant etiological 

factor of UTI [1]. The pathogenic E. coli strains belong to different pathotypes including enteric 
E. coli and extraintestinal E. coli (ExPEC). Seven major pathotypes of enteric E. coli cause mainly 
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gastroenteritis but sometimes are responsible for diseases outside the intestinal tract [2]. Three 

pathotypes of the ExPEC are able to exist in the gut but do not cause diseases in this place. 

Whereas, colonization by the ExPEC strains of other host niches including the central nervous 

system, blood, and the urinary tract leads to illness in human [3]. Among ExPEC, uropathogenic 

E. coli (UPEC) is the most frequently associated with human diseases. UPEC strains cause 80–90% 

of community-acquired UTIs and more than 30% of hospital-acquired UTIs [4]. Development 

of UTIs depends on anatomical factors of host, defense mechanisms, and virulence factors of 

infecting microorganism. Bacterial infections of the urinary tract are important problem, because 

about 60% of women in the United States will have at least one UTI during their life. About 8 mil-

lion physician visits per year are related to these often chronic infections, making UTIs a problem 

of economic and medical significance [5]. UPEC can colonize the bladder and cause cystitis or 

may ascend into the kidneys, causing pyelonephritis [3]. E. coli may also spread from the urinary 

tract to the bloodstream causing bacteremia in above 30% of cases and the potential sepsis [6]. 

The presence of high numbers of E. coli in the urine without the clinical symptoms is referred as 

asymptomatic bacteriuria (ABU) and such infection in healthy, nonpregnant women is generally 

not treated [7]. Infections of the urinary tract occur when E. coli enter through the urethra and 

effectively colonize the bladder. E. coli is the most common pathogen causing cystitis, pyelone-

phritis with the possibility of causing kidney damage and death. This microorganism can induce 

acute renal failure and in case of complications after renal transplantation, E. coli is the most 

common clinical isolate [8]. It is considered that human intestinal tract is a primary reservoir 

of UPEC strains, although in some cases, clonal group of UPEC strains can be transmitted by 
contaminated food [9]. Host inflammatory responses on the breach of the sterile urinary tract by 
UPEC consist of the production of cytokines and chemokines, neutrophil influx, the exfoliation 
of infected bladder epithelial cells, and the generation of reactive nitrogen and oxygen species 

[5]. Genomic differences among UPEC and other E. coli show evolutionary adaptations, which 

enable UPEC to colonize environmental niches within the urinary tract such as epithelia lining 

the lumenal walls of the urethra, bladder, renal pelvis, and collecting ducts of the kidneys [10].

UPEC strains have different virulence factors that enable the bacteria to adhere and colonize the 
uroepithelial cells and to establish the UTIs. UPEC harbor more genes encoding adhesins, iron 

acquisition systems, and toxins than K12 strains and commensal E. coli isolates. These virulence 

genes are often encoded on mobile genetic elements called pathogenicity islands [11, 12].

This paper describes key virulence factors of UPEC, the role of biofilm formation by UPEC in 
development of UTIs and in catheter-associated UTIs. The resistance to antibiotics and new 

therapeutic approaches of treatment and control of UPEC will be also discussed.

2. Virulence factors of UPEC

2.1. Adhesins

Adhesive proteins as the most important determinants of pathogenicity of UPEC strains 

are arguable [13], but based on many observations of ABU strains, it was found that these 

strains are nonadherent and nonhemolytic [14]. UPEC adhesins activate host signaling  
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pathways that promote bacterial invasion [15]. Bacterial adherence to urothelium is important 

in the development of UTI because it allows the bacteria to persist in the urinary tract against 

flushing by urine flow. Function of type 1 fimbriae as virulence factors in human pathology 
remains unclear because they are expressed in both commensal and pathogenic E. coli strains  

[16, 17]. The type 1 fimbriae are heteropolymeric surface organelles that consist of several sub-

units. These fimbriae bind E. coli cells to the urothelial mannosylated glycoproteins uroplakin 

by subunit FimH, which is located at the distal tip of the type 1 fimbriae. UPEC commonly 
expresses FimH that efficiently bind monomannose- and trimannose-containing glycopro-

tein receptors. Whereas, commensal E. coli strains usually bind to trimannose residues [18]. 

Binding of FimH to uroplakins that are expressed in the differentiated urothelium of the blad-

der and urethers causes adhesion and cellular invasion of E. coli and promotes formation of 

intracellular bacterial communities which leads to the acute stage of infection [19, 20]. FimH 
adhesin enables UPEC to escape before the immune response by internalization within uro-

thelial cells. Inside infected urothelial cells, E. coli is harbored within vesicles [21, 22]. Blocking 

of FimH adhesin with antibodies or inactivity of the fimH gene has a negative effect on the 
ability of UPEC to colonize the bladder epithelium [5]. fimH gene is the most commonly iden-

tified virulence gene in the isolates causing UTI [17].

About 80% of UPECs express P fimbriae that are frequently associated with acute pyelone-

phritis [23]. P fimbriae are encoded by papA-K gene operon which can be localized on one or 

more pathogenic-associated islands [24]. The P-fimbrial–tip adhesins (PapG adhesins) bind 
to Gal α (1–4) Gal in glycosphingolipids of the membrane of urothelial cells localized in the 

kidney. The PapG adhesins are encoded by four classes of papG genes but only two of them 

are associated with uropathogenicity. Class II adhesin genes are predominant among the iso-

lates from pyelonephritis and from renal transplant patients, while class III genes are found 

more frequently among cystitis isolates [25–27]. Attachment of P fimbriae to receptors leads 
to activation of the immune cell response and to the development of inflammation- and pain-
associated with UTIs. P fimbriae improve bacterial colonization of the tubular epithelium 
that can adversely affect renal filtration leading to total obstruction of the nephron and conse-

quently contributes to the full pathophysiology of pyelonephritis [14].

S fimbriae of E. coli bind to sialyl galactosides occurring in the receptors of erythrocytes and 

renal tubular epithelium cells, and are also involved in UTIs development. S fimbriae show 
binding to epithelial cells of lower urinary tract and kidney and may facilitate bacterial dis-

semination within host tissues [15, 28].

E. coli strains harboring operons coding fimbrial Dr and afimbrial Afa adhesins are also asso-

ciated with UTIs. Dr adhesins bind to decay-accelerating factor (DAF) which is widely distrib-

uted along the urinary tract and plays an important role in colonization of urinary tract by Dr 

adhesin-producing E. coli [29]. UPECs with Afa adhesins have a tropism to renal tissue and 

have the ability to induce chronic or recurrent infection [30]. The research recently conducted 

by Muenzner et al. [31] showed that uropathogenic E. coli strains, which express the Dra/AfaE 

adhesins, bind to CEACAMs (carcinoembryonic antigen-related cell adhesin molecules) pres-

ent on epithelial cells. The interaction of CEACAMs with Dra/AfaE adhesins causes increase 

of integrin activity, promote matrix adhesion, and suppress epithelial exfoliation, which pro-

motes host infection.
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Curli are highly adhesive extracellular amyloid fibers produced by UPEC and other 
Enterobacteriaceae [32]. The major subunit of curli is the CsgA [33]. Curli promote adherence to 

epithelial cells and resistance against the human antimicrobial peptide LL-37, and also cause 

induction of the proinflammatory cytokine IL-8. They exhibit exclusive role in promoting 
UPEC biofilms and represent one of the major biofilm components [34]. Curli are produced at 

limitation of nutrients and salts, at reduced oxygen tension and at temperature below 30°C. 

However, it is believed that many pathogenic bacteria and commensal strains can also express 

curli at 37°C during infection in humans [35]. Curli fimbriae interact with serum proteins and 
this might promote bacterial dissemination in host. UPEC strains-producing curli are more 

likely to cause urosepticaemia than strains which do not produce curli [36].

2.2. Toxins

Production of toxins by UPEC is an important virulence factor because they may induce an 

inflammatory response and lead to symptoms of urinary tract infections. The most impor-

tant virulence factor of UPEC is α-hemolysin (HlyA). This toxin is strongly proinflamma-

tory and leads to secretion of IL-6, IL-8, and chemotaxins that increase clinical severity in 

UTI patients [27, 37]. HlyA belongs to the family of RTX (repeats in toxin) [38]. HlyA is 

a lipoprotein of 110 kDa that forms pores in host cells, leading at high concentrations of 

HlyA to cell lysis, that enable UPEC to defeat mucosal barriers, damage effector immune 
cells, and gain access to nutrients and iron [39]. At sublytic concentrations, HlyA implicates 

the inhibition of chemotaxis and bacterial killing by phagocytes and induces apoptosis of 

neutrophils and renal cells, and also promotes the exfoliation of bladder epithelial cells [40]. 

Hilbert et al. [41] found that cytotoxicity, cytokine suppression, and HlyA production were 

tightly linked in clinical strains, and that E. coli utilizes HlyA to inhibit epithelial cytokine 

production in vitro. HlyA is responsible for about 50% of UTIs cases which leads to renal 

complications [27].

Cytotoxic necrotizing factor 1 (CNF1) is produced by approximately one third of UPEC 
[14]. The toxicity of this protein is linked with its ability to constitutive activation of the Rho 

GTPases that affect numerous cellular functions such as the formation of actin stress fibers 
and membrane ruffle formation. The result is the entry of E. coli into urothelial cells [42]. 

CNF1 promote apoptosis of bladder epithelial cells, probably stimulating their exfoliation 
and increasing bacterial entry to underlying tissue [43]. Besides, CNF1 inhibits activities of 
neutrophils, reducing phagocytosis and antimicrobial activity [44].

Secreted autotransporter toxin (Sat) is referred to as serine protease autotransporter and is 

associated with pyelonephritic E. coli strains. Sat is considered a virulence factor because 

it has toxic activity against cell lines of bladder or kidney origin. Sat induces elongation 

of cells and loosening of cellular junctions in cell lines of kidney. Furthermore, Sat trig-

gers vacuolation within the cytoplasm of both human bladder and kidney cell lines [45]. 

Another secreted toxin called Vat (vacuolating autotransporter toxin), often expressed by 

UPEC strains, shows the ability to induce a variety of cytopathic effects in target host cells, 
including swelling and vacuolation. However, the role of Vat in UTI pathogenesis has not 

been thoroughly studied [46].
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2.3. Iron acquisition systems

Limiting iron availability in the urinary tract is an important host defense against bacterial 

pathogens. For growth and metabolic activity, bacteria require a cytoplasmic iron concentra-

tion of about 10−6 M, while free iron concentrations in the mammalian host are extremely low 

(10−25 M in the blood and lower at other sites of organism) [47]. Consequently, pathogenic bac-

teria have to be equipped with systems for acquisition of iron from the host. Bacteria produce 

siderophores, low-molecular-weight molecules that bind and transport iron (Fe3+) through 

the bacterial membrane into cytosol where the iron is released. Iron bound siderophores are 

transported through (with) specific receptors at the outer membrane that facilitate carrying of 
siderophore-iron complexes through the bacterial membrane. Common siderophore system 

is enterobactin and its receptor FebA, which is expressed by both pathogenic and K12 E. coli 

strains, although in the context of infection and also other siderophore systems (salmochelin 

and IroN, aerobactin and IutA, and yersiniabactin and FyuA) have been observed in UPEC 
[3]. The occurrence of these systems in UPEC strains difficult to identify certain systems as 
virulence factors of UPEC [48].

3. Biofilm formation by UPEC

Currently biofilm is defined as a structured bacterial community embedded in a self-pro-

duced matrix and attached to an abiotic or living surface [49].

The biofilm matrix is composed with exopolysaccharides, which form a hydrated viscous layer 
and protects enclosed bacterial cells against dehydration, toxic molecules such as antibiotics, 

and from immune system of host [50]. Bacteria within the biofilm differ in gene expression 
resulting in a phenotype different from the planktonic bacteria. The slow growth of pathogens 
in biofilms is the major factor conferring resistance to antibiotics [51]. The ability of bacteria to 

form biofilm is associated with pathogenesis of numerous diseases. Biofilm formation results 
in chronic, persistent infections that are difficult to eradicate with antimicrobial treatment. It is 
believed that biofilms occur in up to 60% of human infections [52]. UPEC can persist within the 

bladder tissue in underlying epithelial cells or create biofilm-like pods in the recurrent cystitis 
[53]. Biofilm of E. coli may form on the urothelium and is involved in infections associated 

with biomaterials such as catheters or prostheses. UPEC strains are frequently isolated from 

biofilms formed in the lumen of catheters and showing resistance to antibiotic treatment [54]. 

Catheter-associated urinary tract infection (CAUTI) is the most common nosocomial infection, 

and approximately 80% of UTIs acquired in the hospital are associated with catheterization 

[55]. The insertion of indwelling catheter into the bladder increases the susceptibility of patients 

to UTIs, because these devices are the initiation site of infection by introducing opportunistic 

organisms into the urinary tract [56]. UPEC strains are capable of colonizing the intestinal and 

vaginal tracts, and these sites are potential reservoirs of microorganisms for UTIs and CAUTIs 

[57]. The urinary catheter connects the colonized perineum with the sterile bladder providing 

a route for bacterial entry along the catheter lumen or the external surface of the catheter [58]. 

CAUTI is related to the susceptibility of catheter material to microbial colonization. The initial 

Virulence Factors and Innovative Strategies for the Treatment and Control of Uropathogenic Escherichia coli
http://dx.doi.org/10.5772/67778

29



stage of biofilm formation on a urinary catheter includes deposition of conditioning film of host 
urinary components, such as proteins, electrolytes, and other organic molecules [59]. These 

molecules on the surface of the urinary catheter may change its surface and neutralize any 

antiadhesive properties [60]. Planktonic bacteria are attached to the surface of the urinary cath-

eter through hydrophobic and electrostatic interaction [61]. Development of biofilm on surface 
of the catheter occurs through the division of binding bacterial cells, appending additional 

planktonic bacteria and secretion of extracellular matrix. Detachment of single cell or group of 

bacterial cells from the biofilm may result in the passage of pathogens into the urine [51]. For 
this reason, biofilm formation on the urinary catheters is critical for initiating and maintaining 
of CAUTIs and is a reservoir of resistant pathogenic bacteria [62]. Several factors contribute to 

the formation of biofilm by E. coli, e.g. fimbriae, curli, and flagella. Type 1 fimbriae involved in 
biofilm formation may also support the colonization of urinary catheter surface [15]. The risk 

of CAUTI depends on the duration of catheterization, the quality of catheter care, and host sus-

ceptibility. Prolonged catheterization is the most important risk factor associated with CAUTI 

[62]. Long-term urinary catheter use (more than 30 days) causes permanent bacterial coloniza-

tion of the urine in 100% cases [63]. Examination of people in a nursing home showed that 

long-term catheterization was significantly related with bacteriuria, pyelonephritis, and renal 
inflammation [58]. Forming of biofilm on the urinary catheters is a public health problem for 
patients who need these medical devices. It is recommended that patients who are chronically 

catheterized were treated with 5–10 days of targeted antibiotic therapy [64].

4. Antimicrobial resistance of UPEC

Antimicrobial resistance in UPEC is a clinical problem in patients with UTIs, in particular in 

women with recurrent UTI. The empirical antimicrobial treatment in case of recurrent UTIs 

exerts significant resistance pressure on the uropathogens and the fecal flora, which serves 
as resistance reservoirs for potential uropathogens [65–67]. Antimicrobial resistance among 

E. coli causing UTI is increasing in many countries around the world and shows considerable 

variations during different time periods and in different areas [68, 69].

The level of resistance of UPEC strains from hospitalized patients in Poland and Turkey to 

ampicillin was 56% [70, 71], while above 85% of UPEC strains from patients in India were 

resistant to this antibiotic [68]. High percentage (67.3%) of E. coli strains resistant to tetracy-

cline was isolated from people with UTI from different parts of India [68].

Sanchez et al. [72] suggested that the increase of resistance of UPEC to ciprofloxacin is a result 
of widespread use of this antibiotic in the treatment of uncomplicated UTIs in the early 2000s. 

The most recent published data suggested that the level of resistance to trimethoprim-sulfa-

methoxazole increased and in different countries was over 21–24.2% [71–73]. This trend has 

continued for decades and the increasing resistance of E. coli to trimethoprim-sulfamethoxa-

zole can be explained by frequent use of this antimicrobial agent because it is recommended 

as the second-line drug in treating acute uncomplicated cystitis in women. Authors reported 

low resistance of E. coli to nitrofurantoin (0.85–1.6%) and no increase in resistance in the last 

decade was observed [71, 72].
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The extended spectrum of β-lactamases (ESBLs) produced by Enterobacteriaceae is responsible 

for resistance of amino and ureido penicillin, oxyimino cephalosporin, and monobactams, but 

not to 7-α-substituted β-lactam [74]. The production of ESBLs by UPEC strains complicates 

treatment because these strains are resistant not only to β-lactam antibiotics but often are also 
resistant to other classes of antibiotics-like aminoglycosides, quinolones, and cotrimoxazole, 

such as gentamicin, ciprofloxacin, and trimethoprim-sulfamethoxazole, respectively [75–77]. 

This reduces the treatment options to a limited number of antibiotics and empirical therapy 

with cephalosporins and fluoroquinolones often fail in patients with UTI [78]. Hoban et al. 

[79] found that these resistant microorganisms are more susceptible to the carbapenems, imi-

penem, and ertapenem, than to other antibiotics. ESBL-producing microorganisms were pri-

marily considered multiresistant organisms originating in hospitals, but in recent years, the 

number of ESBL producers increased also among outpatients, especially related with UTIs. 

The authors reported 21 and 21.4% ESBL-producing E. coli found in community-acquired UTIs 

in Turkey [80] and in North India [81], respectively, while in Mexico, 31% of uropathogenic 

E. coli isolated from hospitalized patients [77] and 17.6% E. coli from hospitalized European 

UTI patients [79] were producers of ESBLs. UTIs complicated by ESBL producers tend to lead 

to uncertain outcomes and prolong hospitalization, especially that these organisms tend to be 

multidrug resistant [74]. Among ESBLs, the CTX-M enzymes are the most prevalent among 

isolates of UPE from inpatients and outpatients leading to serious problems for the antimicro-

bial management of these infections [82, 83]. There is a need for new therapy of UTI caused by 

multiresistant ESBL-producing UPEC.

5. Treatment and control of UPEC

Currently, the antibiotic therapy is an important part of the therapeutic strategy for UTI. The 

increased antibiotic resistance in recent years suggests that the choice of antibiotic should 

be guided by the results of sensitivity assay, although in cases of community-acquired UTI, 

an empirical therapy is often used [23]. The drugs of first-line choice for empirical treatment 
of uncomplicated UTI in all European countries are fosfomycin trometamol, pivmecilli-

nam, or nitrofurantoin macrocrystals [84]. Trimethoprim-sulfamethoxazole is also used in 

countries where resistance to this chemotherapeutic is low. Higher rates of side effects in 
comparison with other drugs limit the use of quinolones as second-line therapy. Moreover, 

in many countries in Europe, high resistance rates of E. coli strains to nalidixic acid were 

observed [85], and thus aminoglycosides and carbapenem are the drugs of choice. In 

patients with recurrent infections of the urinary tract, the antibiotics may be recommended 

prophylactically. It is believed that two recurrences of UTI within 6 months after therapy 

or three episodes per year could be considered an indication to establish prophylaxis after 

treatment. The drugs for this purpose are nitrofurantoin, trimethoprin-sulfamethoxazole, 

fosfomycin trometamol, and cotrimoxazole at lower doses than therapeutic [86]. However, 

repeated antibiotic treatment of UTI and prophylactic use of antibiotics frequently results 

in a rise in resistance to antibiotics and adversely affects microbiota of patients which may 
lead to secondary infections posttreatment, such as gastrointestinal infection and vaginal 
yeast infection [87, 88].
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For this reason, alternative or additional prophylactic strategies have been investigated. One 
of them is improving the management of UTI by the development of preventive vaccines. 

Effective vaccine for UTI will need to generate a strong mucosal immune response in the 
urinary tract. Designing a UTI vaccine that would be effective against UPEC is difficult due 
to heterogeneous nature of the UPEC population. UTI vaccine should be designed based on 

more than one antigen because not all strains express the exact set of virulence genes during 

infections. A vaccine based on the multiple virulence factors, such as fimbrial adhesins or iron 
receptors, could be clinically effective against UTI [89]. The vaccine with whole or lysed frac-

tions of inactivated bacteria can be effective to generate protective immunity. Urovac® is one of 

such vaccines (Solco Basel AG, Birsfelden, Switzerland, and Protein Express, Cincinnati, OH, 
USA) containing ten heat-killed uropathogens, including six UPEC strains. The UPEC strains 

in the Urovac® show different virulence factors, such as hemolysin, type 1, P, and S fimbrial 
adhesins, CNF-1, siderophores, and the E. coli CFT073 pathogenicity island marker and many 
different O and H antigens. Evaluating the efficacy of vaginally administrated Urovac® found 

that the immunization did not ensure significant long-term protection from UTI or an increase 
in mean levels of UPEC antibodies in serum, vagina, or urine [90]. However, among the women 

receiving Urovac, 72% were free from UTIs, while only 30% of women given placebo remained 

free from UTIs caused by E. coli. Moreover, in the Urovac vaccinated group, the number of 

E. coli caused UTIs was significantly lower compared to the control group [91]. Another vac-

cine which is used in Switzerland since 1988 and sold in other countries worldwide is OM-89/
Uro-Vaxom® (OM Pharma, Myerlin, Switzerland). Uro-Vaxom is an oral capsule containing a 
lyophilized mix of membrane proteins from 18 UPEC strains. The clinical studies showed that 

Uro-Vaxom was significantly more effective than placebo in preventing recurrent UTI [92].

Other prophylaxis method is use of different Lactobacillus species in the form of probiotics 

which reduced the risk of UTI and vaginal infections. Use of Lactobacillus species maintains low 

pH and produces hydrogen peroxide that inhibits growth of E. coli in urinary tract but also acti-

vates Toll-like receptor-2 and therefore leads to reduced inflammatory reaction [93]. Beerepoot 

et al. [94] conducted study in which postmenopausal women with recurrent UTI prophylacti-

cally received trimethoprim-sulfamethoxazole or oral capsules containing L. rhamnosus GR-1 

and L. reuteri RC-14. After 12 months of treatment, the reduction in recurrence was more than 

50% in both groups. However, in group that received trimethoprim-sulfamethoxazole, the two-

fold increase in resistance was observed.

Research on dietary supplementation showed that cranberry juice and its extracts reduced UTI 

recurrences. The active metabolite of cranberry, proanthocyanidin A prevents bacterial adhe-

sion to the urothelial layer by inhibiting P fimbriae expression [95]. The minimum daily dose 

of proanthocyanidin A, which is able to reduce significantly the number of urinary E. coli to be 

36 mg [96]. The study conducted by Wojnicz et al. [97] showed that cranberry extract Żuravit 
S.O.S.® reduced motility and adhesion to epithelial cells in E. coli strains isolated from urine 

of patients with pyelonephritis and also limited the ability of these strains to form biofilm.

Bacteriophages are highly specific and very effective in lysing bacteria. The use of lytic phages 
that are able to pass through the extracellular matrix against E. coli biofilm causes a reduc-

tion of bacteria number in biofilm and also prevents biofilm formation on catheter coated 
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with hydrogel containing bacteriophages [98, 99]. Biofilm-associated UTIs are difficult to treat 
due to the high level of antimicrobial resistance showed by biofilm structures. Many authors 
recommend macrolides (erythromycin, clarithromycin, and azithromycin) as the treatment 

of choice in biofilm-associated infections because these antibiotics inhibit the production of 
primary component of the matrix, alginate [100, 101]. Ciprofloxacin, norfloxacin, gentamicin, 
or nitrofurazone are often used as components in coating and impregnating the catheters in 

the aim to inhibit bacterial attachment and development of biofilm [55, 102]. New therapeutic 

antibiofilm treatments are studied as alternative to antibiotics in order to inhibit biofilm for-

mation and also to avoid the emergence of resistant bacterial populations. The silver showed 

antimicrobial activity by interacting with bacterial cell membrane and is used to coat cath-

eters. The study showed a statistically significantly lower frequency of bacterial infection in 
patients treated with a silver alloy-coated catheter compared to those treated with uncoated 

catheter. Schaeffer et al. [103] reported that bacteriuria was present in 27% of patients with the 

silver-coated silicone catheter and in 55% of group with uncoated silicone catheter. It was also 

demonstrated that silver alloy used in hydrogel-coated urinary catheter reduced of up 45% of 

CAUTI [104]. However, the study conducted by Desai et al. [105] showed that E. coli adher-

ence was not significantly lower on silver-impregnated silicone or latex catheters compared 
to adherence of E. coli on catheters without silver.

The new antibiofilm strategy is phage therapy using engineered bacteriophages that have biofilm-
degrading enzymatic activity. It was demonstrated that engineered phages that express biofilm-
degrading enzymes are more efficient in removing bacterial biofilms than nonenzymatic phage 
alone. Lu and Collins [106] generated bacteriophage which expressed biofilm-degrading enzyme 
(DspB) during infection. The DspB showed simultaneous action against both bacterial cells in the 

biofilm and the biofilm matrix. The engineered enzymatic phage reduced bacterial biofilm cell in 
99.9%. One of the new ways of eliminating biofilm is the use of nanoparticles. Water-based syn-

thesis of yttrium fluoride (YF
3
) nanoparticles that showed antibacterial properties against E. coli 

was described. The minimal inhibitory concentration was observed at 0.01 mg/mL. In addition, 

YF3 nanoparticles-coated catheters were able to significantly reduce bacterial colonization com-

pared to the uncoated surface, which provides the potential to develop the concept of utilizing 

yttrium fluoride nanoparticles as novel antimicrobial and antibiofilm agents [107].

The alternative strategies to decrease UPEC infection include the use of plant-derived anti-

bacterial agents containing different functional groups in their structure and development of 
resistance in bacteria to these antimicrobials is less frequent [108]. Borges et al. [109] showed 

that phenolic acids such as gallic and ferulic acid have prevented biofilm formation and show 
potential to reduce the mass of biofilms formed by the Gram-negative bacteria including E. coli. 

The antibiofilm effect of trans-cinnamaldehyde (TC) on UPEC was reported by Amalaradjou 
et al. [110]. These authors showed that TC was effective against UPEC biofilm on polystyrene 
or latex, and the expression of E. coli genes encoding attachment and invasion of bladder 
cells was significantly decreased by TC [111]. Phytochemicals as alternative antimicrobials 

in preventing and inactivating E. coli biofilm on urinary catheters were also assessed. It was 
demonstrated that TC at the concentration of 0.5% was highly effective for preventing E. coli 

biofilm formation in the lumen of urinary catheter and after 1 day of completely inhibited 
biofilm formation. Whereas, completely inactivated biofilm after 1 day was observed at 1.25% 
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and 1.5% TC solution. p-Coumaric and ferulic acids have preventive action on E. coli biofilm 
formation on urinary catheter but complete inactivation of the biofilm formed at presence of 
these phytochemicals was not observed [112]. Recently showed that two alkaloids, piperine 

from black pepper and reserpine from Indian snakeroot, decreased swarming and swimming 

motilities of the uropathogenic E. coli CFT073. Additionally, piperine increased penetration 
of ciprofloxacin and azithromycin in to biofilm of E. coli CFT073. Authors suggest that these 
substances can affect on bacterial colonization by inhibition bacterial motility and also may 
help in treatment of infection by strengthening the penetration of antibiotic in biofilms [113].

One of the other strategies to prevent colonization, invasion, and biofilm formation by UPEC 
is inhibition of the assembly of pili by family of bicyclic 2-pyridones, termed pilicides.

The activity of pilicides was evaluated in two different pilus biogenesis systems in UPEC. 
Hemagglutination mediated by either type 1 or P pili, adherence to bladder cells, and biofilm for-

mation mediated by type 1 pili were all reduced by 90% in laboratory and clinical E. coli strains 

[114]. Pilicide ec240 was found to disrupt type 1 pili, P pili, S pili, and flagellar motility [115]. 

Other pilicides also inhibit the production of Dr pili that are important in pyelonephritis [116]. 

Mannosides are FimH receptor analogues and bind to this pilus with high affinity, which results 
in blocking FimH binding to mannosylated receptors. The use of mannosides is considered a 
new strategy in treating and preventing UTIs because they prevent bladder colonization and 

invasion and are effective against multidrug-resistant UPEC and against established UTIs [117].

6. Conclusions

UTIs belong to the most common bacterial infections. E. coli is the major factor of community-

acquired UTIs and a large part of nosocomial UTIs is also caused by this microorganism. 

UPECs have a wide range of virulence factors and spread of antimicrobial resistance that 

threaten effective treatment of UTIs using antibiotics. Intensive research that can identify 
essential virulence mechanisms of UPEC can lead to the development of UTI treatments and 

prophylactics. The identification of virulence determinants, especially responsible for initial 
attachment and adhesion of bacterial cells to receptors can be the basis for the development 
of targeted therapy that prevents the development of UTI. New strategies of UTIs treatment 

and prevention include chemical compounds such as pilicides and mannosides that block 

UPEC adhesion or vaccines against siderophores, pili, and UPEC toxins. However, they are 

still at the preclinical stage of development. These novel antivirulence therapies for treatment 

of UTIs still require substantial effort associated with future clinical trials.
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