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Abstract

Small metal clusters exhibit physical and chemical properties that differ substantially 
from those of corresponding bulk metals. Furthermore, the properties of clusters vary 
greatly depending on the number of constituent atoms. Metal clusters with these char-
acteristics currently attract great attention in a wide range of fields as new nanoscale 
functional materials. In recent years, the techniques to precisely synthesize metal clus-
ters protected with organic ligands and polymers with atomic precision have advanced 
dramatically. In addition, substantial knowledge of the size-specific physical/chemical 
properties exhibited by these metal clusters has been accumulated. In this chapter, we 
describe the precise synthesis methods of the most studied thiolate (SR)-protected gold 
clusters Au

n
(SR)

m
 and their heteroatom-substituted clusters (alloy clusters).

Keywords: gold clusters, alloy clusters, precise synthesis, fractionation, size focusing, 

metal exchange

1. Introduction

Substances in our surroundings are composed of assemblies of atoms. For example, a metal is 

a conglomerate of a nearly infinite number of metal atoms. By contrast, certain substances are 
made up of a countable number of metal atoms. These substances are called “metal clusters” 

because their shape resembles grape clusters. Although no clear definition of metal clusters 
has been established, the term generally refers to an aggregate of two to several hundred 

metal atoms (Figure 1); most such aggregates have a superfine size of 2 nm or less.

The proportion of surface atoms in metal clusters differs substantially from that in bulk met-
als. Taking a metal cluster with an icosahedral structure as an example, a metal cluster with 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



55 atoms (Figure 1) has 42 surface atoms, corresponding to 76.3% of the total atom number. 
In the case of a 13-atom metal cluster (Figure 1), 12 atoms are on the surface, corresponding 
to 92.3% of the total atoms. In bulk metals (Figure 1), the proportion of surface atoms is only 

approximately 0.00001% in a cube of 1 cm3. Thus, compared with bulk metals, metal clusters 

have a much higher proportion of surface atoms available to react with other substances. 

Moreover, in addition to these geometric features, metal clusters also exhibit particular char-

acteristics related to their electronic structures. Bulk metals have an electronic structure in 
which the valence and conduction bands are connected. Conversely, discretization of the elec-

tronic structure occurs in metal clusters because of the small number of constituent atoms.

Because of these geometric and electronic features, metal clusters exhibit physical and chemi-
cal properties that differ from those of the corresponding bulk metals. For example, although 
bulk gold (Au) is an inactive metal, as its size decreases to the cluster level, Au exhibits high 

catalytic activity in various oxidation and reduction reactions [1, 2]. Furthermore, the size-

specific properties of clusters greatly vary depending on the number of constituent atoms. 
Figure 2 shows a photograph of aqueous solutions of thiolate (SR)-protected Au clusters 

(approximately 1 nm in size) with 10–39 gold atoms [3]. The color of the cluster solutions dif-

fers substantially depending on the number of constituent atoms in the clusters. This diversity 

of colors can be attributed to the aforementioned discrete electronic structure of clusters.

As illustrated above, metal clusters exhibit physical and chemical properties that dif-

fer substantially from those of bulk metals despite being composed of the same elements. 

Furthermore, the properties of clusters vary greatly depending on the number of constituent 

atoms. Because of their very small size, clusters contribute to the miniaturization of materials 
and conservation of resources. Thus, metal clusters currently attract great attention in a wide 
range of fields as new nanoscale functional materials.

Figure 1. Relation of metal clusters discussed in this chapter to a single atom and the bulk metal.

Figure 2. Photograph of aqueous solutions of glutathionate-protected Au
n
 clusters [3].
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In recent years, the atomically precise synthesis of metal clusters protected with organic 

ligands [4–19] and polymers [20, 21] has advanced dramatically. In addition, substantial 

knowledge about the size-specific physical/chemical properties exhibited by these metal clus-

ters has been gathered. In this chapter, we describe the precise synthesis methods of the most-

studied SR-protected Au clusters, Au
n
(SR)

m
, and their heteroatom-substituted clusters, which 

are called alloy clusters.

2. Gold clusters

As described in Section 1, the properties of metal clusters vary greatly depending on the 

number of constituent atoms (Figure 2). Therefore, it is important to synthesize clusters with 

atomic precision to produce clusters with controlled functions. Typically, Au
n
(SR)

m
 clusters 

with a defined number of constituent atoms are synthesized by one of the following four 
methods [22]:

(i) High-resolution separation of a mixture of clusters of various sizes according to the 

number of constituent atoms (Figure 3(a)).

(ii) Exposure of a mixture of clusters of various sizes to extreme conditions followed by the 

collection of only those clusters stable under such conditions (Figure 3(b)).

Figure 3. Typical methods for the precise synthesis of Au
n
(SR)

m
 clusters [22]: (a) fractionation, (b) size focusing, (c) slow 

reduction, and (d) transformation from one stable size to another.
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(iii) Controlling the growth rate of the clusters to obtain a uniform chemical composition 

(Figure 3(c)).

(iv) Replacing the ligands of the cluster with ligands having different bulkiness to render 
clusters with a different chemical composition stable (Figure 3(d)).

Hereafter, each of these methods is explained in detail.

2.1. Fractionation

Au
n
(SR)

m
 clusters are generally prepared by adding a reducing agent to a solution containing 

a thiol and Au ions [23]. The aggregation of the resultant Au atoms leads to the formation of 

Au
n
(SR)

m
 clusters, and the products obtained by this method normally have a distribution 

in their number of constituent atoms [3, 4, 24–29]. The high-resolution separation of such a 

mixture according to the number of atoms is one of the most efficient methods of obtaining 
Au

n
(SR)

m
 clusters with well-defined numbers of constituent atoms (Figure 3(a)).

Polyacrylamide gel electrophoresis is a highly effective technique for separating hydro-

philic SR-protected Au
n
(SR)

m
 clusters [3, 25, 26 30, 31]. Using this method, clusters, such as 

Au
10

(SG)
10

, Au
15

(SG)13, Au
18

(SG)
14

, Au22(SG)16, Au22(SG)17, Au25(SG)
18

, Au29(SG)20, Au33(SG)22, 

and Au39(SG)24 (SG = glutathionate), have been isolated with high purity (Figure 4(a)) [3]. 

Fractional precipitation [32] and fractional extraction [33–35] have been primarily employed 

to separate hydrophobic RS-protected Au
n
(SR)

m
 clusters. In addition to these frequently used 

conventional methods, reverse-phase high-performance liquid chromatography has also 

recently proved very effective for the high-resolution separation of both types of Au
n
(SR)

m
 

clusters [27–29, 36–38]. Au
n
(SC12H25)m clusters with a wide range of sizes, from Au38(SC12H25)24 

to Au~520(SC12H25)~130, have been systematically isolated by this method (Figure 4(b)) [28]. Thus, 

several methodologies have been established to date for the fractionation of Au
n
(SR)

m
 clusters, 

and precise systematic isolation can be now achieved for Au
n
(SR)

m
 clusters protected with 

either hydrophilic or hydrophobic SR using these techniques.

Figure 4. Examples of the precise synthesis of Au
n
(SR)

m
 clusters by fractionation: (a) separation of Au

n
(SG)

m
 clusters 

by polyacrylamide gel electrophoresis and (b) separation of Au
n
(SC12H25)m clusters by reverse-phase high-performance 

liquid chromatography. Figures were adapted from Refs. [3, 28], respectively.
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2.2. Size focusing

The fractionation methods noted above are suitable for the systematic isolation of a series of 

Au
n
(SR)

m
 clusters. However, these methods are not suitable for mass production. To synthe-

size Au
n
(SR)

m
 clusters with a specific chemical composition on a large scale (~100 mg), it is 

necessary to conduct selective synthesis, and size focusing is an effective means of doing so 
(Figure 3(b)). Several Au

n
(SR)

m
 clusters show higher resistance to deterioration in solution [3] 

or thiol etching [39–42] than other clusters of the same type. The less stable clusters can be 

converted into stable clusters when exposed to extreme conditions [39–42]. As an example, 

when Au
n
(SR)

m
 clusters (SR = SC2H4

Ph; 25 ≤ n < 102, SR = SG; 25 ≤ n < 38) are exposed to 
extreme conditions, unstable Au

n
(SR)

m
 clusters are transformed into stable Au25(SR)

18
 cluster. 

Stable clusters can be precisely synthesized on a large scale with this size-focusing method 

(Figure 5(a) and (b)).

2.3. Slow reduction

Typically, NaBH
4
 is employed as the reducing agent to generate Au atoms. However, CO 

can also be used as the reducing agent. Au atoms are generated more slowly using CO than 

using NaBH
4
 and so the Au

n
(SR)

m
 clusters are formed at a slower rate [43]. This slower synthe-

sis rate tends to produce more uniform clusters (Figure 3(c)). The precise and size-selective 

synthesis of Au
n
(SR)

m
 clusters up to Au25(SG)

18
 has been realized by this method (Figure 6(a)). 

Even when using NaBH
4
 as the reducing agent, slow reduction can be achieved by control-

ling the pH of the solution. Au76(4-MEBA)
44

 (4-MEBA = 4-(2-mercaptoethyl) benzoicacid) has 

been synthesized in this manner (Figure 6(b)) [44]. However, this method is only applicable to 

small hydrophilic Au
n
(SR)

m
 clusters. It is expected that size-selective synthetic methods based 

on this principle will be established for Au
n
(SR)

m
 clusters protected by hydrophobic SR as well 

as for large hydrophilic Au
n
(SR)

m
 clusters.

2.4. Transformation from one stable size to another

The chemical composition of stable clusters varies depending on the bulk of the SR func-

tional group [45]. Therefore, when the ligand of a stable cluster is replaced with a  bulkier 

Figure 5. Examples of the precise synthesis of Au
n
(SR)

m
 clusters by size focusing: (a) synthesis of hydrophobic 

Au25(SC2H4
Ph)

18
 and (b) synthesis of hydrophilic Au25(SG)

18
. Figures were adapted from Refs. [40–42], respectively.
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SR, distortion of the metal core is induced, resulting in the formation of clusters with a dif-

ferent composition (Figure 3(d)) [46]. An example is the reaction of phenylethanethiolate 

(SC2H4
Ph)-protected Au38(SC2H4

Ph)24 with 4-tert-butylbenzenthiol (HSPh-tBu) in solution, 
which generates Au36(SPh-tBu)24 as the primary product (yield of ~90%) (Figure 7(a)). This 

technique enables the synthesis of stable clusters with different chemical compositions 
from Au

n
(SC2H4

Ph)
m
 or Au

n
(SC

x
H2x+1

)
m
 (SC

x
H2x+1

 = alkanethiolate) clusters. Clusters such as 

Au28(SPh-tBu)20 (Figure 7(b)), Au36(SPh-tBu)24, and Au133(SPh-tBu)52 have been synthesized by 

this method [46].

3. Alloy clusters

The physical and chemical properties of metal clusters also strongly depend on the chemi-

cal composition as well as on the size of the metal core. For example, the catalytic activity of 

polymer-stabilized Pd147 clusters is remarkably improved when the Pd at the surface is par-

tially substituted by Au [47]. In addition, alloy nanoclusters composed of Pd and Ru exhibit 

markedly different catalytic activities compared with those of their monometallic nanocluster 
counterparts. The catalytic activity obtained by mixing these two metals is higher than that 

of monometallic nanoclusters of Rh, which is located between these two elements in the peri-

odic table [48]. As illustrated by these examples, synergistic effects caused by mixing different 

Figure 6. Examples of the precise synthesis of Au
n
(SR)

m
 clusters by slow reduction: (a) Au

n
(SG)

m
 clusters synthesized by 

CO reduction and (b) Au76(4-(2-mercaptoethyl)benzoic acid)
44

 synthesized by controlling the pH of the solution. Figures 

were adapted from Refs. [43, 44], respectively.

Figure 7. Examples of the precise synthesis of Au
n
(SR)

m
 clusters by transformation from one stable size to another: (a) 

from Au38(SC2H4
Ph)24 to Au36(SPh-tBu)24 and (b) from Au25(SC2H4

Ph)
18

 to Au28(SPh-tBu)20. Figures were adapted from Ref. 

[46].
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elements generate physical and chemical properties that differ from those of monometallic 
clusters. Thus, the composition control of metal clusters is very interesting from the viewpoint 

of modification of the physical and chemical properties of clusters, and results in new applica-

tions for clusters.

It is well known that SR forms strong bonds with Au (Section 2). Furthermore, stable Au
n
(SR)

m
 

clusters can be produced, and a large number of methods have been established for their 

isolation (Section 2). Therefore, in the synthesis of alloy clusters protected by SR ligands, Au 
is often employed as one of the main metal elements, and the cluster size is controlled using 

a method similar to that used for Au
n
(SR)

m
 clusters. The important point in these syntheses 

is how to successfully mix other metallic elements with Au. In this section, we describe three 

typical procedures used to address this issue (Figure 8).

3.1. Co-reduction of multiple kinds of metal ions

The most common method for mixing other metallic elements with Au is the simultaneous 

reduction of the other metal ions with Au ions using a reducing agent (Figure 8(a)). This 

approach is called the co-reduction method. For example, to synthesize SR-protected alloy 

clusters, Au and other metal ions are mixed in solution, followed by the addition of thiol. A 

strong reducing agent (NaBH
4
) is then added, resulting in the simultaneous reduction of all 

of the metal ions present. Examples of alloy clusters synthesized using this method include 

Au25−xAg
x
(SR)

18
 (R = C12H25 or C2H4

Ph; x = 1–11; Figure 9(a)), Au25−xCu
x
(SR)

18
 (R = C

8
H17 or C2H4

Ph; 

x = 1–5; Figure 9(b)), Au24Pt(SC2H4
Ph)

18
 (Figure 9(c)), Au24Pd(SR)

18
 (R = C12H25 or C2H4

Ph; Figure 

9(d)), Au38−xAg
x
(SC2H4

Ph)24 (x = 1–12), Au36Pd2(SC2H4
Ph)24, Au144−xAg

x
(SC2H4

Ph)60 (x ~ 30, 34, 
52, 53), Au143/144/145−xCu

x
(SC2H4

Ph)59/60/61 (x = 1–23), Au
144

Cu(SC6H13)60, and Au144−xPd
x
(SC2H4

Ph)60 

(x = 1–7) [49–59]. Using the co-reduction method, it is also possible to synthesize Au12Ag32(SR)30 

(R = PhF, PhF2, or PhCF3) or Au12+xCu32(SPhCF2)30+x (x = 0, 2, 4, 6) alloy clusters, in which Ag or 
Cu is the base metal element [19, 60]. However, in this method, two or more types of metal 

atoms need to be generated simultaneously by reduction to successfully form alloy clusters. 

Figure 8. Representative synthesis methods of thiolate-protected alloy clusters: (a) co-reduction of multiple kinds of 

metal ions, (b) metal exchange with metal complexes, and (c) deposition of metal atoms onto metal clusters.
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Therefore, it is difficult to form an alloy cluster using this method when there is a large differ-

ence in redox potential between the precursor metal ions. As a result, alloy clusters synthesized 

by this method are presently limited to those containing Au, Ag, Cu, Pt, and Pd.

3.2. Metal exchange with metal complexes

Metal clusters can exchange metal atoms with metal complexes (Figure 8(b)). This reaction 

enables heteroelements to be introduced into metal clusters to synthesize alloy clusters [61]. 

Although there are some exceptions [62], the number of constituent atoms of the metal core 

generally does not change during this exchange [63–71]. Therefore, this reaction enables some 

of the atoms in a cluster to be replaced with other elements while maintaining the origi-

nal number of constituent atoms and geometry. In addition, this reaction allows heteroele-

ments to be mixed more easily than the co-reduction method. The metal exchange reaction 

enables the synthesis of alloy clusters composed of metal elements with very different redox 
potentials, and a larger number of heteroatoms can be replaced than that achieved by the co-

reduction method. Using this type of exchange reaction, alloy clusters such as Au25−xAg
x
(SR)

18
 

(x = 1–8), Au25−xCu
x
(SR)

18
 (x = 1–9), Au24Cd(SR)

18
 (Figure 10(a)), Au24Hg(SR)

18
 (Figure 10(b)), 

Au24−xAg
x
Cd(SR)

18
 (x = 2–6), Au24−xAg

x
Hg(SR)

18
 (x = 1–8; Figure 10(c)), Au24−x−yAg

x
Cu

y
Pd(SR)

18
 

(x = 1–3, y = 1, 2; Figure 10(d)), Ag25−xAu
x
(SR)

18
 (x = 1, 2), Ag24−xAu

x
Pt(SR)

18
 (x = 1, 2, 4–9), and 

Au38−xAg
x
(SR)24 (x = 1–11) have been synthesized to date [63–71].

Figure 9. Thiolate-protected alloy clusters synthesized by the co-reduction method: (a) Au25−xAg
x
(SC2H4

Ph)
18

, (b) 

Au25−xCu
x
(SC2H4

Ph)
18

, (c) Au24Pt(SC2H4
Ph)

18
, and (d) Au24Pd(SC2H4

Ph)
18

. Ag/Au indicates Ag or Au. R groups are omitted 
for clarity. Figures were adapted from Refs. [50, 51, 54].

Figure 10. Thiolate-protected alloy clusters synthesized by the metal exchange method: (a) Au24Cd(SC2H4
Ph)

18
, (b) 

Au24Hg(SC2H4
Ph)

18
, (c) Au24−xAg

x
Hg(SC2H4

Ph)
18

, and (d) Au22AgCuPd(SC12H25)18
. Hg/Au indicates Hg or Au. R groups 

are omitted for clarity. Figures were adapted from Refs. [64, 66, 68, 71].
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3.3. Deposition of metal atoms onto metal clusters

When Au
n
(SR)

m
 clusters with fine metal cores (<2 nm) react with Ag ions, the Ag ions are 

reduced by Au, and Ag is deposited on the cluster surface (Figure 8(c)). This type of reac-

tion has been used to synthesize Au25Ag2(SC2H4
Ph)

18
 by depositing two Ag atoms on the sur-

face of an Au25(SC2H4
Ph)

18
 (Figure 11) [72, 73]. A particular feature of this synthesis is that 

the substrate clusters maintain their chemical composition while the other metal atoms are 

deposited on the cluster surface. However, the metal clusters and metal ions used for this 

reaction were the same as those used in the aforementioned metal exchange method (Section 3.2).  
In the future, it is expected that the reason why the reaction changes from metal exchange to 

metal deposition under slightly different experimental conditions will be elucidated.

4. Conclusions and prospects

In this chapter, we focused on Au
n
(SR)

m
 and related alloy clusters as examples of metal nano-

clusters and described the latest techniques and knowledge regarding their precise synthe-

sis. The study of Au
n
(SR)

m
 clusters has progressed with spectacular speed in recent years. 

Consequently, the associated synthetic techniques have also advanced dramatically, and a 

greater understanding of their characteristics has been obtained [74–76]. These clusters are 

now expected to be applied in various fields such as sensing, imaging, cancer radiation 
therapy, catalysis, photocatalysis, solar cells, fuel cells, photosensitizers, and single-electron 

devices. If these Au
n
(SR)

m
 clusters can be regularly assembled [77], further new functions 

could be induced and their fields of application might be further expanded. In the future, it is 
expected that intensive investigations will be conducted regarding the formation of various 

nanoarchitectures using Au
n
(SR)

m
 clusters as structural units in addition to research on the 

Au
n
(SR)

m
 clusters themselves.

Figure 11. Au25Ag2(SC2H4
Ph)

18
 synthesized by the metal deposition method. R groups are omitted for clarity. This figure 

was adapted from Ref. [72].
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