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Abstract

Bread wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is one of the most important 
crops, making staple food for more than 40 countries and over 35% of the global popu-
lation. Drought stress is among the major constraints to wheat production as it affects 
plant growth, gene expression and yield potential of the crop. Development of elite 
wheat cultivars with the ability to grow and reproduce in water-limited soils seems to be 
the most enduring solution of addressing drought stress. A total of 100 lines including 
well-adapted wheat cultivars were evaluated for important root traits and complemented 
with 102 PCR-based markers aiming to understand their genetic structure and to identify 
molecular markers that are closely associated to quantitative trait loci (QTLs) of impor-
tant root traits. Alleles per locus are counted and polymorphic information content (PIC) 
values are calculated. Population structure of these lines was analyzed with general lin-
ear model (GLM) and mixed linear model (MLM) approaches for identification of QTLs 
associated with important root traits. The results indicated the presence of two novel 
QTLs on the homoeologous group 2 and group 5 of wheat that may be related to drought 
stress resistance. Our results may facilitate the development of agronomically desirable 
drought stress-resistant wheat germplasm.

Keywords: bread wheat, genetic variation, drought tolerance, association mapping, 

QTL

1. Introduction

Wheat (Triticum spp.) is one of the most important and widely cultivated crops with the 

annual yield of 694 million metric tons. More than 40 countries and over 35% of the world 

population use wheat as their staple food [1, 2]. Wheat is cultivated on larger area than other 
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cereals and modified to different climatic conditions [3, 4]. Bread wheat (2n = 6x = 42) and 

durum wheat (4x = 28) are the two common cultivated species around the world. Bread wheat 

supplies about 95% wheat globally, while durum and other wheats (emmer (4x = 28), einkorn 

(2x = 14) and spelt (6x = 42)) provide only 5% of the world wheat [2, 5]. Human population 

is increasing rapidly and is estimated to reach 9.4 billion by 2050. Therefore, food produc-

tion will require a greater yield from the present cropland without horizontal expansion [6]. 

Population growth, environmental pollution and utilization of croplands for other purposes 

may reduce the croplands by 10–20% [7]. To meet the growing demand of global food short-

age of 2050, total food production must increase by 50% at least to meet out demands of 2050. 

Among the crop plants, wheat is an economic and rich source of energy and proteins and 

supplies one fifth of all human calories for the world population [8]. Plant breeders are always 

trying to find wheat germplasm having desirable traits such as tolerance to diseases and other 
abiotic stresses [7, 9]. There is no doubt that cereals such as wheat, rice and maize are the 

world’s leading food crops for all humans and are the principal resources that have led to the 

emergence of human civilization.

2. Global wheat production

Wheat is one of the most important cereal and staple food crop around the world. It ranks 

first due to its area and production and contributes more calories to the world’s human diet 
than any other crop. On the other hand, wheat also maintains its first rank among major cere-

als due to its higher protein and gluten contents [8–10]. In 1986–1987, the wheat production 

across the world, which was 521 million metric tons, was increased to approximately 572 million 

metric tons in 2005–2006 from an area of 220 million hectares [11] and 694 million metric tons 

in 2011–2012. In 2011, the European Union (137 million tons) was top ranking in wheat pro-

duction countries followed by China (118 million tons) and the United States of America 

(54 million tons). Further, Canada, Australia, India, Pakistan and Argentina contribute about 

79% of the total wheat production. The world trade market was very feasible for wheat in 

2011, and 129 million tons of wheat was traded in the world market [12].

3. Drought stress

Drought is defined as water deficiency in the root zone of crops that result to decrease in yield 
during the plant life cycle [13]. The capability of a plant to grow and reproduce in water-

limited area is referred to as drought tolerance. Drought stress is changeable in its intensity, 

length and effectiveness, and crop plants are required not only be able to survive, but their 
ability to produce a harvestable yield under drought stress is of practical importance [14]. 

Drought tolerance is a quantitative trait, influenced by complex phenotype and genetic inter-

actions. Understanding the genetic basis of drought tolerance in crop plants is a prerequisite 

for developing superior genotypes. High temperatures, radiation, water and nutrient defi-

ciencies are commonly encountered under normal growing conditions also pose somewhat 

similar challenges. Further, certain soil properties such as composition and structure can also 

affect the balance of these different stresses; see, for example, [15, 16].
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Drought is the main environmental problem that causes high negative effect on cereal crops 
particularly wheat. During drought conditions, plants show a wide range of behaviors vary-

ing from great sensitivity to high tolerance [17]. Seasonal cyclic drought has great involvement 

in reduction of wheat, barley and other cereal yields [18]. Drought stress greatly affects plant 
growth, gene expression, distribution, yield and quality of crop in arid and semiarid areas 

around the world [19]. About 60% of crop production around the world is from arid and semi-

arid regions. The rate of rainfall critically fluctuates in these areas. In developing countries 
37% of wheat is commonly grown in drought susceptible areas [20]. The major constraint to 

wheat production around the world is inadequate supply of water. Within the United States 

of America alone, about 67% of crop losses over the last 50 years have been due to drought. 

The 2012 drought in the United States of America was the worst in the last 60 years, and more 

frequent occurrences of water shortages are expected due to climate projections and increas-

ing competition for water among urban, industrial and agricultural demand.

The plants’ reaction to drought stress depends on plant growth (development), stress period and 

plant genetics [21, 22]. Drought can also influence morphophysiological features of plant such as 
growth, anatomy, morphology, physiology (stomatal closure, low photosynthesis, transpiration 

rate), biochemistry and ultimately productivity [23, 24]. Yield is the basic criteria for cultivation of 

crop varieties under drought conditions. Therefore, it is a great challenge for crop breeders to pro-

duce cultivars having good potential of survival in stressed (drought, salinity, cool) environment 

[14, 15, 25]. Breeding for drought tolerance is further complicated by the fact that several types of 

abiotic stress can challenge crop plants simultaneously. Further, given the complexity of drought 

tolerance, marker-assisted selection has not contributed significantly to cultivar improvement, 
and breeding for dry environments has relied on direct phenotypic selection. However, recent 

technological advances and the great potential in wheat to ensure sustainable food production 

have driven research programmes to improve this crop genetically despite the size and com-

plexity of the genome. Nonetheless, drought tolerance breeding may be effective if the marker-
assisted selection-based molecular linkage maps for crop species are available [15, 26].

3.1. Drought stress in Pakistan

Diverse climatic and soil conditions are available for wheat growing in Pakistan. About 

one third of the total land area comes under rain-fed regions where rainfall is unusual [27]. 

Drought and salinity are very common around the world and are among the most serious 

problems to the agriculture in Pakistan [28]. Arid and semiarid regions of the world are badly 

affected by water stress, and as result crop production is reduced. Irrigated areas some-

times face drought conditions due to inadequate supply of water and canal closures [23, 29]. 

Drought-tolerant varieties are those, where grain yield is least affected by drought stress, 
or drought-tolerant crops are those that take up maximum amount of water and lose mini-

mum of water during dry conditions [1–5, 30]. To ensure high crop production in rain-fed 

areas, different aspects of agriculture like holding precipitation, reducing evapotranspiration 
and sowing of drought tolerant varieties are important. Wheat varieties cultivated in rain-fed 

areas of Pakistan are usually low yielding as well as pests and diseases that are susceptible 

but are well adapted and flourish in dry conditions. Still, the need to increase yield to meet 
the demands of growing population to ensure food security requires well-integrated efforts. 
Although global water scarcity may be an abstract concept to many and a reality for others. 
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But with no confusion, it is the result of myriad environmental, political, economic and social 

issues. The current global climatic conditions are to hit Pakistan, and therefore, the search for 

diverse and drought-tolerant sources of crop plants is of paramount significance to feed its 
ever-growing population. Marker-assisted selection is a cry of the day for yield improvement 

in drought stress areas of Pakistan. Thus, the use of molecular markers for tagging of drought 

resistance genes is needed [14, 15, 31].

4. Materials and methods

During the current study, 100 wheat lines (Table 1) including well-adapted wheat cultivars 

were evaluated for important root traits. A total of 102 PCR-based markers were applied aim-

ing to understand their genetic structure and to identify molecular markers that are closely 

associated to quantitative trait loci (QTLs) of important root traits (Table 2). Plant germina-

tion, DNA extraction and PCR profiling followed previously published standard procedures 
[32]. Further, population structure of these lines was analyzed with general linear model 

(GLM) and mixed linear model (MLM) approaches using TASSEL software with their default 

setting for identification of QTLs associated with important root traits.

S. no Genotypes S. no Genotypes

1 Sonalika 2 Shalimar 88

3 Merco 2007 4 Khyber 83

5 Manther 6 Chenab 70

7 Lr-230 8 Soghat 90

9 Ksk 10 Pari -73

11 Maxi pak 12 Chakwal 86

13 Indus 79 14 Wadanak 98

15 Bakhtawar 94 16 Nori -70

17 Wadanak 85 18 ZA-77

19 Abdaghar 97 20 Kaghan 93

21 Margalla 99 22 Dawar 96

23 Uqab 2000 24 Suliman 96

25 Raskoh 26 AS-2002

27 Haider 2002 28 LYP-73

29 Local white 30 Noshera 96

31 MH-97 32 Sindh 81

33 Zarlashta 90 34 Fakhri sarhad

35 Punjab-76 36 10737
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S. no Genotypes S. no Genotypes

37 Faisalabad 85 38 10776

39 Barani 70 40 10748

41 Rawal 87 42 10724

43 NIAB 83 44 10792

45 GA 2002 46 Pirsabak 2008

47 Chenab 79 48 Punjab-96

49 Saleem 2000 50 Mumal-2002

51 Zamindar-80 52 SA-42

53 Iqbal-2000 54 Marwat-01

55 SH-2003 56 Barani-83

57 Anmol-91 58 Potohar-93

59 LU-26 60 Kohinoor-83

61 Chenab-96 62 Potohar-70

63 Faisalabad-83 64 Pak-81

65 Zarghoon-79 66 Pirsabak-85

67 C-228 68 C-273

69 Shahkar-95 70 Tandojam-83

71 Punjab-88 72 Dirk

73 10793 74 Bahalwapur-79

75 Punjab-81 76 Lasani-08

77 C-591 78 Sussi

79 Sutlag-86 80 Khyber-79

81 C-250 82 FPD-08

83 Blue silver 84 Sandal

85 RWP-94 86 Kiran

87 Sariab-92 88 Wardak-85

89 Wafaq-2008 90 Meraj-08

91 10742 92 C-518

93 010724-YR 94 potohar-90

95 AUP 5000 96 Mehran-89

97 WL-711 98 Janbaz

99 SA-75 100 AUP-4008

Table 1. List of wheat lines and cultivars used in the current study.
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5. Root trait analysis and its significance to drought

To understand the performance of wheat crop under drought conditions, it is necessary to have 

a sound knowledge about root traits. Root traits vary from species to species on the base of water 

availability, growth, physiology and architecture [33]. Root surface area and root length in wheat 

crop play an important role in water uptake. A well-organized root system is necessary for effi-

cient water uptake. In crops, fibrous root system consists of two types as seminal and nodal roots 
[34]. Well-developed root system could play positive role in water deficit (drought) areas. Root 
morphological traits greatly affect water and nutrient uptake. Herbaceous plants with fine roots, 
smaller diameter and greater root length are better adapted to dry conditions [35]. Root traits 

greatly influence the resource uptake and sustaining crop yield under drought stress conditions. 
For maximum grain yield in wheat, active and well-developed root system is necessary [36, 37].

Marker Marker Marker Marker Marker Marker

Cfd 15 Xbarc 154 Xwmc 232 Xgwm 372 Xwmc 177 Xgwm 293

Cfd 18 Xbarc 158 Xwmc 233 Xgwm 389 Xwmc 181 Xgwm 299

Xwmc 24 Xbarc 159 Xwmc 235 Xgwm 443 Xwmc 182 Xgwm 302

Xwmc 25 Xbarc 163 Xwmc 398 Xgwm 471 Xwmc 216 Xgwm 325

Xwmc 27 Xbarc 164 Xwmc 420 Xgwm 469 Xwmc 219 Xgwm 359

Xwmc 43 Xbarc 165 Xwmc 606 Xgwm 484

Xwmc 51 Xbarc 167 Xwmc 718 Xgwm 544

Xwmc 52 Xbarc 172 Xwmc 749 Xgwm 608

Xwmc 94 Xbarc 173 Xwmc 798 Xgwm 609

Xwmc 97 Xbarc 175 Xbarc 42 Xgwm 642

Xwmc 104 Xbarc 264 Xbarc 45 xgwm 908

Xwmc 147 Xgwm 4 Xbarc 76 Xgdm 3

Xwmc 149 Xgwm 10 Xbarc 101 Xgdm 5

Xwmc 153 Xgwm 33 Xbarc 127 Xgdm 6

Xwmc 154 Xgwm 37 Xbarc 128 Xgdm 19

Xwmc 157 Xgwm 55 Xbarc 134 Xgdm 28

Xwmc 161 Xgwm 60 Xbarc 137 Xgdm 33

Xwmc 163 Xgwm 71 Xbarc 140 Xgdm 46

Xwmc 166 Xgwm 99 Xbarc 141 Xgdm 114

Xwmc 167 Xgwm 111 Xbarc 144 VRN AF

Xwmc 168 Xgwm 136 Xbarc 147 VRN B1 R3

Xwmc 169 Xgwm 194 Xbarc 148 PpD1 R1

Xwmc 175 Xgwm 261 Xbarc 149 PpD 1 R2

Table 2. List of PCR primers/molecular markers used in the current study.
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6. Association mapping between root traits and SSR markers

In the present study, association mapping was applied for identification of association 
between root traits and SSR markers. Marker-trait association (MTA) based on polymorphism 

found in SSR markers applied on diverse wheat genotypes. Two different models were used 
for identification of QTLs associated with root traits as GLM (general linear model) and MLM 
(mixed linear model). GLM requires no kinship, and only Q matrix was used to determine 

association between markers and mean of phenotypic traits. The level of significance of P 
value was measured at p ≤ 0.01 in both GLM and MLM models. The QTLs having LOD values 
above 2.5 were considered for both GLM and MLM.

A sum of 102 molecular markers were used in the present study. Most of the markers showed 

high level of polymorphism. A total of 271 polymorphic alleles were generated. The alleles per 

locus ranged from 1 to 3 and an average of 2.63 per locus. Polymorphic information content 

(PIC) values of the markers were also calculated in the range of 0.03–0.59. Initially, in order to 

investigate the genetic diversity of the material, 100 wheat genotypes were grouped into dif-

ferent cluster populations (Figure 1). Population structure may lead to spurious association 

between marker and traits [38]. Therefore, a model-based approach was used for association 

mapping. Both the general linear model (GLM) and mixed linear model (MLM) were applied. 

The association analysis also concluded that hundreds of genotypes having different genetic 
backgrounds were classified into 13 distinct groups, viz., G1, G2, G3, G4, G5, G6, G7, G8, G9, 
G10, G11, G12 and G13.

Figure 1. Population structure analysis of wheat genotypes based on SSR markers. (a) Graphical bar plot at k = 2 

presenting two subgroups (G1 and G2). (b) Graphical bar plot at k = 13 presenting 13 subgroups (G1–G13). The X-axis 

shows accession numbers, and Y-axis shows subgroup membership.
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6.1. Total root length

Total root length per unit ground area (La) is often considered to be directly related to the 

amount and rate of water uptake. Total root length (TRL) is associated with drought toler-

ance in wheat because it marks the spreading of roots in the soil and affects the resource 
uptake [39]. The genotype Pirsabak-85 ranked high on the base of TRL and R:S and consid-

ered to be the best for drought tolerance by extracting water stored in the deep soil layers. 

Further, in GLM model the SSR marker Xgdm 5 on chromosome 2 was significantly associ-
ated with total root length, but no association of marker with TRL was found in MLM. The 

phenotypic variance (r2) was 0.10. The p value was recorded as 0.0016, and LOD is 2.78 as 

shown in Figure 2. The present research revealed that GLM model confirmed MTA for TRL 
was found to be located on chromosome 2D and the results are in accordance with previous 

results where MTA for TRL was reported on chromosome 2 at 3.4 cM [40].

For root fresh weight, the GLM model identified MTA associated with RFW, located on 
chromosome 5B. The marker Xwmc 235 attributed to trace the QTL on specific chromosome 
for RFW. The phenotypic variance (r2) was found as 0.10, and LOD was 3.56 as shown in 

Figure 3. The previous report of Ayman, A.D., M. A.M. Atia, H.A. H. Ebtissam, A.H. Hashem 

and S.A. Sami. 2013. A multidisciplinary approach for dissecting QTL controlling high yield 

and drought tolerance-related traits in durum wheat. Int. J. Agri. Sci. Res.3: 99-116 confirmed 
that four QTLs are associated with RFW located on 2B, 5B, 6A and 6B chromosomes. Our 

results which did not localize other QTLs due to lesser number of markers have been used. 

Similarly, for root dry weight, the PpD1 marker revealed marker trait association (MTA) for 

RDW in GLM model only. The MTA was found to be located on chromosome 2A having r2 

0.41 and LOD of 2.7 as in Figure 4. These results were partly in agreement with results of [41] 

where the authors found that 5 QTLs for RDW were grouped in chromosomes 2A and 7A.

Figure 2. QTL identified for TRL on the basis of LOD in GLM.
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6.2. Maximum root length

The maximum root length (MRL) evolved to capture deeper water from the soil under drought 

stress [42]. The Abdaghar-97 genotype recorded the maximum root length (MRL) to capture deep 

soil moisture in dry areas. Two MTAs were identified for MRL located on chromosomes 2A and 
5B. MTA of chromosome 2A was marked by Xgwm 10 having LOD (2.68) and that of 5B was 

Figure 3. QTL identified for RFW on the basis of LOD in GLM.

Figure 4. QTL identified for RDW on the basis of LOD in GLM.
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attributed by Xwmc 149 having LOD of 2.86 as in Figure 5a and b. So far only one QTL for maxi-

mum root length located on chromosome 4B has been reported [14]. Similarly, QTL was identified 
for MRL located on chromosome 5 at 158.5 cM [43]. Therefore, the MTA identified on 2A chro-

mosome in the present study was not reported before and considered to be novel QTL for MRL.

6.3. Number of nodal roots

The bulk of roots would increase with the increase in number of tillers. Nitrogen uptake 

is affected by length and number of nodal roots [44]. The uptake of nutrients is 2–6 times 

Figure 5. QTL identified for MRL on the basis of (a) GLM; (b) LOD in MLM.
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more for nodal roots than seminal roots, and thus growing such genotypes in rain-fed areas 

would be desirable [45]. The results of the present study found Meraj-08 with high number 

of nodal roots and would be better for nitrogen and water uptake in rain-fed areas. As for as 

the number of nodal roots MTAs was concerned, the MTA for number of nodal roots located 

on chromosome 2B. SSR marker Xwmc 175 recognized the MTA for NNR on chromosome 

2B as shown in Figure 6. MTA for NNR was found at LOD 2.5, p value 0.00306, while the 

(r2) 0.17. Our results were accordance with result of [46] where the same QTL is reported on 

chromosome 2B. Two MTAs (QTLs) were found associated with root angle in GLM model. 

The MTAs were found to be located on chromosomes 7B and 6D. The MTA located on 

chromosome 7B recognized by Xgwm 302 and that of 6D was identified by Xwmc 749 as in 

Figure 7. The results are consistent with previous results where QTL for RA was located on 

chromosome 7B at 86cM, and reported four QTLs for RA was located on chromosome 2A, 

3D, 6A and 6D [47, 48].

6.4. Root density

Root density (RDT) increases the efficiency of the root system and is considered to be the 
most important trait for uptake of phosphorus in wheat [42]. The genotype Soghat-90 ranked 

first on the base of RDT and is considered to be good for phosphorus uptake. Further, root 
density has been reported to be positively correlated with total root length, root diameter 

and water use efficiency [49]. Two MTAs were identified for root density (RDT) in both 
GLM and MLM models located on chromosomes 2B and 5B. The MTA for chromosome 

2B was attributed by Xwmc 175 and 5B by Xwmc 235 having LOD of 3.28 and 2.5 as in 

Figure 6. QTL identified for NNR on the basis of LOD in GLM.
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Figure 8a and b. The results of the present study are in accordance with the earlier reports. 

Previously QTL for RDT has been reported on chromosome 2B at 158.5 cM and 5B at 47 cM 

[46, 50]. The number of seminal roots may result in better adaptation to drought conditions 
in wheat. Further, the number of seminal roots was negatively correlated with water use effi-

ciency [51, 52]. The strong root system will reduce the WUE and hence will reduce biomass 

production. Therefore, it is needed to improve the root system function rather than a strong 

root growth for wheat survival in drought conditions. In the present study, the genotype 

Marwat-01 is recorded the highest NSR and is suggested to be good in more water uptake 

in rain-fed areas.

6.5. Root diameter

The high root diameter (RD) is associated with drought tolerance in wheat. The genotypes 

showing the highest RD are supported for drought stress tolerance due to large xylem ves-

sels with increased resource uptake and are well organized in searching deep soil layers to 

extract water [53]. Further, total root length, maximum root length and root density increase 

or decrease extremely with a small change in root diameter and decrease in root diameter 

would increase crop yield under drought. Significant reduction in root diameter, total root 
length and root density under drought conditions has been previously documented [37, 54]. 

Two MTAs were identified for RD, each in GLM and MLM. Both MTAs were located in chro-

mosome 5B, attributed by Xwmc 233 having LOD 3.1 and 3.3 as in Figure 9. Our results were 

consistent with earlier reports, where QTLs for RD on chromosome 5B at 4.5 cM have been 

mentioned [55].

Figure 7. QTL identified for RA on the basis of LOD in GLM.
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Figure 8. QTL identified for RDT on the basis of LOD in (a) GLM; (b) MLM.

Figure 9. QTL identified for RD on the basis of LOD in GLM.
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7. Conclusion

Among the abiotic stresses that limit wheat crop productivity, drought stress alone is by all 

means one of the most devastating factors. In the past, breeding efforts to improve drought 
tolerance response have been hindered primarily by its quantitative nature as well as our poor 

understanding of the physiological basis of yield in water-deficient conditions [16]. So far, most 

QTLs for drought tolerance in wheat have been identified through yield and yield compo-

nent measurements under water-limited conditions. No doubt, yield is the most desirable trait 

to breeders; still, it is very difficult to relate water use efficiency and identify potential target 
regions for positional cloning [15]. Only few studies have associated QTLs with specific com-

ponents of drought response. Although the development of gene-based molecular markers and 

genome sequencing should accelerate positional cloning, the genomic regions associated with 

individual QTL are still very large and are usually unsuitable for breeding programme [51–55]. 

From an application point of view, it is imperative to select genotypes that are able to optimize 

water use efficiency while maximizing yield in response to drought. Improving the competence 
of root systems to extract water from the soil is highly desirable, and any extra water extracted 

during grain filling definitely remarkably increases the yield in wheat. Thus, identification of 
markers or genes associated with root growth and architecture would be particularly useful for 

breeding programmes to improve root traits by molecular marker-assisted selection.
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