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Abstract

Human immunodeficiency virus type 1 (HIV-1), the etiologic agent of acquired immunode-
ficiency syndrome (AIDS), primarily infects T cells and cells of the monocyte-macrophage 
lineage. This is due to the presence of the cell surface receptor CD4 and the coreceptors, 
CXCR4, and CCR5. While the T-cell has classically been the cell type associated with HIV-1 
disease progression, cells of the monocyte-macrophage lineage have also been shown to 
play a major role in this viral pathologic process. Classically, this has involved monocytic 
cells in the peripheral blood and tissue macrophages, however, over the course of HIV 
disease, the promyelomonocytic cells of the bone marrow (BM) have also been shown to 
play a role in pathogenesis retroviral disease in that they play an integral role in the reseed-
ing of the periphery and end-organ tissues. This has involved an initial infection of the 
bone marrow hematopoietic progenitor cells. Given this observation, over the years there 
have been a number of cell lines that have been developed and provided valuable insights 
into research questions surrounding HIV-1 infection of the monocyte-macrophage cell lin-
eage. In this regard, we will examine the biological and immunological properties of these 
BM-derived cell lines with respect to their utility in exploring the pathogenesis of HIV-1 
in humans.
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1. Introduction

Human immunodeficiency virus type 1 (HIV-1) has been shown to primarily infect cells of 
the lymphoid and myeloid lineages in the peripheral blood and bone marrow (BM). One of 
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the roles of the bone marrow serves to repopulate the peripheral blood with fresh circulating 
cells in response to stimuli. During HIV-1 disease, the BM has been shown to be dysfunctional 
leading to the pathology commonly observed in the acquired immunodeficiency syndrome 
(AIDS), with thrombocytopenia, anemia, monocytopenia, and neutrocytopenia [1, 2]. HIV-1 
infection of bone marrow stromal cells, changes in the cytokine milieu of the bone marrow, 
and cytotoxic effects of HIV-1 proteins are pathogenic mechanisms involved in the impair-
ment of the differentiation and growth of hematopoietic progenitor cells (HPCs), ultimately 
leading to hematopoietic defects [3–5] during the course of HIV disease. Interestingly, HIV-1 
DNA was not detected in bone marrow–derived CD34+ HPCs in HIV-1–infected patients on 
combination antiretroviral [6]. However, other investigators have detected HIV-1 DNA in 
CD34+ HPCs in patients who are on antiretroviral therapy [7]. Numerous coinfections, as well 
as some lymphomas commonly observed in AIDS patients [8], have been shown to further 
impact hematopoiesis in HIV-1–infected individuals. Direct HIV-1 infection of hematopoi-
etic progenitor cells may contribute to hematopoietic abnormalities; however, the extent of 
infection in the bone marrow compartment remains controversial [9]. Numerous studies have 
demonstrated the susceptibility of CD34+ bone marrow–derived cell populations to HIV-1 
both in vivo and in vitro [10–13]. In general, the permittivity of CD34+ HPCs has been shown 
to depend on the state of differentiation, with the committed progenitor cells being the most 
susceptible and the quiescent stem cells being the most refractile to HIV-1 infection [14, 15]. 
In this regard, it has been shown that macrophage colony stimulating factor (M-CSF) [11] 

induces HIV-1 infection of HPCs and subsequent virus production involving increased CD4 
expression and enhanced viral replicative processes, respectively, emphasizing the crucial 
role that physiological changes in the bone marrow environment have on the HIV-1 suscepti-
bility replicative capabilities of this cellular compartment.

During the course of chronic HIV-1 infection, there is a characteristic loss of CD4+ T cells 
over time in the absence of effective therapy. However, with the era of highly active antiret-
roviral therapy (HAART), this trend has been reversed. Interestingly, over the course of this 
time, cells of the myeloid lineage, even though CD4+, have been shown to less susceptible 
to virus-induced cytopathic effect and cell death with a drop in cell numbers much less evi-
dent during disease progression [16]. In addition, this cell lineage has been shown to be able 
to traverse various endothelial cell barriers, including the blood-brain barrier, allowing the 
infected circulating cell of the monocytic lineage to transport HIV into tissues as perivascular 
macrophages [17, 18]. Once in tissues, the emerging infectious HIV-1 particle can then go on 
to infect other resident cells of that tissue. As these cells migrate to other tissues and as the 
immune response causes a general state of inflammation, the bone marrow is involving in 
replacing cells lost to infection and to facilitate the immunologic response to HIV infection. 
Given that there are reports of HPCs becoming infected in the bone marrow, one intriguing 
possibility is that mature progenitor cells or cells that are committed to the monocyte lineage 
but still capable of a limited number of cell divisions, may be infected by HIV-1 while still in 
the bone marrow and subsequently migrate to the blood and subsequently into peripheral 
tissues thereby contributing to the continued viral dissemination [19].

Given these observations, we will briefly review hematopoiesis to define how myeloid cells 
differentiate from hematopoietic stem cells (HSCs). We will then review the literature that 
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demonstrates the bone marrow as a site of HIV-1 infection. This approach will provide a 
framework to review and assess the literature concerning a number of cell lines that are 
currently available to be used to model virus-host interactions, as well as experimental para-
digms that have utilized these cell lines to understand basic virologic and immunologic 
concepts relevant to HIV infection. Finally, it will conclude by discussing the next most 
important pressing experiments to be performed and what questions these experiments will 
answer to understand HIV-1 infection of the bone marrow compartment and myeloid lin-
eage of cells.

2. CD34+ hematopoietic stem and progenitor cells

All cells of the hematopoietic system are derived from a common precursor cell, the hematopoi-
etic stem cell (Figure 1) [20]. Stem cells are defined as single cells that are clonal precursors of 
more stem cells of the same type, as well as a defined set of differentiated progeny cells [20, 21]. 
Stem cells normally represent only about 0.05% of cells in the bone marrow, and their popula-
tion is maintained at a constant level through self-renewal [22]. CD34+ progenitor cell popula-
tions, which are heterogeneous cell population containing true pluripotent stem cells and other 
more mature cells, are often used for hematopoietic stem cell transplantation [23]. The ability 
of the hematopoietic stem cells to home to the bone marrow following intravenous injection is 
mediated by the interactions of selectins on bone marrow endothelial cells with integrins on the 

Figure 1. Differentiation of CD34+ stem cells. CD34+ stem cells can be differentiated into all of the cell types that are 
found in the blood. Cells have to go through a number of differentiated stages of progenitor and immature cells to 
finally become a mature blood cell. As a cell differentiates it commits to numerous cell lineages. Adapted from Ref. [31].
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hematopoietic cells [24]. The CD34 sialomucin receptor is one of the several adhesions involved 
in the intra and extramedullary homing of progenitor cells into distinct microenvironments 
[25, 26]. The CD34 antigen is expressed on primitive human hematopoietic cells capable of both 
self-renewal and differentiation into diverse blood cell lineages [27]. HPCs normally reside in 
the bone marrow in close contact with the cells of stroma that provide cytokines, extracellular 
matrix proteins, and adhesion molecules [28]. Progenitor cells are compartmentalized in dif-
ferent areas of the bone marrow based on their degree of commitment and lineage differentia-
tion [29]. Bone marrow–derived CD34+ cells isolated from HIV-1–infected individuals have a 
diminished colony potential [30]. Studying infection of CD34+ progenitor cells is important in 
understanding the cytopenias and impaired colony growth in advanced stage HIV-1–infected 
patients [8].

CD34+ cells are a heterogeneous population of multipotent hematopoietic progenitors at differ-
ent stages of differentiation, residing in the adult bone marrow [32]. The CD34+CD38− immu-
nophenotype defines a rare, quiescent (when a cell is neither dividing nor preparing to divide, 
remaining in the G0 cell phase) subpopulation of primitive progenitor cells than can be function-
ally distinguished from committed CD34+/CD38+ progenitor cells by sustained clonogenicity in a 
long-term culture [33]. The more primitive CD34+CD38− cells are resistant to infection while the 
more committed CD34+CD38+ cells are more susceptible to HIV-1 infection [14]. Primitive hema-
topoietic cells are not directly infected though their function is markedly disturbed by the pres-
ence of virus [34]. HIV-1–infected individuals have been shown to have a decrease in the fraction 
of CD34+/CD38− stem cells in the bone marrow, compared to the healthy individuals [35]. No 
CD4 expression was detectable on the more primitive CD34+CD38− cells and no evidence for 
infection of these cells was demonstrated [14].

Hematopoietic stem cells are characterized by an extensive capacity for proliferation and dif-
ferentiation, as well as the ability to self-renew. Stem cells give rise to daughter cells, which 
undergo irreversible differentiation along a number of different hematopoietic cell lineages [36]. 
Hematopoiesis consists of a cascade of finely regulated events by which totipotent stem cells 
differentiate to all cells present in the blood [37]. Lineage commitment, differentiation, matu-
ration, and release of cells into the blood are under the control of a number of hematopoietic 
growth factors. Differentiation of hematopoietic stem and progenitor cells involves a series of 
molecular changes that result in progressive loss of self-renewal ability and pluripotency, and 
in parallel acquisition of specialized functions characteristic of mature blood cells [38]. Stem 
cells undergo two sequential differentiating processes; the first is commitment, by which stem 
cells lose their self-renewing capability and differentiate to other cells with a more limited dif-
ferentiating potential. The second process is maturation, which allows the terminal differentia-
tion of those cells committed to a specific terminal lineage [39]. Both the commitment and the 
maturation of hematopoietic cells arise from the gradual expression of lineage-specific genes. 
Commitment is defined as the decision a cell makes to enter, or generate progeny that enters, a 
particular maturation lineage at some future time [36]. This decision does not necessarily have 
to be accompanied by any immediate change in morphology or expression of novel membrane 
proteins or regulator receptors. Hematopoietic commitment is likely to be extrinsically regu-
lated, but there is only limited evidence, and probably only a limited opportunity, for hemato-
poietic regulators to be involved in the commitment events [36]. Once established, maturation 
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programs do not seem to be qualitatively altered by the particular growth factors that activate 
mature cell production [36]. Most of the cell differentiation pathway takes place in the bone mar-
row. As CD34+ cells differentiate, they can commit to a specific lineage at specifically defined 
branch points (Figure 1). A number of cytokines influence and promote the cell differentiation 
process. Once the cells have differentiated to monocytes, they can travel through the blood and 
migrate into tissues where they can become tissue macrophages or dendritic cells (Figure 2).

3. Cells of the monocyte-macrophage lineage

Monocytes belong to the mononuclear phagocytic system and constitute 3–8% of the periph-
eral blood leukocytes. Monocytic nuclei are eccentric, either oval or kidney shaped and  contain 
small vacuoles in the cytoplasm that are lysosomes filled with degradative enzymes. Monocytes 
originate from promonocytes, which are rapidly dividing precursors in the bone marrow. 
When the mature cells enter the peripheral blood, they are termed monocytes (Figure 2). The 
monocytes often leave the blood and infiltrate tissues, undergoing additional changes and 
are then referred to as macrophages [40]. Macrophages act as effector cells,  attacking micro-
organisms and neoplastic cells and removing foreign material, as well as presenting antigen 

Figure 2. Differentiation of monocytes-macrophages from CD34+ stem cells. The monocytic differentiation pathway and 
growth factors are involved, as well as the sites where the differentiation takes place is depicted. The majority of the cell 
differentiation stages occur within the bone marrow. As the CD34+ cell differentiates, it commits to the myeloid lineage 
at various branch points for other lineages, such as the lymphoid, erythroid, and granulocytic lineages. A number of 
cytokines that influence and promote cell differentiation are also shown. Certain cell lines and the point at which they 

are located in the cell differentiation pathway are also indicated. Once the cells have differentiated into monocytes, they 
can travel through the blood and migrate into tissues where they can become tissue macrophages or dendritic cells and 
also be activated.
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to  lymphocytes [41]. Macrophages contain receptors for antibody and complement, which 
enhance their ability to phagocytose organisms. Macrophages produce an enormous number of 
soluble factors that are important in the immune response and in the process of inflammation.

Monocytic cells are generated in the bone marrow from pluripotent stem cells that can differ-
entiate into multiple hematologic cell types. Within the bone marrow, cytokines induce stem 
cells to divide and to produce lineages committed to differentiating into monocytic, granulo-
cytic, erythroid, or megakaryocytic cell types (Figure 2) [42, 43]. The pluripotent progenitor cell, 
called the granulocyte-erythroid-megakaryocyte-macrophage colony forming unit (GEMM-
CFU), becomes further committed toward either the granulocytic or monocytic phenotype in 
the presence of IL-1 and/or IL-3, becoming the granulocyte-macrophage colony forming unit 
(GM-CFU) (Figure 2) [39, 42, 43]. The granulocytic and monocytic lineages are closely bound 
together throughout hematopoiesis and are commonly referred to as the myelomonocytic lin-
eage [42, 43]. Repopulation of the myelomonocytic GM-CFU occurs in the presence of IL-3 or 
granulocyte-macrophage colony stimulating factor (GM-CSF) [37]. Commitment toward the 
macrophage lineage requires the presence of macrophage colony stimulating factor (M-CSF), 
along with IL-3 or GM-CSF [44, 45]. The committed promonocytic cells mature into smaller 
monocytic cells that can enter the blood. Monocytes circulate within the blood for 8–72 hours 
before migrating into a number of different tissues where they complete their development, 
becoming mature tissue macrophages (Figure 2) [46–48]. Macrophages are larger in diam-
eter than monocytes and possess increased lysosomal content and hydrolytic enzymes [49]. 
Macrophages are capable of division and can be a self-sustaining population.

The phenotype and function of the macrophage is dependent on the tissue in which it resides. 
Therefore, resident macrophages are often defined by the tissue-specific environment in 
which they ultimately reside. Specific types of macrophages include: the microglial cells of the 
brain, the Kupffer cells in the liver, the Langerhans cells of the skin, the alveolar macrophages 
of the lung, the mesangial cells of the kidney, and the sinus macrophages of the spleen [50–52].

4. Bone marrow hematopoiesis disorders associated with HIV-1 infection

Hematologic abnormalities are very common in HIV-1–infected individuals and they occur at 
all stages of disease, but the mechanisms by which HIV-1 contributes to these abnormalities 
are poorly understood [53, 54]. HIV-1 affects the hematopoietic system, causing a number of 
peripheral blood cytopenias [55, 56]. HIV-1–infected patients suffer from many hematologic 
disorders and exhibit uni or multilineage suppression of bone marrow hematopoiesis including 
anemia, lymphocytopenia, thrombocytopenia, granulocytopenia, monocytopenia, and neutro-
penia that can be attributed to malfunction or premature death of the specific hematopoietic 
cells [8, 57–59]. The hematopoietic disorders are frequently associated with impaired HPC 
growth, BM dysplasia, plasmacytosis, and lymphoid infiltrates [57, 60], and they suggest virus-
induced abnormalities in the bone marrow microenvironment [61–63]. T cell depletion in AIDS 
is thought to be, at least in part, due to the failure of T cell development from lymphohemato-
poietic stem cells [14].
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A large number of studies have been conducted to identify and characterize the pathophysi-
ologic mechanisms leading to bone marrow dysfunction in patients with AIDS. HIV-1 may 
affect hematopoietic stem cells (HSCs) by both direct and indirect mechanisms leading to 
defects in maturation of CD34+ cells and the numerous cytopenias. A number of indirect 
mechanisms for HIV-1–induced suppression of hematopoiesis have been proposed, such as: 
the stimulation of abnormal cytokine production by HIV-1 infection [30, 64], the suppressive 
effects of viral gene products [65, 66], and the activation of apoptosis by gp120-mediated 
cross-linking of CD4 [67]. Hematologic abnormalities in the majority of infected individuals 
could result from indirect effects of HIV-1, such as cytokine dysregulation, rather than HIV-1 
expression in the bone marrow itself [53]. HIV-1 Tat has been shown to decrease differen-
tiation in an HPC line [68]. In addition, the viral accessory protein Nef has been shown to 
decrease hematopoiesis in vitro [69]. Studies have also demonstrated that HIV-1 may induce 
apoptosis in hematopoietic cell lines [70, 71]. Modification of the behavior of hematopoi-
etic accessory cells by HIV-1 infection may indirectly alter the growth and differentiation of 
adjacent uninfected lymphoid, myeloid, and primitive hematopoietic cell populations and 
account for HIV-1–mediated suppression of hematopoiesis [72]. Infection of auxiliary cells, 
particular macrophages, and microvascular endothelial cells, induces a substantial alteration 
in the supportive function of the hematopoietic stromal tissues, indirectly influencing the 
survival and growth of hematopoietic progenitors [8].

5. Role of growth factors, cytokines, and cellular activation in HIV-1 

pathogenesis in the bone marrow

Stem cells, progenitor populations, and their progeny are largely defined by their cytokine 
responsiveness and cytokine receptor phenotype. Cytokines are soluble glycoproteins that act 
through cell surface receptors at very low concentrations and control the production of stem 
cells. The most prominent cytokines are erythropoietin for the production of red blood cells, 
GM-CSF for granulocytes and macrophages, G-CSF for granulocytes, thrombopoietin for 
platelets, and M-CSF or CSF-1 for monocyte-macrophage production and function. Cytokines 
may be stimulatory or inhibitory and may show additive or synergistic effects on the renewal, 
proliferation, survival, and differentiation of cells. They can also modulate cell migration and 
adherence. Cytokines are important components of the immunoregulatory network and have 
been demonstrated to play a major role in the regulation of HIV-1 expression in vitro. Potent 
modulation of HIV-1 expression has been demonstrated either by manipulating endogenous 
cytokines or by adding exogenous cytokines to culture. The net level of virus replication in 
an HIV-1–infected individual reflects, in part, the balance between inductive and suppressive 
host factors that are mediated mainly by cytokines. Reverse transcription, integration, and 
virus spread are much more efficient in cells that have been activated by cytokines.

Cytokines and growth factors function by activating a number of different transcription  
factors. Sequentially ordered activation of transcription factors controls lineage commitment. 
Once a particular set of transcription factors has been induced, reversibility is limited. In 
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the early phases of differentiation, the regulatory roles of the growth factors overlap [36]. 
Later in development, some growth factors are lineage-specific, and govern the maturation 
of single lineages. Hematopoietic cells have distinctive patterns of growth factor receptor 
expression that evolve as the cells differentiate [36]. Binding of the growth factors to their 
receptors leads to activation of intracellular kinases and triggers cell proliferation [73, 74]. 
Hematopoietic growth factors not only stimulate cell proliferation, but also prolong cell sur-
vival by exhibiting antiapoptotic effects. Growth factors, such as G-CSF and GM-CSF, can 
stimulate early hematopoietic cell proliferation, increase the number of cells produced by 
the bone marrow, prolong the life span of cells, and augment cell function [75]. In the mar-
row, blood cells develop in two phases: the proliferative and the maturational phases. During 
cell proliferation, the precursors of blood cells normally undergo cell division at intervals of 
about 18–24 hours. In the maturational phase, cell division ceases, but additional modifica-
tions occur before the cell enters the blood. Progenitor cells exhibit a higher proliferative rate 
and more lineage restriction than stem cells. They are also responsive to a smaller subset of 
cytokines. The production of all cell types is controlled by a negative feedback mechanism. 
When demand for specific cell types increases, or peripheral levels of the cells fall, then stimu-
latory cytokines are released to generate new cells within a few days.

6. Organization of bone marrow and its role as a viral reservoir

Hematopoietic cells develop within the medullary space, which has a rich vascular supply and 
is populated by many cell types including: adipocytes, vascular endothelial cells, fibroblasts, 
and stromal cells (Figure 3). The frequency of HSCs in the bone marrow is relatively constant 
[76, 77]. Vascular endothelial cells, marrow fibroblasts, and stromal cells produce hematopoietic 
growth factors and chemokines that regulate blood cell production [78]. Vascular endothelial 
cells form a barrier that keeps immature cells in the marrow and permits mature cells to enter 
the blood. Macrophages in the bone marrow remove dead or apoptotic cells and clear the blood 
of foreign materials that enter the marrow (Figure 3). Stem cells and primitive cells bind tightly 
to the stroma, while maturing precursors and terminally differentiated cells are nonadherent.

The bone marrow may serve as an important reservoir of HIV-1 in the body. Previous results 
have suggested that the bone marrow macrophages may act as a reservoir for HIV, and infection 
of this cell population may affect hematopoiesis, either by transmission of HIV infection to devel-
oping progenitor cells or by altering the ability of the stroma to support normal development 
[80]. The circulating CD34+ progenitor cell population may be infected in vivo and may serve as a 
reservoir for HIV-1 that is capable of trafficking the virus to diverse anatomic compartments [13]. 
Peripheral blood–derived CD34+ progenitor cells may also be infected and disseminate HIV-1 to 
sites throughout the body. Integration of proviral DNA into stem cell genomes could lead to the 
spread of HIV-1 infection through the expansion of infected clones or interference with normal 
stem cell maturation and proliferation, resulting in the interruption of normal hematopoiesis 
[14]. Studies have shown that primary CD34+ progenitor cells are susceptible to infection by 
diverse strains of HIV-1, particularly as they begin to differentiate, and infection can be sustained 
for prolonged periods in vitro [13, 32]. This may contribute to a chronically infected pool of func-
tionally altered cells containing viruses of different tropism across different cell lineages [32].
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7. Direct infection of CD34+ hematopoietic progenitor cells by HIV-1

Direct involvement of HIV-1 infection may be important in leading to HSC failure and bone 
marrow dysfunction [59]. Direct infection and destruction of hematopoietic stem or progeni-
tor cells may explain the defective hematopoiesis in HIV-1–infected individuals [81]. Attempts 
to understand HIV-1–mediated bone marrow dysfunction have yielded inconsistent results 
regarding the susceptibility of bone marrow progenitors to viral infection [14]. Conflicting 
studies have been reported regarding the susceptibility of human CD34+ cells to HIV-1 infec-
tion both in vivo and in vitro, and there has been a significant controversy regarding whether 
HIV-1 can infect HSCs directly, leading to bone marrow dysfunction and the cytopenias. 
A number of studies of HIV-1–infected individuals have failed to detect productively infected 
CD34+ progenitor cells from the bone marrow [54, 82, 83], while other studies have shown 
that rare infection of CD34+ progenitor cells can occur [84, 85] and may be more prevalent in 
patients with advanced disease [86].

Direct infection of the primitive progenitor cells, which represent 0.01% of bone marrow cells, 
is difficult to detect [13]. Several reports have described that bone marrow CD34+ stem and/
or progenitor cells are infected with HIV-1 at low frequencies in some patients [84]. Purified 
CD34+ HPCs from adult peripheral blood were reported to be susceptible to HIV-1 infection, 
as shown by PCR analysis for the presence of proviral sequences in the ensuing myeloid and 
erythroid colonies or by virus production in culture [13, 81, 87]. Several studies have shown 
successful in vitro infection of the CD34+ population [11, 88], although studies in this area 

Figure 3. Hematopoiesis within the bone marrow. Hematopoiesis occurs within the bone marrow and begins with stem cells 
associated with stromal cells that nourish them and supply growth factors. Stem cells differentiate through various stages 
of progenitor cells and commit to various cell lineages eventually entering the blood circulation. Adapted from Ref. [79].
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have focused on hematological consequences of HIV-1 infection and its effects on progenitor 
cells [10, 81, 88]. HIV-1 infection in vitro has been reported in highly purified bone marrow–
derived CD34+ cells [89] and in CD34+ progenitor cells that coexpress CD4 [70]. Based on a 
number of reports, it was found that a low fraction of progenitor cells is able to be infected 
ex vivo by HIV-1 under certain conditions, the growth of the few cells infected by HIV-1 may 
not be impaired as a result of the infection, while in vivo infection of progenitor cells occurs 
rarely, if ever [8].

The number of HIV-positive HPCs may sharply increase in advanced AIDS because of wide-
spread HIV-1 infection, thus explaining the reports on in vivo HIV-positive CD34+ cells in the 
advanced disease [85, 86]. Studies suggest that HIV-1-expressing cells are present in the bone 
marrow during late stages of disease [53]. In individuals with advanced HIV-1 infection, about 1 
in 500 CD34+ cells were shown to be infected with HIV-1 [86]. The CFU capacity of the bone mar-
row stem cells was impaired especially in patients with advanced disease, even if HIV-1 does 
not directly infect these cells [90]. Depletion of primitive progenitors observed in later stages of 
HIV-1 disease may represent a virus-induced alteration in progenitor cell differentiation [91–93].

Multiple and potentially synergistic mechanisms may be responsible for the resistance of CD34+ 

cells to HIV-1 infection [28]. Most studies indicate that bone marrow–derived HSCs cannot be 
infected by HIV-1 until they undergo modest differentiation in order to express the appropri-
ate receptors to enable virus entry and subsequent replication [59]. Studies have demonstrated 
the presence of both CD4 [94] and the chemokine receptors CXCR4 and CCR5 [95] on CD34+ 

cells. The most primitive bone marrow HPCs lack the surface molecules CD4, CXCR4, and 
CCR5, which are required for HIV-1 infection, so they cannot be infected with HIV-1 [14]. CD4+ 

cells were found only within the more mature CD34+CD38+ cell population, explaining their 
susceptibility to infection [14]. Cell surface expression of CXCR4 and CCR5 has been found on 
peripheral blood–derived CD34+ progenitor cells [13]. When CD4 expression is low, infection 
becomes dependent on coreceptor expression levels. High chemokine receptor levels can com-
pensate for low surface expression of CD4 in mediating HIV-1 infection [13]. T-tropic strains of 
HIV-1 have been shown to infect cultures of purified CD34+ progenitor cells in vitro, suggesting 
the presence of the CXCR4 coreceptor on the cells [62, 81]. The natural chemokine ligands for 
the major HIV-1 coreceptors are able to readily block entry of HIV-1 [96]. The CC-chemokines 
RANTES, MIP-1α, and MIP-1β are the natural ligands for CCR5 and block the entry of R5 
viruses, whereas SDF-1, the natural ligand for CXCR4, blocks the entry of X4 viruses, thus 
inhibiting the infection and spread of the virus. The mechanisms relevant to inhibition of HIV-1 
infection involve the blocking of binding of the virus to its coreceptor, thus blocking viral entry.

8. Specific viral populations within the CNS suggest bone marrow 
origination

Because the CNS has been shown to be more “immunologically privileged” than many other 
organs, it has been suggested that virus enters the CNS early after primary infection and 
then replicates there beyond the control of the peripheral immune system to a great degree. 
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In addition, some antiretroviral drugs such as protease inhibitors have trouble crossing the 
blood-brain barrier [97, 98]. Inefficient drug delivery combined with an “immunologically 
privileged” site leads to viral reservoirs remaining in the CNS throughout the duration of 
infection. Viral genome sequence analysis supports the notion that CNS-specific or neurotropic 
forms of virus exist [99–103]. Recent studies demonstrate that viral sequences within specific 
CNS regions match, phylogenetically, with sequences found in the bone marrow [104, 105]. 
This supports the hypothesis that virus could be transported into the CNS in hematogenous-
derived cells.

HIV-1 gp160 sequences from postmortem tissues collected from a patient with HIV-1 dementia 
were isolated and analyzed for sequence similarity [105]. Gartner and colleagues found that 
the gp160 sequences from patients with dementia demonstrate remarkable sequence similar-
ity between isolates from subcortical regions of the brain (particularly in deep white matter 
(DWM)) and those of the bone marrow [104]. Phylogenetic analysis showed that the sequences 
from DWM were more closely related to those from bone marrow and peripheral blood mono-
cytes. Sequences from DWM and monocytes clustered together, indicating greater homology 
between the HIV-1 species in these groups, as well as a more recent evolutionary divergence 
between them, relative to the species in other tissues. The phylogenetic tree showed that the 
bone marrow sequences were clustered with the DWM and monocyte group, although the bone 
marrow species diverged at an earlier time. Viral species from the DWM were more closely 
related to those in bone marrow than those in other tissues, with the DWM, monocyte, and bone 
marrow sequences clustering together as a group. These observations suggest that of bone mar-
row–derived monocytes traffic into the DWM of the brain during late stage infection. Bone mar-
row–derived monocytes within the circulation may enter the DWM and become perivascular 
macrophages, potentially transmitting HIV-1 to neighboring cells [106]. A critical step toward 
the development of HIV-associate dementia may be an increase in monocyte trafficking into the 
brain [107]. This process may be either initiated and/or accelerated during late-stage infection, 
which could explain why dementia occurs at this time. These observations point to the bone 
marrow as the likely source of virus entering the CNS in terminal stages. The frequency and 
extent of infection and the kinetics of virus replication in bone marrow are not well classified.

9. Cell lines to model HIV infection of bone marrow

A number of different monocytic progenitor cell lines have been derived that can be used as 
experimental tools (Figure 2). These cell lines will be discussed from the least differentiated 
to the most differentiated cellular phenotype.

9.1. KG-1

The KG-1 cell line is a CD34+/CD38+ myelomonocytic progenitor cell line that was derived 
from the bone marrow of a patient with acute myelogenous leukemia [108]. A variant CD34+/

CD38– cell line, called the KG-1a subline, morphologically and histochemically resembles 
undifferentiated blast cells. The KG-1 cell line is composed predominantly of myeloblasts and 
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promyelocytes [109]. KG-1 cells can be induced to differentiate into dendritic-like cells by the 
addition of GM-CSF and TNF-α, or phorbol 12-myristate 13-acetate (PMA) with ionomycin or 
TNF-α [110]. KG-1 cells can be induced to differentiate into macrophage-like cells in response 
to phorbol esters such as 12-O-tetradecanoylphorbol-13-acetate (TPA), while the KG-1a cells 
are resistant to the effects of TPA [111, 112]. With respect to studies of HIV-1 pathogenesis 
and disease, this cell line has not been as widely used as you will see for HL-60 and TF-1 cell 
lines due to a very low to no expression of CD4 on the cell surface [113, 114]. However, many 
researchers who examine regulation of CD4, CCR5, and CXCR4 on the myeloid cell lineage 
use this cell line in combination with HL-60, TF-1, and others. Interestingly, a number of stud-
ies have examined coinfection of human herpesvirus type 6 (HHV6) and HIV-1 and demon-
strated that if KG-1 cells were first infected with HHV6, this would induce CD4 expression 
thereby facilitating subsequent HIV-1 infection by viruses that use either CCR5 or CXCR4 as 
the coreceptor [113–115]. They have also been used for studies surrounding toxicity of drugs 
[116] or for alteration of normal cell function [117] for bone marrow myeloid lineage of cells 
potentially to be used for HIV treatments.

9.2. TF-1

The TF-1 cell line was established by Kitamura and colleagues in 1987 from a bone marrow 
aspiration sample of a 35 year old Japanese male with erythroleukemia and severe pancy-
topenia [118]. TF-1 cells, which have been shown to express several erythroid and myeloid 
markers, are CD34+/CD38+ erythro-myeloid HPCs blocked at an early stage of hematopoietic 
differentiation [118, 119]. The cells have also been shown to be completely dependent on IL-3 or 
GM-CSF for long-term growth [118]. Erythropoietin (EPO) also sustains the short-term growth 
of TF-1 cells but does not induce erythroid differentiation [119]. TF-1 cells can be induced to 
differentiate into two different pathways, and, depending on the type of inducer, are capable 
of differentiating into either mature erythroid cells or macrophage-like cells [118]. Hemin and 
δ-aminolevulinic acid can induce erythroid differentiation with hemoglobin synthesis in TF-1 
cells, while PMA induces dramatic differentiation into macrophage-like cells [118]. TF-1 cells 
consist of a relatively homogenous population of medium-sized cells with the appearance of 
blasts [120]. They contain moderate amounts of dark basophilic, agranular cytoplasm with fre-
quent small cytoplasmic vacuoles, and have a smooth cytoplasmic border. The nuclei are oval 
with fine chromatin and 1–3 macronucleoli. Many binucleated and occasional multinucleated 
forms are present [120].

The TF-1 cell line has provided a useful tool and in vitro model system to examine HIV-1 
infection of a progenitor cell population during differentiation into monocytic cells. Previous 
studies have demonstrated that TF-1 cells can be productively infected by the R5-dependent 
BAL and YU-2 strains of HIV-1, but not by the X4-dependent LAI HIV-1 strain [121]. 
Differentiation of TF-1 cells down the myeloid pathway or the presence of higher levels of 
the CCR5 coreceptor as compared to the CXCR4 coreceptor could explain why a produc-
tive HIV-1 infection only occurred in cells infected with HIV-1 R5-dependent strains. PMA-
induced macrophage-like differentiation of TF-1 cells, characterized by a decrease in nuclear 
size, an increase in the amount of nuclear chromatin condensation, absence of nucleoli, and 
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increased cytoplasm [120]. The majority of the cells have moderately abundant light basophilic, 
agranular to finely granular cytoplasm with irregular cytoplasmic borders [120].

TF-1 cells have been used extensively to understand host pathogen interactions between the 
HIV-1 protein Nef and numerous cellular pathways [122, 123]. These studies have led to a fur-
ther understanding of how replication is differed between cell types. Specifically, these studies 
helped identify factors such as STAT3 that are affected by Nef and allow for the survival of TF-1 
cells [124]. Like with KG-1 cells, TF-1 cells were also used to confirm that human herpesvirus 
6 coinfection with HIV can lead to susceptibility of TF-1 cells to HIV-1 infection [113, 114]. In 
addition, it was shown in TF-1 cells that lymphocyte function-associated antigen 1 (LFA-1) was 
needed to confer susceptibility to HIV-1 infection [125]. TF-1 cells have also been used to assess 
transcriptional activation of the HIV-1 LTR in a number of activation and differentiation states 
of these cells. This demonstrated the importance of the C/EBP transcription factor in CD34+ 
progenitor cells for driving LTR activation [126]. In addition, the transcription factors NF-κB 
and Sp were shown to be important when TF-1 cells were activated by phorbol 12-myristate 
13-acetate (PMA), conditioned medium from PMA-treated TF-1 cells, or IL-1² [127, 128].

9.3. HL-60

The HL-60 cell line, obtained by leukapheresis from the peripheral blood of a patient with 
acute promyelocytic leukemia, is a promyelocytic cell line [129]. In culture, the cells can be 
stained as promyelocytes or myeloblasts, although only about 10% of the cell population can 
progress to more mature cells [130]. Differentiation can be induced by a number of agents 
such as dimethyl sulfoxide (DMSO), butyrate, hypoxanthine, PMA, actinomycin D, and reti-
noic acid. The cells have the ability to differentiate into either granulocytic or monocytic cells, 
depending on whether they are treated with either DMSO or PMA, respectively [131–133]. 
Monocytic differentiation can also be induced by treatment with 1-25 dihydroxyvitamin D

3
 

or lymphokine [134, 135]. HL-60 cells exhibit increased adherence following differentiation 
toward either the monocytic or granulocytic pathways [131]. When HL-60 cells have been 
treated with PMA, they have been shown to exhibit morphologic changes that are charac-
teristic of monocytic cells, including the appearance of pseudopodia, cerebriform nuclei, 
and the disappearance of azurophilic granules. However, they fail to produce secondary 
granules that are typical of mature cells indicating incomplete maturation [136]. Following 
chemically induced monocytic differentiation, increased production of acid phosphatase, 
β-glucuronidase, and myeloperoxidase has been observed [137]. Thus, the HL-60 cell line 
exhibits characteristics of an undifferentiated myeloid progenitor. Because of its ability to 
differentiate toward both granulocytic and monocytic cell types, HL-60 cells are considered a 
model for cells of the myelomonocytic lineage.

These cells have been widely used in studies on HIV-1 infection. This is because of their 
ability to be infected in an unactivated state as well as because of the development of the 
OM-10.1 cell, a clonally derived cell line from HIV-1–infected HL-60 promyelocytes which 
harbor a single integrated provirus that is silent until activated [138]. In the beginning of 
the epidemic, a number of studies were conducted with the HL-60 and OM-10.1 cells to 
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determine and characterize the viral infection and replication dynamics within cells of this 
lineage [138–143]. These cells have been shown to retain CD4, CXCR4, and CCR5 expres-
sion and retain CD4 expression unless viral replication is active [138]. Given this observa-
tion, the HL-60 and OM-10.1 cell lines have been used in several studies that simply aim 
at examining the levels of CD4, CXCR4, and CCR5 or other surface markers under various 
cellular physiological conditions and drug treatments [138, 144–159]. These cells have also 
been used to screen methodologies or drugs that may inhibit HIV-1 infection or reduce tran-
scriptional activation of the virus [117, 160–173]. These cell lines have also been used in stud-
ies of drug toxicity, permeability, and/or effects on cellular activation and differentiation to 
gain an understanding of what specific drugs might do to cells in the bone marrow [144, 154, 
174–183], as well as determining what signaling pathways may play a role or become dys-
regulated [184–189]. Additionally, other studies have been completed that utilize these cells 
to examine the role that distinct viral determinants as well as specific host factors have on 
cellular tropism, cellular differentiation, and cytopathology [190–193]. They have also been 
used in examining the role of CDK9 and characterizing its function based on known inter-
actions with Tat [166] as well as how Nef manipulates intracellular Ca(2+) stores through 
SH3-mediated interactions in myelomonocytic cells [194].

Because of the more recent interest in HIV-1 latency, the OM-10.1 cell line has been used to 
understand drugs that may activate latent viral reservoirs for shock and kill or kick and kill type 
therapeutics. Some specific examples include a small molecule activator of protein phosphatase-1 
(SMAPP-1) [195], NCH-51 [196], hybrid liposomes (HL) composed of dimyristoylphosphatidyl-
choline (DMPC) and polyoxyethylene alkyl [197], or contact with T cells [198]. Additionally, these 
cells have been used to characterize the mechanisms involved in maintaining HIV-1 latency [199].  
The integrated provirus in these cells seems to be latent due to a transcriptional control mecha-
nism and can be induced by TNF-α, suggesting a potential NF-κB-mediated control [200].

9.4. U-937 and THP-1

U-937 cells are an immature monocytic cell line derived from the pleural effusion of a patient 
with histiocytic lymphoma [201]. U-937 cells exhibit the morphologic and histochemical char-
acteristics of monoblastic cells, including the expression of ²-glucuronidase and the release of 
lysozyme into the culture [201, 202]. Only a small percentage of undifferentiated U-937 cells 
are phagocytic. Furthermore, U-937 cells lack the ability to kill cells expressing foreign anti-
gen presented by MHC class I [203, 204]. U-937 cell lines exhibit characteristics of monoblastic 
cells in their undifferentiated state, and can be induced to differentiate toward a more mature 
macrophagic cellular phenotype by a number of chemical agents. PMA can induce differen-
tiation of U-937 cells toward a more mature monocytic phenotype [205, 206]. Differentiated 
U-937 cells have increased adherence and ramification, along with greater phagocytic activity 
and the induction of lysozyme and nonspecific esterase activity [206, 207]. Other chemical 
agents can also be used to induce macrophage differentiation of U-937 cells. Treatment with 
retinoic acid or 1-25 dihydroxyvitamin D

3
 can induce the differentiation of U-937 cells. Like 

the HL-60 cell line, a U-937 cell line carrying integrated HIV-1 proviral DNA has been con-
structed with the integrated viral genome in a quiescent configuration that has been shown 
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to be capable of being activated into a transcriptionally active state capable of driving the 
production of infectious virus. This cell line was termed U1 [208]. Like with HL-60, the U-937 
cell line has been used in several types of experiments including experiments to examine what 
is needed to reactivate the integrated virus [209–214] and most recently in using CRISPR/cas9 
technology to excise HIV out of cells as a potential “cure” strategy [215].

THP-1 cells are a monocytic cell line derived from the peripheral blood of a 1-year old male 
patient who had acute monocytic leukemia [216]. The difference between THP-1 cells and 
U-937 cells is the origin and maturation stage of both cell lines. U-937 cells are of tissue ori-
gin and are therefore at a more mature stage. THP-1 cells are derived from a blood leuke-
mia which represents a less mature stage. There is extensive literature describing the use of 
vitamin D3 or PMA to differentiate THP-1 cells into macrophages [216]. Recent literature 
has determined a protocol for PMA that seems to be the most effective to allow differentia-
tion of THP-1 monocytes into macrophages [217]. Interestingly, comparing peripheral blood 
mononuclear cells (PBMC) monocytes and THP-1 cells has uncovered slight variations in 
their response to various stimuli. Upon stimulation with Lipopolysaccharide (LPS), PBMC 
monocytes produce a greater amount of proinflammatory cytokines such as, TNF-α, IL-6, and 
IL-8 compared to THP-1 cells [218]. These variations in response become much more similar 
when PBMC and THP-1 monocytes are differentiated into macrophages [219]. Interestingand 
important for several lines of experimentation, THP-1 cells can be polarized to the M1 or M2 
phenotype depending on the stimuli provided.

Due to the differentiation state of U-937 and THP-1 cells, they have been used very widely to 
mimic HIV-1 infection of peripheral blood monocytes. Due to this, we will not review their 
use in HIV-1 research in depth as this review focused on promyelomonocytic cell systems. 
However, there have been some recent reviews that have focused more specifically on the 
peripheral blood monocytes as well as their utility in studies of HIV-1 latency [220–223].

10. Conclusion

Although HIV-1 may not be able to infect CD34+ stem cells, the research described above 
shows that they are able to infect the more differentiated progenitor cells. As the cells differ-
entiate from the CD34+ stem cell, the HIV-1 receptor and coreceptor profiles become altered 
and enhance HIV-1 infection. Thus, the virus infects progenitor cells as they differentiate 
down the myeloid lineage in the BM and in the blood. Research surrounding this line of 
investigation has come from examining cells from patients as well as through development of 
derivative cell lines. As described here the KG-1, TF-1, and HL-60 cell lines have all been used 
to understand at which stage of the myeloid cell lineage HIV-1 may be able to infect. This 
has resulted in understanding this is restricted primarily by the levels of CD4 and CXCR4 or 
CCR5 on the cells. Given this it appears that HIV-1 can infect cells as early as the  pluripotent 
myeloid precursor (Figure 2). Because of these models there has been  extensive work to 
examine drug toxicities, regulation of HIV-1 infection, and understanding of how HIV-1 
may affect hematopoiesis. However, due to ART making HIV-1 infection a more chronic 
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 condition and the theory that one of the main reservoirs may involve the myeloid lineage of 
cells, including the promyelomonocytic cells of the bone marrow. Hence, this cellular com-
partment has now taken on a renewed interest. This is evident in the use of the OM-10.1 cell 
line model for mechanistic studies concerning HIV-1 latency as well as testing of latency reac-
tivators on the various cell lines derived from this lineage of cells. It is the role of the myeloid 
precursor cells during the course of chronic infection that will be one of the major focal points 
of future research studies. The use of the TF-1 and HL-60 cells especially, will be very useful 
with respect to answering questions focused on determining when do these cells transverse 
the vascular endothelium at an increased rate. Do these infected bone marrow–derived cells 
traffic to end organs? Do they contribute to the increase in activated monocytes observed 
in the blood that link to HIV-1-associated neurocognitive impairment? Are these promyelo-
monocytic cells in the bone marrow infected by cell-free HIV-1 or through cell-to-cell contact 
with other cells? Are the viruses that infect these cells more dependent on CXCR4 or CCR5 
and is there genetic variability more related to a reservoir virus that was generated early in 
infection and has remained or has continually developed over time in infected patients? These 
are a few questions that these cell lines will help to answer as research in this field advances.
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