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Abstract

Over the last hundred years, many techniques have been developed for the solution of
ordinary differential equations and partial differential equations. While quite a major
portion of the techniques is only useful for academic purposes, there are some which are
important in the solution of real problems arising from science and engineering. In this
chapter, only very limited techniques for solving ordinary differential and partial differ-
ential equations are discussed, as it is impossible to cover all the available techniques
even in a book form. The readers are then suggested to pursue further studies on this
issue if necessary. After that, the readers are introduced to twomajor numerical methods
commonly used by the engineers for the solution of real engineering problems.

Keywords: differential equations, analytical solution, numerical solution

1. Introduction

1.1. Classification of ordinary and partial equations

To begin with, a differential equation can be classified as an ordinary or partial differential

equation which depends on whether only ordinary derivatives are involved or partial deriva-

tives are involved. The differential equation can also be classified as linear or nonlinear. A

differential equation is termed as linear if it exclusively involves linear terms (that is, terms to

the power 1) of y, y0, y″ or higher order, and all the coefficients depend on only one variable x as

shown in Eq. (1). In Eq. (1), if f(x) is 0, then we term this equation as homogeneous. The general

solution of non-homogeneous ordinary differential equation (ODE) or partial differential

equation (PDE) equals to the sum of the fundamental solution of the corresponding homogenous

equation (i.e. with f(x) = 0) plus the particular solution of the non-homogeneous ODE or PDE.

On the other hand, nonlinear differential equations involve nonlinear terms in any of y, y0, y″,

or higher order term. A nonlinear differential equation is generally more difficult to solve than

linear equations. It is common that nonlinear equation is approximated as linear equation
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(over acceptable solution domain) for many practical problems, either in an analytical or

numerical form. The nonlinear nature of the problem is then approximated as series of linear

differential equation by simple increment or with correction/deviation from the nonlinear

behaviour. This approach is adopted for the solution of many non-linear engineering

problems. Without such procedure, most of the non-linear differential equations cannot be

solved. Differential equation can further be classified by the order of differential. In general,

higher-order differential equations are difficult to solve, and analytical solutions are not avail-

able for many higher differential equations. A linear differential equation is generally

governed by an equation form as Eq. (1).

dny

dxn
þ a1ðxÞ

dn�1y

dxn�1
þ…þ anðxÞy ¼ f ðxÞ (1)

“Non-linear” differential equation can generally be further classified as

1. Truly nonlinear in the sense that F is nonlinear in the derivative terms.

F x1, x1, xn, u,
∂u

∂x1
,
∂u

∂x2
,

∂2u

∂x1∂x2

� �

¼ 0 (2)

2. Quasi-linear 1st PDE if nonlinearity in F only involves u but not its derivatives

A1ðx1, x2, uÞ
∂u

∂x1
þ A2ðx1, x2, uÞ

∂u

∂x2
¼ Bðx1, x2,uÞ (3)

3. Quasi-linear 2nd PDE if nonlinearity in F only involves u and its first derivative but not its

second-order derivatives

A11 x1, x2, u,
∂u

∂x1
,
∂u

∂x2

� �

∂2u

∂x21
þ A12 x1, x2, u,

∂u

∂x1
,
∂u

∂x2

� �

∂2u

∂x1∂x2
þ A22 x1, x2, u,

∂u

∂x1
,
∂u

∂x2

� �

∂2u

∂x22

¼ F x1, x2, u
∂u

∂x1
,
∂u

∂x2

� �

(4)

Examples of differential equations:

1.
dy
dx ¼ 3xþ 2; first-order ODE (linear)/nonhomogeneous

2. ðy� 2xÞdy� 3ydx ¼ 0; first-order ODE (nonlinear)/homogenous

3.
d2y

dt2
þ t2y dy

dt

� �3
þ y ¼ 0; second-order ODE (nonlinear)/homogenous

4.
d4x
dt4

þ 5 d2x
dt2

þ 7x ¼ sint; fourth-order ODE (linear)/nonhomogeneous

5.
∂z
∂x þ

∂z
∂y ¼ 2z; first-order PDE (linear)/homogeneous
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6. ∂
2u
∂x2

þ ∂
2u
∂y2

þ 4xþ 3y� uz ¼ 0; second-order PDE (linear)/nonhomogeneous

7. x ∂
2u
∂x2

þ 2u ∂
2u
∂y2

þ 3u2 ¼ 0; second-order PDE (linear)/homogeneous

8. du
dx �

dv
dx ¼ 6x; 1st ODE (linear) for two unknowns/nonhomogeneous

1.2. Typical differential equations in engineering problems

Many engineering problems are governed by different types of partial differential equations,

and some of the more important types are given below.

Tricomi equation: y ∂2u
∂x2 þ

∂2u
∂y2 ¼ 0

y > 0 : elliptic
y < 0 : hyperbolic

�

Laplace equation (or variants): ∂
2ϕ

∂x2 þ
∂
2ϕ

∂y2 ¼ ∇
2ϕ ¼ 0

Poisson’s equation: ∂
2ϕ

∂x2 þ
∂2ϕ

∂y2 ¼ f ðx, yÞ

Helmholtz equation: ∂
2ϕ

∂x2
þ ∂2ϕ

∂y2
þ c2ϕ ¼ 0

Plate bending: ∇2
∇

2w ¼ ∇
4w ¼ q

D

Wave equation (1D-3D): ∂
2u
∂t2

� c2 ∂2u
∂x2

þ ∂2u
∂y2

� �

¼ 0

Fourier equation: ∂T
∂t ¼ α ∂2T

∂x2

� �

There are many methods of solutions for different types of differential equations, but most of

these methods are not commonly used for practical problems. In this chapter, the most impor-

tant and basic methods for solving ordinary and partial differential equations will be

discussed, which will then be followed by numerical methods such as finite difference and

finite element methods (FEMs). For other numerical methods such as boundary element

method, they are less commonly adopted by the engineers; hence, these methods will not be

discussed in this chapter.

1.3. Separable differential equations

For equations which can be expressed in separable form as shown below, the solution can be

obtained easily as

dy

dx
¼ Fðx, yÞ

dy

ΦðyÞ
¼ f ðxÞdx

ð

dy

ΦðyÞ
¼

ð

f ðxÞdxþ c (5)

Mðx, yÞdxþNðx, yÞdy ¼ 0 MðxÞdx ¼ �NðyÞdy (6)

then

ð

MðxÞdx ¼ �

ð

NðyÞdyþ c (7)
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Example:

dy

dx
¼ x3ðy2 þ 1Þ )

dy

y2 þ 1
¼ x3dx

ð
dy

y2 þ 1
¼

ð

x3dxþ c ) tan�1y ¼
1

4
x4 þ C ) y ¼ tan

1

4
x4 þ c

� �

Example:

dy
dx ¼

3x2þ4xþ2
2ðy�1Þ subject to yð0Þ ¼ �1

Since this is a separable function, the problem can be solved as

2ðy� 1Þdy ¼ ð3x2 þ 4xþ 2Þdx

y2 � 2y ¼ x3 þ 2x2 þ 2xþ c

Based on the boundary condition, c = 3, hence y2 � 2y ¼ x3 þ 2x2 þ 2xþ 3.

This quadratic equation in y2 can be solved with two solutions by the quadratic equation as

y ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x3 þ 2x2 þ 2xþ 4
p

and y ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x3 þ 2x2 þ 2xþ 4
p

:

Since the second solution does not satisfy the boundary condition, it will not be accepted;

hence, the solution to this differential equation is obtained.

1.4. Variation of parameters

For the following equation form, it is possible to solve it by variations of parameters.

For
dy

dx
¼ pðxÞyþQðxÞ (8)

Put y ¼ cðxÞe
Ð
pðxÞdx. By differentiating, it gives dy

dx ¼
dcðxÞ
dx e

Ð
pðxÞdx þ cðxÞpðxÞe

Ð

pðxÞdx
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pðxÞy

. Substitute

it to the original ODE dcðxÞ
dx ¼ QðxÞe�

Ð
pðxÞdx. Comparing the terms, it gives

cðxÞ ¼

ð

QðxÞe�
Ð
pðxÞdxdxþ c: (9)

Example:

ðxþ 1Þ
dy

dx
� ny ¼ exðxþ 1Þnþ1

This equation is now expressed as
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dy

dx
¼ pðxÞyþQðxÞ

dy

dx
¼

n

xþ 1
yþ exðxþ 1Þn

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

QðxÞ

For x 6¼ �1

Solving the homogeneous part of the ODE

dy
dx ¼

n
xþ1 y then dy

y ¼ n
xþ1 dx

lnjyj ¼ nlnjxþ 1j þ c1

y ¼ cðxþ 1Þn

Look for solution y ¼ cðxÞðxþ 1Þn, where c(x) is the variation of parameters. Substitute it to the

ODE

dcðxÞ

dx
ðxþ 1Þn þ ncðxÞðxþ 1Þn�1 ¼ ncðxÞðxþ 1Þn�1 þ exðxþ 1Þn

dy

dx
¼

n

xþ 1
yþ exðxþ 1Þn

Comparison gives dcðxÞ
dx ¼ ex

Integration of this equation gives cðxÞ ¼ ex þ C

General solution is hence given by y ¼ ðxþ 1Þnðex þ CÞ

The Bernoulli equation is an important equation type which can be solved in a similar way by

variation of parameters. Consider the following form of equation

dy

dx
¼ pðxÞyþQðxÞyn (10)

Step 1 : Put z ¼ y1�n (11)

Step 2 : Then
dz

dx
¼ ð1� nÞy�n dx

dy

dz

dx
¼ ð1� nÞPðxÞzþ ð1� nÞQðxÞ

(12)

The non-linear ODE now becomes linear ODE. It can be solved by formula

Step 3: n = �1, z = y2. Inverting z to get y

dy

dx
¼

y

2x
þ

x2

2y
(13)

Solution of Differential Equations with Applications to Engineering Problems
http://dx.doi.org/10.5772/67539

237



dz

dx
¼

1

x
zþ x2 (14)

z ¼ e
Ð

1
xdx

ð

x2e�
Ð

1
xdxdxþ c

� �

¼ cxþ
1

2
x3 (15)

Back substitution of z ¼ y2

y2 ¼ cxþ
1

2
x3 (16)

1.5. Homogeneous equations

For equation of the following type, where all the coefficients are constant, it can be evaluated

according to different conditions.

dy

dx
¼

a1xþ b1yþ c1
a2xþ b2yþ c2

(17)

Case 1: c1 ¼ c2 ¼ 0

dy

dx
¼

a1xþ b1y

a2xþ b2y
¼

a1 þ b1
y
x

a2 þ b2
y
x

¼ g
y

x

� �

(18)

Step 1: Set u ¼ y
x, then

dy
dx ¼ x du

dx þ u

Step 2: du
dx ¼

gðuÞ�u
x . The resulting non-linear ODE is hence separable and can be solved

implicitly.

Step 3: Inverting u to get y.

Case 2:
a1 a2

b1 b2

	

	

	

	

	

	

	

	

	

	

¼ 0

a1b2 � a2b1 ¼ 0 then a1
a2
¼ b1

b2
¼ k

dy

dx
¼

a1xþ b1yþ c1
a2xþ b2yþ c2

¼
kða2xþ b2yÞ þ c1
a2xþ b2yþ c2

¼ f ða2xþ b2yÞ (19)

By change of variables as u ¼ a2xþ b2y

du
dx ¼ a2 þ b2

dy
dx ¼ a2 þ b2f ðuÞ, then

du

a2 þ b2f ðuÞ
¼ dx (20)

The resulting non-linear ODE is now separable and can be solved.
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Case 3:
a1 a2

b1 b2

	

	

	

	

	

	

	

	

	

	

6¼ 0 c1 6¼ 0 and c2 6¼ 0

Set
a1xþ b1yþ c1 ¼ 0
a2xþ b2yþ c2 ¼ 0

�

. Intersecting point of these two lines on xy - plane and (α, β) 6¼ 0

xy� plane and ðα, βÞ 6¼ ð0, 0Þ (21)

Apply change of variables

X ¼ x� α

Y ¼ y� β

x ¼ Xþ α

y ¼ Y þ β

��

(22)

a1xþ b1yþ c1 ¼ a1ðXþ αÞ þ b1ðY þ βÞ þ c1 ¼ a1Xþ b1Y þ ða1αþ b1βþ c1Þ
a2xþ b2yþ c2 ¼ a2ðXþ αÞ þ b2ðY þ βÞ þ c2 ¼ a2Xþ b2Y þ ða2αþ b2βþ c2Þ

(23)

The original ODE will now become dY
dX ¼ a1Xþb1Y

a2Xþb2Y
which is homogeneous and separable!

Example: dydx ¼
xþy�1
x�yþ3

Solve for
xþ y� 1 ¼ 0
x� yþ 3 ¼ 0

�

we have α ¼ �1, β ¼ 2

Change of variables X = x + 1, Y = y � 2

Then, dYdX ¼ dy
dx ¼

xþy�1
x�yþ3 ¼ XþY

X�Y ¼ 1þY
X

1�Y
X

Use a change of variable u ¼ Y
X X du

dX ¼ 1þu2

1�u
ð1�uÞdu
1þu2 ¼ dX

X

) tan�1u� 1

2
lnð1þ u2Þ ¼ lnjXj þ c

) tan�1u ¼ ln½
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p

X� þ c ¼ ln½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX2 þ Y2Þ
q

� þ c

) tan�1 y� 2

xþ 1

� �

¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ 1Þ2 þ ðy� 2Þ2
q

þ c

There are various tricks to solve the differential equations, like integration factors and other

techniques. A very good coverage has been given by Polyanin and Nazaikinskii [29] and will

not be repeated here. The purpose of this section is just for illustration that various tricks have

been developed for the solution of simple differential equations in homogeneous medium, that

is, the coefficients are constants inside a continuous solution domain. The readers are also

suggested to read the works of Greenberg [14], Soare et al. [34], Nagle et al. [28], Polyanin et al.

[30], Bronson and Costa [4], Holzner [18], and many other published books. There are many

elegant tricks that have been developed for the solution of different forms of differential

equations, but only very few techniques are actually used for the solution of real life problems.

Solution of Differential Equations with Applications to Engineering Problems
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1.6. Partial differential equations

In many engineering or science problems, such as heat transfer, elasticity, quantum mechanics,

water flow and others, the problems are governed by partial differential equations. By nature,

this type of problem is much more complicated than the previous ordinary differential equa-

tions. There are several major methods for the solution of PDE, including separation of

variables, method of characteristic, integral transform, superposition principle, change of

variables, Lie group method, semianalytical methods as well as various numerical methods.

Although the existence and uniqueness of solutions for ordinary differential equation is well

established with the Picard-Lindelöf theorem, but that is not the case for many partial differ-

ential equations. In fact, analytical solutions are not available for many partial differential

equations, which is a well-known fact, particularly when the solution domain is nonregular

or homogeneous, or the material properties change with the solution steps.

1.6.1. Classification of second-order PDE

Refer to the following general second-order partial differential equation:

A
∂
2u

∂x2
þ B

∂
2u

∂x∂y
þ C

∂
2u

∂y2
þD

∂u

∂x
þ E

∂u

∂y
þ Fuþ G ¼ 0 (24)

To begin with, let us consider a review of conic curves (ellipse, parabola and hyperbola)

Ax2 þ Bxyþ Cy2 þDxþ Eyþ F ¼ 0 (25)

The conic curve can be classified with the following criterion.

B2
� 4AC ¼

> 0 hyperbola

¼ 0 parabola

< 0 ellipse

8

>

<

>

:

(26)

Following the conic curves, the general partial differential is also classified according to similar

criterion as

Classification

B2
� 4AC > 0 : elliptic

B2
� 4AC ¼ 0 : parabolic

B2
� 4AC < 0 : hyperbolic

8

>

<

>

:

(27)

This classification was proposed by Du Bois-Reymond [41] in 1839. In this section, only some

of the more common techniques are discussed, and the readers are suggested to read the

works of Hillen et al. [16], Salsa [33], Polyanin and Zaitsev [31], Bertanz [2], Haberman [15]

and many other published texts.

1.7. Parabolic type: heat conduction/soil consolidation/diffuse equation

The following equation form is commonly found in many engineering applications.
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α
2 ∂

2u

∂x2
¼

∂u

∂t
, 0 < x < L, t > o (28)

Initial condition: uðx, 0Þ ¼ f ðxÞ, 0 ≤ x ≤L

Boundary condition: uð0, tÞ ¼ 0, uðL, tÞ ¼ 0, t > 0

α
2 is a constant known as the thermal diffusivity or coefficient of consolidation. For soil

consolidation problem, the governing conditions are given by

Initial excess pore pressure

ueðz, 0Þ ¼ uiðzÞ, 0 ≤ z ≤ 2d

ueð0, tÞ ¼ 0,ueð2d, tÞ ¼ 0, t > 0
(29)

Drained boundary

α
2uxx ¼ ut, 0 < x < L, t > 0

uð0, tÞ ¼ 0, uðL, tÞ ¼ 0, t > 0

uðx, 0Þ ¼ f ðxÞ, 0 ≤ x ≤L

(30)

Assuming variable u(x, t) can be separated, using separation of variables

uðx, tÞ ¼ XðtÞTðtÞ (31)

α
2X″T ¼ XT0

X″

X
¼

1

α2

T0

T

X″

X
¼

1

α2

T0

T
¼ �λ !

X″ þ λX ¼ 0

T0 þ α
2
λT ¼ 0

(

(32)

A PDE now becomes two ODE which can be solved readily. Based on the boundary condition

uð0, tÞ ¼ 0, uðL, tÞ ¼ 0, t > 0

uð0, tÞ ¼ Xð0Þ,TðtÞ ¼ 0

Xð0Þ ¼ 0,XðLÞ ¼ 0

X″ þ λX ¼ 0,Xð0Þ ¼ 0,XðLÞ ¼ 0

(33)

This is an eigenvalue problem which has solution only for certain λ. The eigenvalues are given

by

λn ¼
n2π2

L2
, n ¼ 1, 2, 3,… (34)

Hence the eigenfunctions are expressed as
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XnðxÞ ¼ sin
nπx

L

� �

, n ¼ 1, 2, 3… (35)

For the time-dependent function T,

T
0

þ α
2
λT ¼ 0 (36)

dT

T
¼ �α

2
λdt

lnjTj ¼
�α

2n2π2t

L2
þ C

(37)

hence Tn ¼ kne
�ðnπα=LÞ2t, kn constant. The fundamental solutions are then expressed as

uðx, tÞ ¼ e�ðnπα=LÞ2tsin
nπx

L

� �

, n ¼ 1, 2, 3… (38)

The Fourier series expansion in x is given by

uð0, tÞ ¼ f ðxÞ, 0 ≤ x ≤ L (39)

uðx, tÞ ¼
X

∞

n¼1

cnunðx, tÞ ¼
X

∞

n¼1

cne
�ðnπα=LÞ2tsin

nπx

L

� �

(40)

Initial condition is given as

uðx, 0Þ ¼ f ðxÞ ¼
X

∞

n¼1

cnsin
nπx

L

� �

(41)

ðL

0

f ðxÞsin
mπx

L

� �

dx ¼
X

∞

n¼1

cn

ðL

0

sin
mπx

L

� �

sin
nπx

L

� �

dx

ðL

0

f ðxÞsin
nπx

L

� �

dx ¼ cn

ðL

0

sin2
mπx

L

� �

dx ¼ cn
L

2

Solution of the soil consolidation equation is hence given by

uðx, tÞ ¼
X

∞

n¼1

cne
�ðnπα=LÞ2tsin

nπx

L

� �

(42)

cn ¼
2

L

ðL

0

f ðxÞsin
nπx

L

� �

dx ðEulerFourier formulasÞ (43)

1.8. One-dimensional wave equation

One-dimensional (1D) wave equation appears in many physical and engineering problems.

For example, a vibrating string or pile driving process is given by this type of differential

equation. This problem is also commonly solved by the method of separation of variables
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a2uxx ¼ utt, 0 < x < L, t > 0

uð0, tÞ ¼ 0, uðL, tÞ ¼ 0, t ≥ 0

uðx, 0Þ ¼ f ðxÞ, uðx, 0Þ ¼ 0, 0 ≤ x ≤ L

(44)

Consider u(x, t) is given by X(x)T(t). The wave equation will give

X″

X
¼

1

a2
T0

T
¼ �λ !

X″ þ λx ¼ 0
T0 þ a2λt ¼ 0

�

(45)

The partial differential equation will then be given by two equivalent ODEs.

utðx, 0Þ ¼ XðxÞT
0

ð0Þ ¼ 0, 0 ≤ x ≤ L ! T
0

ð0Þ ¼ 0

uð0, tÞ ¼ Xð0ÞTðtÞ ¼ 0,uðL, tÞ ¼ XðLÞTðtÞ 0 ≤ x ≤ L ! T
0

ð0Þ ¼ 0
(46)

X″ þ λX ¼ 0,Xð0Þ ¼ XðLÞ ¼ 0 (47)

XnðxÞ ¼ sin
nπx

L

� �

, n ¼ 1, 2, 3,… (48)

λn ¼
n2π2

L2
, n ¼ 1, 2, 3,… (49)

For the time-dependent function T,

T
0

þ a2λT ¼ 0 (50)

T
0

ð0Þ ¼ 0 λn ¼ nπ=L

Then TðtÞ ¼ k1cosðnπat=LÞ � k2sinðnπat=LÞ
(51)

Since T
0

ð0Þ ¼ 0 k2 ¼ 0

Therefore, TðtÞ ¼ k1cosðnπat=LÞ

Fundamental solution is given by

unðx, tÞ ¼ sin
nπx

L

� �

cos
nπat

L

� �

, n ¼ 1, 2, 3… (52)

The general solution is then given by

uðx, tÞ ¼
X

∞

n¼1

cnunðx, tÞ ¼
X

∞

n¼1

cnsin
nπx

L

� �

cos
nπat

L

� �

(53)

Applying the boundary condition

uðx, 0Þ ¼ f ðxÞ, 0 ≤ x ≤L

uðx, 0Þ ¼ f ðxÞ ¼
X

∞

n¼1

cnsin
nπx

L

� �

! cn ¼
2

L

ðL

0

f ðxÞsin
nπx

L

� �

dx (54)
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The final solution is then given by

uðx, tÞ ¼
X

∞

n¼1

cnsin
nπx

L

� �

cos
nπat

L

� �

(55)

cn ¼
2

L

ðL

0

f ðxÞsin
nπx

L

� �

dx (56)

1.9. Laplace equation

Laplace equation forms an important governing condition for many types of problems. Some

of the more common forms are given by

three-dimensional Laplace equation uxx þ uyy þ uzz ¼ 0

two-dimensional heat conduction α
2ðuxx þ uyyÞ ¼ ut

two-dimensional seepage problem ðkxuxx þ kyuyyÞ ¼ 0

There are two major types of boundary conditions to this problem:

Dirichlet problem: boundary conditions prescribed as u

Neumann problem: normal derivative ux or uy are usually prescribed on the boundary for many

mathematical problems. This case can be solved by the use of complex analysis or series

method for which many analytical solutions are available in the literature. In many aniso-

tropic seepage problems, however, the normal of a derived quantity at any arbitrary direc-

tion (seepage flow normal to an impermeable surface) is 0 instead of ux or uy being zero. For

such cases, it is very difficult to obtain the analytical solution if the solution domain is

nonhomogeneous, and the use of numerical method such as the finite element method

appears to be indispensable.

Consider the given Laplace equation, using separation of variables for the analysis.

uxx þ uyy ¼ 0, 0 < x < a, 0 < y < b

uðx, 0Þ ¼ 0, uðx, bÞ ¼ 0, 0 < x < a

uð0, yÞ ¼ 0, uða, yÞ ¼ f ðyÞ, 0 < y ≤ b

(57)

Using separation of variables, uðx, tÞ ¼ XðxÞYðyÞ

X″Y þ XY″ ¼ 0

X″

X
¼ �

Y″

Y
¼ λ !

X″ � λX ¼ 0

Y0 þ λY ¼ 0

(58)

uxx þ uyy ¼ 0, 0 < x < a, 0 < y < b (59)

uðx, 0Þ ¼ 0, uðx, bÞ ¼ 0, 0 < x < a

uð0, yÞ ¼ 0, uða, yÞ ¼ f ðyÞ, 0 < y ≤ b
(60)
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uð0, yÞ ¼ Xð0ÞYðyÞ ¼ 0, 0 < y < b ! Xð0Þ ¼ 0,

uðx, 0Þ ¼ XðxÞYð0Þ ¼ 0, 0 < x < a ! Yð0Þ ¼ 0,

uðx, bÞ ¼ XðxÞYðbÞ ¼ 0, 0 < x < a ! YðbÞ ¼ 0,

(61)

X″ � λX ¼ 0,Xð0Þ ¼ 0

Y″ þ λY ¼ 0,Yð0Þ ¼ 0,YðbÞ ¼ 0
(62)

λn ¼
n2π2

b2
,YnðyÞ ¼ sin

nπy

b

� �

,n ¼ 1, 2, 3,… (63)

X″ � λX ¼ 0, hence XðxÞ ¼ k1coshðnπx=bÞ � k2sinðnπx=bÞ

Since X(0) = 0, k1 = 0

XðxÞ ¼ k2sinh
nπx

b

� �

(64)

unðx, yÞ ¼ sinh
nπx

b

� �

sin
nπy

b

� �

n ¼ 1, 2, 3… (65)

uða, yÞ ¼ f ðyÞ, 0 ≤ y ≤ b

uðx, yÞ ¼
X

∞

n¼1

cnunðx, yÞ ¼
X

∞

n¼1

cnsin
nπx

b

� �

cos
nπy

b

� �

(66)

Based on the Fourier expansion as given by

ðb

0

f ðyÞsin
mπy

b

� �

dy ¼
X

∞

n¼1
cnsinh

nπa

b

� �

ðb

0

sin
mπy

b

� �

sin
nπy

b

� �

dy

ðb

0

f ðxÞsin
nπx

b

� �

dx ¼ sinh
mπa

b
cn

ðb

0

sin2
nπx

b

� �

dx ¼ sinh
mπa

b
cn

b

2

uða, yÞ ¼ f ðyÞ ¼
X

∞

n¼1
cnsinh

nπa

b

� �

sin
nπy

b

� �

(67)

cnsinh
nπa

b

� �

¼
2

b

ðb

0

f ðyÞsin
nπy

b

� �

dy

cn ¼
2

b
sinh

nπa

b

� ��1
ðb

0

f ðyÞsin
nπy

b

� �

dy

1.10. Introduction to numerical methods

In general, analytical solutions are not available for most of the practical differential equations,

as regular solution domain and homogeneous conditions may not be present for practical

problems. Moreover, the solution domain may be indeterminate (free surface seepage flow),

the displacement is large so that the solution may deform under motion, or in an extreme case

part of the material may tear off from the main body with continuous formation and removal

of contacts. Many engineering problems fall into such category by nature, and the use of

numerical methods will be necessary. Currently, there are several major numerical methods
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commonly used by the engineers: finite difference method, finite element method, boundary

element method and distinct element. There are also other less common numerical methods

available for practical problems, and many researchers also try to combine two or even more

fundamental numerical methods so as to achieve greater efficiency in the analysis. In general,

the solution domain is discretized into series of subdomains with many degrees of freedom.

The number of variables or degrees of freedom may even exceed millions for large-scale

problems, and sometimes very special material properties are encountered so that the system

is highly sensitive to the method of discretization and the method of solution. Similar to the

ODE and PDE, it is impossible to discuss the details of all the numerical methods and the

author choose to discuss the finite element method due to the wide acceptance of the method

and this method is more suitable for general complicated methods.

Except for some simple problems with regular geometry and loading, it is very difficult to solve

most of the boundary value problems with the yield of analytical solutions. Towards this, the

use of numerical method seems indispensable, and the finite element is one of the most popular

methods used by the engineers [32, 38]. There are two fundamental approaches to FEM, which

are the weighted residual method (WRM) and variational principle, but there are also other

less popular principles which may be more effective under certain special cases. In finite

element analysis of an elastic problem, solution is obtained from the weak form of the equiva-

lent integration for the differential equations by WRM as an approximation. Alternatively,

different approximate approaches (e.g. collocation method, least square method and Galerkin

method) for solving differential equations can be obtained by choosing different weights based

on the WRM and the Galerkin method appears to be the most popular approach in general.

Specifically, in elasticity for instance, the principle of virtual work (including both principle of

virtual displacement and virtual stress) is considered to be the weak form of the equivalent

integration for the governing equilibrium equations. Furthermore, the aforementioned weak

form of equivalent integration on the basis of the Galerkin method can also be evolved to a

variation of a functional if the differential equations have some specific properties such as

linearity and selfadjointness. Principles of minimum potential energy and complementary

energy are two variational approaches equivalent to the fundamental equations of elasticity.

Since displacement is usually the basic unknown quantity in FEM, only the principle of virtual

displacement and minimum potential energy will be introduced in the following section. In

this case, the FEM introduced herein is also called displacement finite element method

(DFEM). There are other ways to form the basis of FEM with advantages in some cases, but

these approaches are less general and will not be discussed here.

1.11. Principle of virtual displacement

The principle of virtual displacement is the weak form of the equivalent integration for

equilibrium equations and force boundary conditions. Given the equilibrium equations and

force boundary conditions in index notation,

σij, j þ f i ¼ 0, ðin domain VÞ (68)

σijnj � Ti ¼ 0, ðon domain boundary SσÞ (69)
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In WRM, without loss of generality, the variation of true displacement δui and its boundary

value (i.e. �δui) can be selected as the weight functions in the equivalent integration

ð

V

δuiðσij, j þ f iÞdV �

ð

Sσ

δuiðσijnj � TiÞdS ¼ 0 (70)

The weak form of Eq. (70) is given as

ð

V

ð�δεijσij þ δuif iÞdV þ

ð

Sσ

δuiTidS ¼ 0 (71)

It can be seen clearly from Eq. (71) that the first item in the volume integral indicates the work

done by the stresses under the virtual strain (i.e. internal virtual work), while the remaining

items indicate the work done by the body force and surface force under the virtual displace-

ment (i.e. external virtual work). In other words, the summation of the internal and external

virtual works is equal to 0, which is called the principle of virtual displacement. Under this

case, we can conclude that a force system will satisfy the equilibrium equations if the summa-

tion of the work done by it under any virtual displacement and strain is equal to 0.

1.12. Principle of minimum potential energy (PMPE)

Based on Eq. (71), we can deduce that

ð

V

ðδεijDijklεkl � δuif iÞdV þ

ð

Sσ

δuiTidS ¼ 0 (72)

Due to the symmetry of the constitutive matrix Dijkl, we can further obtain

ðδεijÞDijklεkl ¼ δ
1

2
Dijklεijεkl

� �

¼ δUðεmnÞ (73)

where UðεmnÞ is the unit volume strain energy. Given the assumptions in linear elasticity

�δφðuiÞ ¼ f iδui, � δψðuiÞ ¼ Tiδui (74)

Eq. (72) is further simplified to

δΠP ¼ 0 (75)

ΠP is the total potential energy of the system, which is equal to the summation of the potential

energy of deformation and external force and can be expressed as

ΠP ¼ ΠPðuiÞ ¼

ð

V

1

2
Dijklεijεkl � f iui

� �

dV �

ð

Sσ

TiuidS (76)

Eq. (75) shows that, among all the potential displacements, the total potential energy of system

will take stationary value at the real displacement, and it can be further verified that this station-

ary value is exactly the minimum value which is the principle of minimum potential energy.
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1.13. General expressions and implementation procedure of FEM

The solution of a general continuum problem by FEM always follows an orderly step-by-step

process which is easy to be programmed and used by the engineers. For illustration, a three-

node triangular element for plane problems is taken as an example to illustrate the general

expressions and implementation procedures of FEM.

1.13.1. Discretization of domain

The first step in the finite element method is to divide the structure or solution region into

subdivisions or elements. Hence, the structure is to be modelled with suitable finite elements.

In general, the number, type, size, and arrangement of the elements are critical towards good

performance of the numerical analysis. A typical discretization with three-node triangular

element is shown schematically in Figure 1.

Mesh generation can be a difficult process for a general irregular domain. If only triangular

element is to be generated, this is a relatively simple work, and many commercial programs

can perform well in this respect. There are also some public domain codes (EasyMesh or

Triangle written in C) which are sufficient for normal purposes. For quadrilateral or higher

elements, mesh generation is not that simple, and it is preferable to rely on the use of commer-

cial programs for such purposes.

1.13.2. Interpolation or displacement model

As can be seen from Figure 1(b), the nodal number of a typical three-node triangular element

is coded in anticlockwise order (i.e. in the order of i, j andm), and each node has two degrees of

freedom (DOFs) or two displacement components which is stored in a column vector in index

notation as follows:

ai ¼
ui
vi


 �

ði, j,mÞ (77)

Figure 1. Discretization of a two-dimensional domain with three-node triangular element.
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Totally, each element has six nodal displacements, i.e. six DOFs. Putting all the displacements

in a column vector, we can obtain the element nodal displacement column matrix as

ae ¼
ai
aj
am

2

4

3

5 ¼ ui vi uj vj um vm �T
h

(78)

In FEM, a nodal displacement is chosen as the basic unknowns, so interpolation at any

arbitrary point is based on the three nodal displacements of each element, which is called a

displacement mode. For a three-node triangular element, linear polynomial is utilized, and the

element displacement in both x -direction and y-direction are

u ¼ β1 þ β2xþ β3y (79)

v ¼ β4 þ β5xþ β6y (80)

Obviously, displacements of all the three nodes should satisfy Eqs. (79) and (80). By substitut-

ing the six nodal displacement components into these equations, it is easy to obtain another

form of displacement mode as

u ¼ Niui þNjuj þNmum (81)

v ¼ Nivi þNjvj þNmvm (82)

where

Ni ¼
1

2A
ðai þ bixþ ciyÞði, j,mÞ: (83)

In Eq. (81), Ni,Nj and Nm denote the interpolation function or shape function for the three

nodes, respectively. A is the area of the element, and ai, bi, ci⋯, cm are constants related to the

coordinates of the three nodes. Similarly, Eqs. (81) and (82) can also be expressed in the form of

matrix as

u ¼
u
v


 �

¼
Ni 0 Nj 0 Nm 0
0 Ni 0 Nj 0 Nm


 �

ui
vi
uj
vj
um
vm

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼ Nae (84)

where N is the shape function matrix and ae is the element nodal displacement vector. For the

geometric equations, element strains are

ε ¼

εx
εy
γxy

2

4

3

5 ¼ Lu ¼ LNae ¼ L Ni Nj Nm

� 

ae

¼ ½Bi Bj Bm �ae ¼ Bae

(85)
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where L is the differential operator and B is the element strain displacement matrix which can

be given as

Bi ¼ LNi ¼

∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

Ni 0
0 Ni


 �

¼

∂Ni

∂x
0

0
∂Ni

∂y

∂Ni

∂y

∂Ni

∂x

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

ði, j,mÞ (86)

Substitute Eq. (85) by the stress-strain relation,

σ ¼
σx

σy

τxy

2

4

3

5 ¼ Dε ¼ DBae ¼ Sae (87)

where

S ¼ DB ¼ D½Bi Bj Bm � ¼ ½ Si Sj Sm � (88)

S is called the element stress matrix. It should be noted that both the strain and stress matrices

are constant for each element, because in a three-node triangular element, the displacement

mode is a first-order function, and differentiating this function will give a constant function.

1.13.3. Stiffness equilibrium equation (SEE) of FEM derived from PMPE

For elastic plane problems, the total potential energy ΠP in Eq. (76) can be expressed in matrix

formulation as follows:

Y

P
¼

ð

Ω

1

2
ε
TDεtdxdy�

ð

Ω

uT f tdxdy�

ð

Sσ

uTTtdS (89)

where t, f, and T denote the thickness, body force and surface force, respectively. For an FEM

problem, the total potential energy is the summation of that from all the elements. Therefore,

substituting Eqs. (84) and (85) into Eq. (89) gives

ΠP ¼
X

e

Π
e
P ¼

X

e

aeT
ð

Ωe

1

2
BTDBtdxdyae

� �

�
X

e

ðaeT
ð

Ωe

NT f tdxdyÞ �
X

e

ðaeT
ð

Sσe
NTTtdxdyÞ

(90)

Eq. (90) can be viewed as

Ke ¼

ð

Ωe

BTDBtdxdy,Pe
f ¼

ð

Ωe

NT f tdxdy

Pe
S ¼

ð

Sσe
NTTtdxdy,Pe ¼ Pe

f þ Pe
S

(91)
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where Keand Pe are named as the element stiffness matrix and equivalent element nodal load

matrix, respectively. Substitute Eq. (91) to Eq. (90), the total potential energy of the structure

can be simplified as

ΠP ¼ aT
1

2

X

e

ðKeÞa� aT
X

e

ðPeÞ (92)

Given

K ¼
X

e

Ke,P ¼
X

e

Pe (93)

Eq. (92) is further simplified as

ΠP ¼
1

2
aTKa� aTPa (93a)

where Kand P are global stiffness matrix and global nodal load matrix, respectively.

For PMPE, the variation of ΠP is equal to 0 and the unknown variable is a, thus Eq. (75) gives

∂ΠP

∂a
¼ 0 (94)

which finally comes to the SEE of FEM as

Ka ¼ P (95)

From Eq. (93), we know that the global stiffness matrix and the global load matrix are the

assemblage of the element stiffness matrices and equivalent element nodal load matrices,

respectively. Specifically, in order to solve Eq. (93), element stiffness matrix, element equivalent

nodal load vector, global stiffness matrices and global nodal load vector are all determined

together with some given displacement boundary conditions. Without the provision of ade-

quate boundary condition, the system is singular as rigid body motion will produce no stress

in the system and such mode will be present in the SEE.

1.13.4. Derivation of element stiffness matrices (ESM)

For a three-node triangular element, the element strain matrix B is constant, thus Eq. (91) gives

Ke ¼ BTDBtA ¼
Kii Kij Kim

Kji Kjj Kjm

Kmi Kmj Kmm

2

4

3

5 (96)

of which the submatrix

Kij ¼
kij

xx kij
xy

kij
yx kij

yy


 �

(97)
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Kij indicates the ith nodal force along the x- and y-directions in the Cartesian coordinate system

when the displacement of the jth node is unit along the x- and y-directions, which can be easily

obtained. Moreover, the element stiffness matrix is symmetric, and the computational memory

required in an FEM program can be reduced by using this property.

It should be noted that for a higher order triangular element (e.g. six-node triangular element)

or quadrilateral element for which higher order terms are involved, the strain matrix B is not

constant any more so that the element stiffness matrix needs to be evaluated by numerical

integration (direct integration is seldom adopted). Towards this, numerical integration

methods such as the Gaussian integration or the Newton-Cotes integration can be utilized.

1.13.5. Assembling of ESMs and ENLMs

For an FEM process, we need to solve Eq. (95) which is the global equilibrium equation. Most

of the elements in the matrix Kare 0 simply because each node is only shared by a few

surrounding elements. In view of that, a rectangular matrix can represent the global stiffness

matrix (which is a square matrix), and the half bandwidth D can be defined as

D ¼ ð1þNDIFÞ �NDOF (98)

whereNDIF denotes the largest absolute difference between the element node numbers among

all the elements in the finite element mesh.

In conclusion, the properties of the global stiffness matrix can be summarized as: symmetric,

banded distribution, singularity and sparsity. Among all the properties, singularity will vanish

by introducing appropriate boundary conditions to Eq. (95) to eliminate the rigid body motion.

Also, other properties like banded distribution should be fully taken into consideration to

reduce the computational memory and enhance the computation efficiency.

1.13.6. Isoparametric element and numerical integration

Most of the engineering structure is not regular in shape, and some of them even have very

complicated boundary shapes. Although the use of triangular element can always fit a com-

plicated boundary, the accuracy of this element is low in general. To cope with the irregular

boundary shape with a higher accuracy in analysis, one of the most common approaches is the

use of higher-order element, and the isoparametric formulation is the most commonly used at

present. Consider an arbitrary four-node quadrilateral element as an example which is sche-

matically shown in Figure 2. If we can find the transformation from Figure 2(a) to (b), then it

will become easier to carry numerical integration with complicated shapes for an arbitrary

element. In Figure 2(a), we define the Cartesian coordinate system, while in Figure 2(b), we

define the local coordinate system (or natural coordinate system) within a specific domain (i.e.

ξ, η∈ ð�1, 1Þ). The relation between these two kinds of coordinate system can be described as

x
y

� �

¼ f
ξ
η

� �

(99)

which can be further modified by the interpolation function at nodes in the local coordinate

system as follows:
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x ¼ Σ
m
i¼1N

0

ixi, y ¼
X

m

i¼1

N0
iyi (100)

where ðxi, yiÞ are coordinates in the Cartesian coordinate system corresponding to the ith node

in local coordinate system, N
0

i is interpolation function of the ith node in local coordinate

system and m is the number of nodes chosen to transform the coordinates. Therefore, the

regular element in the natural coordinate system can be transformed to the irregular element

in the Cartesian coordinate system. The former element is called the parent element, while the

latter is called the subelement. Specifically, Eq. (101) can be further expanded as

x
y

� �

¼
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4


 �

x1
y1
x2
y2
x3
y3
x4
y4

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

(101)

Using the same interpolation functions, the element displacement model can be written as

u
v

� �

¼
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4


 �

u1
v1
u2
v2
u3
v3
u4
v4

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

(102)

Figure 2. Isoparametric transition.
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where J denotes the Jacobi matrix while the interpolation functions are given by

N1 ¼
1

4
ð1þ ξÞð1þ ηÞ,N2 ¼

1

4
ð1� ξÞð1þ ηÞ

N3 ¼
1

4
ð1þ ξÞð1þ ηÞ,N2 ¼

1

4
ð1� ξÞð1þ ηÞ

(103)

As mentioned before, during the derivation of the element stiffness matrix and the equivalent

load vector, the derivative of the shape function and the integration in element surface or

volume in the Cartesian coordinate system are required. Since the shape functions adopted

herein are expressed in natural coordinates, therefore, derivative and integration transforma-

tion relationships are essential when isoparametric element is used.

1.13.7. Derivative and integral transformation

According to the law of partial differential,

∂Ni

∂ξ
¼

∂Ni

∂x

∂x

∂ξ
þ

∂Ni

∂y

∂y

∂ξ
,

∂Ni

∂η
¼

∂Ni

∂x

∂x

∂η
þ

∂Ni

∂y

∂y

∂η
,

(104)

or in matrix form

∂Ni

∂ξ

∂Ni

∂η

8

>

>

<

>

>

:

9

>

>

=

>

>

;

¼

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

2

6

6

4

3

7

7

5

∂Ni

∂x
∂Ni

∂y

8

>

>

<

>

>

:

9

>

>

=

>

>

;

¼ J

∂Ni

∂x
∂Ni

∂y

8

>

>

<

>

>

:

9

>

>

=

>

>

;

(105)

Inverse of Eq. (105) gives

∂Ni

∂x
∂Ni

∂y

8

>

>

<

>

>

:

9

>

>

=

>

>

;

¼ J�1

∂Ni

∂ξ

∂Ni

∂η

8

>

>

<

>

>

:

9

>

>

=

>

>

;

(106)

where

J ¼

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

2

6

6

4

3

7

7

5

¼

X

4

i¼1

∂Ni

∂ξ
xi

X

4

i¼1

∂Ni

∂ξ
yi

X

4

i¼1

∂Ni

∂η
xi

X

4

i¼1

∂Ni

∂η
yi

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N4

∂ξ
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For an infinitely small element, the area under the Cartesian coordinate system and the natural

coordinate system are related by

ds ¼ dxdy ¼ jJjdξdη, (108)

where jJj is the determinant of the Jacobian matrix J. Therefore, element stiffness matrix and

equivalent nodal load matrix in Eq. (91) can be transformed to

Ke ¼

ð
Ωe

BTDBtjJjdξdη,Pe
f ¼

ð
Ωe

NT f jJjdξdη

Pe
S ¼

ð
Sσ e

NTTjJjdξdη

(109)

For solving the integral equation, usually the Gaussian integration method is employed. In

practice, both two and three integration points along each direction of integration are com-

monly used. Since the discretized system is usually overstiff, it is commonly observed that the

use of two integration points along each direction of integration will slightly reduce the

stiffness of the matrix and give better results as compared with the use of three integration

points. The use of exact integration is possible for some elements, but such approaches are

usually tedious and are seldom adopted. The advantage in using the exact integration is that

the integration is not affected by the shape of the element while the transformation as shown in

Eq. (109) may be affected if the poor shape of the element is poor. The author has developed

many finite element programs for teaching and research purposes which can be obtained at

ceymchen@polyu.edu.hk. The programs available include plane stress/strain problem, thin/

thick plate bending problem, consolidation in 1D and 2D (Biot), seepage problem, slope

stability problem, pile foundation problems and others.

1.14. Distinct element method

In practical applications, a limit equilibrium method based on the method of slices or method

of columns and strength reduction method based on the finite element method or finite

difference method are used for many types of stability problems. These two major analysis

methods take the advantage that the in situ stress field which is usually not known with good

accuracy is not required in the analysis. The uncertainties associated with the stress-strain

relation can also be avoided by a simple concept of factor of safety or the determination of the

ultimate limit state. In general, this approach is sufficient for engineering analysis and design.

If the condition of the system after failure has initiated is required to be assessed, these two

methods will not be applicable. Even if the in situ stress field and the stress-strain relation can

be defined, the post-failure collapse is difficult to be assessed using the conventional

continuum-based numerical method, as sliding, rotation and collapse of the slope involve very

large displacement or even separation without the requirement of continuity.

The most commonly used numerical methods for continuous systems are the FDM, the FEM

and the boundary element method (BEM). The basic assumption adopted in these numerical

methods is that the materials concerned are continuous throughout the physical processes.

This assumption of continuity requires that, at all points in a problem domain, the material
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cannot be torn open or broken into pieces. All material points originally in the neighbourhood

of a certain point in the problem domain remain in the same neighbourhood throughout the

whole physical process. Some special algorithms have been developed to deal with material

fractures in continuum mechanics-based methods, such as the special joint elements by Good-

man [13] and the displacement discontinuity technique in BEM by Crouch and Starfield [5].

However, these methods can only be applied with limitations [21]:

1. large-scale slip and opening of fracture elements are prevented in order to maintain the

macroscopic material continuity;

2. the amount of fracture elements must be kept to relatively small so that the global stiffness

matrix can be maintained well-posed, without causing severe numerical instabilities; and

3. complete detachment and rotation of elements or groups of elements as a consequence of

deformation are either not allowed or treated with special algorithms.

Before a slope starts to collapse, the factor of safety serves as an important index in both the

LEM and SRM to assess the stability of the slope. The movement and growth after failure have

launched which is also important in many cases that cannot be simulated on the continuum

model, and this should be analyzed by the distinct element method (DEM).

In continuum description of soil material, the well-established macro-constitutive equations

whose parameters can be measured experimentally are used. On the other hand, a discrete

element approach will consider that the material is composed of distinct grains or particles that

interact with each other. The commonly used distinct element method is an explicit method

based on the finite difference principles which is originated in the early 1970s by a landmark

work on the progressive movements of rock masses as 2D rigid block assemblages [6]. Later,

the works by Cundall are developed to the early versions of the UDEC and 3DEC codes

[9, 10, 12]. The method has also been developed for simulating the mechanical behaviour of

granular materials [8], with a typical early code BALL [7], which later evolved into the codes of

the PFC group for 2D and 3D problems of particle systems (Itasca, 1995). Through continuous

developments and extensive applications over the last three decades, there has accumulated a

great body of knowledge and a rich field of literature about the distinct element method. The

main trend in the development and application of the method in rock engineering is

represented by the history and results of the code groups UDEC/3DEC. Currently, there are

many open source (Oval, LIGGGHTS, ESyS, Yade, ppohDEM, Lammps) as well as commercial

DEM programs, but in general, this method is still limited to basic research instead of practical

application as there are many limitations which include: (1) difficult to define and determine

the microparameters; (2) there are still many drawbacks in the use of matching with the macro

response to determine the microparameters; (3) not easy to set up a computer model; (4) not

easy to include structural element or water pressure; (5) extremely time consuming to perform

an analysis; and (6) postprocessing is not easy or trivial. It should also be noted that DEM can

be formulated by an energy-based implicit integration scheme which is the discontinuous

deformation analysis (DDA) method. This method is similar in many respect to the force-

based explicit integration scheme as mentioned previously.

Dynamical Systems - Analytical and Computational Techniques256



In DEM, the packing of granular material can be defined from statistical distributions of grain

size and porosity, and the particles are assigned normal and shear stiffness and friction

coefficients in the contact relation. Two types of bonds can be represented either individually

or simultaneously; these bonds are referred to the contact and parallel bonds, respectively

(Itasca, 1995). Although the individual particles are solid, these particles are only partially

connected at the contact points which will change at different time step. Under low normal

stresses, the strength of the tangential bonds of most granular materials will be weak and the

material may flow like a fluid under very small shear stresses. Therefore, the behaviour of

granular material in motion can be studied as a fluid-mechanical phenomenon of particle flow

where individual particles may be treated as “molecules” of the flowing granular material. In

many particle models for geological materials in practice, the number of particles contained in

a typical domain of interest will be very large, similar to the large numbers of molecules.

One of the primary objectives of the particle model is the establishment of the relations between

microscopic and macroscopic variables/parameters of the particle systems, mainly through

micromechanical constitutive relations at the contacts. Compared with a continuum, particles

have an additional degree of freedom of rotation which enables them to transmit couple

stresses, besides forces through their translational degrees of freedom. At certain moment, the

positions and velocities of the particles can be obtained by translational and rotational move-

ment equations and any special physical phenomenon can be traced back from every single

particle interactions. Therefore, it is possible for DEM to analyze large deformation problems

and a flow process which will occur after slope failure has initiated. The main limitation of

DEM is that there is great difficulty in relating the microscopic and macroscopic variables/

parameters; hence, DEM is mainly tailored towards qualitative instead of quantitative analysis.

DEM runs according to a time-difference scheme in which calculation includes the repeated

application of the law of motion to each particle, a force-displacement law to each contact, and

a contact updating scheme. Generally, there are two types of contact in the program which are

the ball-wall contact and the ball-ball contact. In each cycle, the set of contacts is updated from

the known particles and known wall positions. Force-displacement law is firstly applied on

each contact, and new contact force is then calculated according to the relative motion and

constitutive relation. Law of motion is then applied to each particle to update the velocity, the

direction of travel based on the resultant force, and the moment and contact acting on the

particles. Although every particle is assumed as a rigid material, the behaviour of the contacts

is characterized using a soft contact approach in which finite normal stiffness is taken to

represent the stiffness which exists at the contact. The soft contact approach allows small

overlap between the particles which can be easily observed. Stress on particles is then deter-

mined from this overlapping through the particle interface.

1.15. General formulation of DEM

The PFC runs according to a time-difference scheme in which calculation includes the repeated

application of the law of motion to each particle, a force-displacement law to each contact, and

a contact updating a wall position. Generally, there are two types of contact exist in the
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program which are ball-to-wall contact and ball-to-ball contact. In each cycle, the set of

contacts is updated from the known particle and the known wall position. The force-

displacement law is first applied on each contact. New contact force is calculated and replaces

the old contact force. The force calculations are based on preset parameters such as normal

stiffness, density, and friction. Next, a law of motion is applied to each particle to update its

velocity, direction of travel based on the resultant force, moment and contact acting on particle.

The force-displacement law is then applied to continue the circulation.

1.16. The force-displacement law

The force-displacement law is described for both the ball-ball and ball-wall contacts. The

contact arises from contact occurring at a point. For the ball-ball contact, the normal vector is

directed along the line between the ball centres. For the ball-wall contact, the normal vector is

directed along the line defining the shortest distance between the ball centre and the wall. The

contact force vector Fi is composed of normal and shear component in a single plane surface

Fi ¼ FnijðtÞ þ Fsijðtþ ΔtÞ (110)

The force acting on particle i in contact with particle j at time t is given by

FnijðtÞ ¼ kn

�

ri þ rj � lijðtÞ
�

(111)

where rj and ri stand for particle i and particle j radii, lij(t) is the vector joining both centres of

the particles and kn represents the normal stiffness at the contact. The shear force acting on

particle i during a contact with particle j is determined by

Fsijðtþ ΔtÞ ¼ �minðFsijðtÞ þ ksΔsij, f jF
n
ijðtþ ΔtÞjÞ (112)

where f is the particle friction coefficient, ks represents the tangent shear stiffness at the contact.

The new shear contact force is found by summing the old shear force (min Fij(t)) with the shear

elastic force. Δsij stands for the shear contact displacement-increment occurring over a time

step Δt.

Δsij ¼ vsijΔt (113)

where Vs
ij is the shear component of the relative velocity at contact between particles i and j

over the time step Δt.

1.17. Law of motion

The motion of the particle is determined by the resultant force and moment acting on it. The

motion induced by resultant force is called translational motion. The motion induced by

resulting moment is rotational motion. The equations of motion are written in vector form as

follows:
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- (Translational motion)

X

j

Fij þmigþ Fdi ¼ mix
n
i (114)

- (Rotational motion)

X

j

riFij þMd
i ¼ Irθ

n
i (115)

where x″i and θ
″
i stand for the translational acceleration and rotational acceleration of particles

i. Ir stands for moment of inertia. Fdi and Md
i stand for the damping force and damping

moment. Unlike finite element formulation, there are now three degree of freedom for 2D

problem and six degree of freedom for 3D problems. In Cundall and Strack’s explicit integra-

tion distinct element approach, solution of the global system of equation is avoided by consid-

ering the dynamic equilibrium of the individual particles rather than solving the entire system

simultaneously. That means, Newton’s law of motion is applied directly. This approach also

avoids the generation and storage of the large global stiffness matrix that will appear in finite

element analysis. On the other hand, the implicit DDA approach will generate a global stiff-

ness matrix which is even larger than that in finite element analysis, as the rotation is involved

directly in the stiffness matrix.

In a typical DEM simulation, if there is no yield by contact separation or frictional sliding, the

particles will vibrate constantly and the equilibrium is difficult to be achieved. To avoid this

phenomenon which is physically incorrect, numerical or artificial damping is usually adopted

in many DEM codes, and the two most common approaches to damping are the mass

damping and non-viscous damping. For mass damping, the amount of damping that each

particle “feels” is proportional to its mass, and the proportionality constant depends on the

eigenvalues of the stiffness matrix. This damping is usually applied equally to all the nodes. As

this form of damping introduces body forces, which may not be appropriate in flowing

regions, it may influence the mode of failure. Alternatively, Cundall [11] proposed an alterna-

tive method where the damping force at each node is proportional to the magnitude of the out-

of-balance-force, with a sign to ensure that the vibrational modes are damped rather than the

steady motion. This form of damping has the advantage that only accelerating motion is

damped and no erroneous damping forces will arise from steady-state motion. The damping

constant is also non-dimensional and the damping is frequency independent. As suggested by

Itasca [20], an advantage of this approach is that it is similar to the hysteretic damping, as the

energy loss per cycle is independent of the rate at which the cycle is executed. While damping

is one way to overcome the non-physical nature of the contact constitutive models in DEM

simulations, it is quite difficult to select an appropriate and physically meaningful value for the

damping. For many DEM simulations, particles are moving around each other and the dom-

inant form of energy dissipation is for frictional sliding and contact breakages. The choice of
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damping may affect the results of computations. Currently, most of the DEM codes allow the

use of automatic damping or manually prescribed the damping if necessary.

To capture the inherent non-linearity behaviour of the problem (with generation and removal

of contacts, non-linear contact response and stress-strain behaviour and others), the displace-

ment and contact forces in a given time step must be small enough so that in a single time step,

the disturbances cannot propagate from a particle further than its nearest neighbours. For most

of the DEM programs, this can be achieved automatically and the default setting is usually

good enough for normal cases. It is, however, sometimes necessary to manually adjust the time

step in some special cases when the input parameters are unreasonably high or low. Most of

the DEM codes use the central difference time integration algorithm which is a second-order

scheme in time step.

1.18. Measuring logic

If the local results in DEM are analyzed, it is found that there will be large fluctuations with

respect to both locations and time. Such results are not surprising, as the results are highly

sensitive to the interaction between particles and hence the time step under which the results

are monitored. It can be viewed that such local results can be meaningless unless the results are

monitored over a long time span or region. A number of quantities in a DEM model are

defined with respect to a specified measurement circle. These quantities include coordinate

number, porosity, sliding fraction, stress and strain rate. The coordination number and stress

are defined as the average number of contacts per particle. Only particles with centroids that

are contained within the measurement circle are considered in computation. In order to

account for the additional area of particles that is being neglected, a corrector factor based on

the porosity is applied to the computed value of stress.

Since measurement circle is used, stress in particle is described as the two in-plane force acting

on each particle per volume of particle. Average stress is defined as the total stress in particle

divided by the volume of measurement circle. Thus, shape of particle is regardless of the

average stress measurement because the reported stress is easily scaled by volume unity. The

reported stress is interpreted as the stress per volume of measurement circle.

1.19. Discussion and conclusion

There are also various publications on the numerical solutions of differential equations, and

the readers are suggested to the works of Lee and Schiesser [24], Jovanoic and Suli [22], Veiga

et al. [37], Sewell [35], Morton and Mayers [27], Logg et al. [25], Holmes [17], Lui [26], Lapids

and Pinder [23] and Iserles [19]. It is impossible for the author to cover every available

analytical or numerical method; hence, the author has chosen some methods that are actually

used for teaching and research. The readers are strongly encouraged to consult the numerous

resources available in various books and publications. There are still new developments

available for the solutions of specific differential equations in large-scale problems, and this is

also the current trend in the development of differential equation solution.
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Due to the importance of the solution of differential equations, there are other important

numerical methods that are used by different researchers but are not discussed here, which

include the finite difference and boundary element methods (computer codes for learning can

also be obtained from the author). Differential equations rely on the Taylor’s series, and the

derivatives in the differential equation can be replaced with finite difference approximations

on a discretized domain. This will result in a system of algebraic equations that can be solved

implicitly or explicitly. There are various ways to form the derivatives, and the most common

methods are the forward difference, backward difference and the central difference schemes.

While the finite difference methods may be more suitable for different types of differential

equations, this method is less convenient to deal with irregular boundary conditions as com-

pared with the finite element method. For highly irregular domain where it is not easy to form

a nice discretization, the finite element method will also be much easier and natural to deal

with for such condition. In this respect, it is not surprising that many engineering programs are

written by the use of the finite element method than the finite difference method.

The boundary element method (BEM) is another numerical method for solving linear partial

differential equations which can be formulated as integral equations. The boundary element

method uses the given boundary conditions to fit boundary values into the integral equation.

In the post-processing stage, the integral equation will be used to calculate the solution directly

at any given point inside the solution domain numerically. BEM is applied to problems for

which Green’s functions can be calculated, thus this method is initially designed for problems

in linear homogeneous media. The dimension of the problem will then be reduced by one. For

example, two-dimensional problem will be effectively reduced to one-dimensional problem

along the boundary, and this will greatly improve the efficiency of computation. The require-

ment from the boundary element method imposes considerable restrictions on the range and

generality of problems to which the boundary element method can usefully be applied. There

are some new developments to the boundary element method so that it can be used for non-

linear problem or problems with several major materials (problems with random distribution

of material properties are still not applicable). The fundamental solutions are often difficult to

integrate. One important property of boundary element analysis is the solution of a fully

populated matrix as compared with that in the finite element/difference method. For compli-

cated problems, the boundary element will lose its advantage as compared with other numer-

ical methods. Due to the various limitations, there are only limited boundary element

programs available to the researchers. Interested readers can consult the works of Banerjee

[1], Brebbia et al. [3] and Trevelyan [36]. It appears that there are less interest in the use and

development of the boundary element method in the recent years, due to the various limita-

tions of this method in general non-linear non-homogeneous problem.

In history, various techniques have been developed for ordinary differential equations and

partial differential equations under different boundary conditions. While these tricks appear to

be elegant, they are not readily adopted for normal engineering use due to various limitations.

Being an engineer, the author seldom adopted the methods as outlined in this chapter in actual

applications (but do adopt for teaching), except the numerical methods as outlined in this

chapter. At present, there are many proprietary or open source finite elements or distinct
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element codes being used for many complicated real problems. The computer codes (usually

in Fortran or C) are usually difficult to be read (if available), and the computer codes for all the

partial differential forms (including some extended formats) that have been discussed in this

chapter can be readily available from the author for learning purposes. There are also very

powerful and general finite element tools or differential equations solver such as FreeFem++,

Comsol, Matlab, Mathematica, Maple and Maxima which are used by many scientists and

engineers [39, 40]. The use of parallel computing is also strongly influenced by the needs to

solve complicated partial differential equations over large solution domain.
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