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Abstract

To date, liquid crystal chirality, mechanophysical chirality, circularly polarized photon 
chirality, gelation and chiral solvation are all feasible candidates to generate optically 
active polymers and supramolecular chirality when employing achiral molecules as start‐
ing substances. Among this, chiral‐solvation‐induced chirality is one of the dominant 
methods for construction of chirality from achiral sources, such as achiral poly(n‐hexyl 
isocyanate) (PHIC), π‐conjugated polymers, oligo(p‐phenylenevinylene), polyacetylenes, 
σ‐conjugated polysilanes and side‐chain polymers. Supramolecular chirality is well 
established through their intra‐ or inter‐molecular noncovalent interactions, such as van 
der Waals, CH/π, dipole‐dipole interactions, hydrogen bonding and metal‐ligand coordi‐
nating interactions. Compared with the traditional methods, this strategy avoids the use 
of expensive chiral reagents and also expands the scope towards challenging substrates. 
This chapter highlights a series of studies that include: (i) the development‐historical 
background of chiral solvent induction strategy; (ii) the chiral‐solvation‐induced chirality 
in small molecules and oligomers; and (iii) recent developments in polymers, especially 
in π‐conjugated polymers and σ‐conjugated polymers.

Keywords: optical activity, supramolecular chirality, chiral solvation, self‐assembly, 

circular dichroism, circularly polarized luminescence

1. Introduction

As early as the second half of the nineteenth century, many scientists have long thought that 

the intrinsic biomolecular homochirality found in the living world is the origin of life on 

earth, since inherent optical activity exists inside all living organisms [1–14]. For example, 

typical fundamental components of our body, DNA and polypeptide biopolymers, consist 

of D‐ribose and L‐amino acid building blocks with the same handedness, respectively. The 
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absolute enantiopurity inside living organisms is of prime importance for many biological 

processes involving molecular recognition and replication, enzymatic catalysis, heritable 

characters, and pharmaceutical and toxicological activities [15]. Therefore, the studies on chi‐

rality were actually meant to explore life itself, its origin and nature.

Lord Kelvin first coined the term chirality as ‘I call any geometrical figure, or group of 
points, chiral, and say it has chirality if its image in a plane mirror, ideally realized, can‐

not be brought to coincide with itself’. Many pioneering concepts, such as ‘optical activity’, 
‘asymmetry’, ‘enantiomers’ and ‘chirality’, also have been proposed since Pasteur's discovery 
of handedness in molecules. Research on chirality increased the demand of chiral materials 

and motivated more studies on synthetic chiral materials, especially chiral polymers, which 

have great promising applications in asymmetric catalysis, chiral resolution, chirality sen‐

sor and optoelectronic materials [16–24]. In general, most molecules or polymers possessing 

handed stereogenic centres and/or handed stereogenic bonds are considered to be optically 

active or chiral. This kind of chirality is attributed to straightforward chiral induction biases. 
Nowadays, traditional methods for preparing these chiral polymers have encountered many 

problems like the use of expensive chiral monomers or complex asymmetric polymerization 

processes. It is worth noting that, even if many substances have no optical activity, it does not 

mean that they cannot be chiral. They may exist as racemic mixtures or exist as time‐averaged 

structures in a mirror‐symmetric potential energy surface. External influence of molecular 
species, including stereogenic centres and/or stereogenic bonds, may indirectly induce their 

chiroptical activity. What's more, optical activity should be recognized as observable and 
measurable chiroptical signals in the ground and photoexcited states, but not as the typical 

defined chirality with chiral structure itself. Introducing asymmetry into optically inactive 
sources to obtain supramolecular chirality has gained increasing interest due to the appeal of 

avoiding of tedious synthesis of chiral polymers, as well as the possibility of several chiroptical 

applications including memory and switching.

Nowadays, methods for introducing asymmetry have been expanded widely, for example, 

using asymmetric liquid crystal field, supramolecular interactions with small chiral mole‐

cules, chiral circular polarized light and chiral solvation [21, 24–28]. Among these, chiral sol‐

vation method by simply using chiral solvent molecules as chiral source provides a relatively 

greener way to prepare optically active polymers. In this way, achiral macromolecules are 

surrounded by numerous chiral solvent molecules, and noncovalent supramolecular inter‐

actions (acid‐base interaction, hydrogen bond, metal‐ligand interaction and van der Walls 

force) existing between them will probably produce optical activity. Although these chiral 

induction biases are weak, chirality transfer from small molecules to macromolecules could 

be successfully realized through this way. Also, chiral induction biases can be amplified with 
the help of solvent quantity, subsequently obtaining supramolecular chirality. The concept 

of supramolecular chemistry was first delineated by Lehn as “the chemistry of molecular 
assemblies and of intermolecular bond” [29]. Supramolecular chemistry is closely allied 

to self‐assembly, which has been defined as the spontaneous organization of pre‐existing 
 disordered components into ordered structures or pattern, as a consequence of specific inter‐

actions among those components themselves without external direction. Both supramolecular 

chemistry and molecular self‐assembly are related to noncovalent interactions. They are great 
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essential parts of biological systems, and exist everywhere such as the transfer and storage 

of genetic information in nucleic acids, and the self‐folding of proteins into more function‐

ally active molecular machines. These biological molecular self‐assembly processes produce 

supramolecular chirality, due to the special spatial arrangements of the biological molecules. 

In a self‐assembled system, both chiral and achiral components can be used to produce supra‐

molecular chirality.

To detect this kind of supramolecular chirality in the ground states, circular dichroism (CD) 

and optical rotation dispersion (ORD) are used to investigate the electronic transition proper‐

ties of the chiral species [30]. Vibrational circular dichroism (VCD) and Raman optical activity 

are used to investigate their vibronic transition properties [31, 32]. On the contrast, circularly 

polarized luminescence (CPL) provides us their structure information of chiral species in the 

photoexcited states [33]. These molecular structures are also predictable computationally by 

using the time‐dependent density functional theory (DFT). The various processes of chiral 

supramolecular assembly can be monitored by UV‐visible spectrophotometry, circular dichro‐

ism (CD) and fluorescent spectroscopy. Furthermore, their micro morphologies (nanoparticles 
or nanofibers) can be investigated by Atomic Force Microscopy (AFM), Transmission Electron 
Microscope (TEM) and Scanning Electron Microscope (SEM) technologies. This chapter high‐

lights a series of studies that include: (i) the development‐historical background of chiral 

solvent induction strategy; (ii) the chiral‐solvation‐induced chirality in small molecules and 

oligomers; and (iii) recent developments in polymers, especially in π‐conjugated polymers 

and σ‐conjugated polymers.

2. Chirality of small molecules and oligomers induced by chiral solvation

2.1. Induced circular dichroism for small molecules

It is well known that the induced optical activity for the absorption band(s) of the achiral 

species is defined as ”induced circular dichroism (ICD)” [34]. One of the earliest observations 

was made when small achiral or CD‐silent molecules were dissolved in chiral solvents, and 

the mirror symmetry of the chromophoric substrate was successfully broken by the solvation. 

In 1898, Kipping and Pope reported the first stirred chiral crystallization of aqueous NaClO
3
 

solutions in D‐dextrose, D‐mannitol and D‐dulcitol [35–37]. Although the aqueous solution 

of sodium chlorate is not optically active, the crystals obtained showed strong bias towards 

formation of one enantiomorphic form due to the successful chirality transfer from sugar 

solute. In isotropic solutions, the chiral solvation method applied in several small CD‐silent 

molecules was then investigated [38]. As early as 1965, Mason et al. observed for the first time 
ICD bands for the d‐d transitions of [Co(NH

3
)

6
](ClO

4
)

3
 in aqueous diethyl‐(+)‐tartrate solu‐

tions, according to the outer‐sphere coordination between them [39]. What's more, Bosnich 
et al. found ICD effects not only for the d‐d transitions of [PtC1

4
]2− but also for the n‐π* tran‐

sitions of benzyl and benzophenone in (S,S)‐2,3‐butanediol (Figure 1) [40]. The ICD effects 
for these aromatic groups were ascribed to the inherently twisting conformations of benzyl 

groups due to their H‐H repulsion [41]. Further study on ICD effects has been reported by 
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Hayward et al. for the n‐π* transitions of 10 symmetric and racemic aliphatic ketones in six 

chiral tetrahydrofuranols (Figure 1) [42]. Later, a molecular complex with 1:1 molar ration 

between achiral‐saturated ketones and chiral L‐menthol was proposed to exist in the solution 

by investigating the concentration dependence of ICD bands [43]. This was possibly ascribed 

to chiral OH/O interactions. Such induced CD (ICD) effects have so far been observed in a 
number of situations, and the intermolecular interactions such as hydrogen bonding, van der 

Waals interactions, or ionic coupling between chiral species and achiral ones are contributed 

to the induction of the optical activity for the electronic transitions of achiral species.

2.2. Induced circular dichroism for oligomers

Another most frequently studied type of ICD effects is between achiral or CD‐silent  oligomers 
and chiral solvents, due to their intra‐ or inter‐molecular interactions. In 1992, Aoyama et al. 

prepared a hydrophobic resorcinol cyclic tetramer (host molecule) by reaction between res‐

orcinol and dodecanal (Figure 1) [44, 45]. Through cooperative CH‐π and hydrogen‐bonding 
effect, this achiral, chromophoric host molecule efficiently formed soluble complexes with chi‐
ral, nonchromophoric guest molecules, such as various glycols and sugars, (R)‐/(S)‐2‐pentanol, 

Figure 1. Optically active small molecules and oligomers induced by chiral salvation.
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(R)‐/(S)‐1‐phenylethanol, D‐/L‐menthol, epicholestanol and  cholesterol. The  desymmetrization 

of the host molecule upon host‐guest complexation enabled the coupling of the transition 

moments generated by the aromatic rings, giving rise to not only ICD effects but also exciton‐
coupled CD spectra. This kind of observed couplet was also further applied to determine the 

absolute configuration of the guest molecules. The complexation between CD‐silent zinc por‐

phyrins and chiral amines or alcohols is another important intermolecular interaction applied 

to prepare optically active complexes. Berova et al. have designed an achiral zinc bis‐porphy‐

rin linked with a long pentamethylene diester (host molecule) as shown in Figure 1 [46–48]. By 

relatively intense coordination interactions between zinc porphyrin and nitrogen or oxygen, 

the host molecules successfully bound plenty of chiral diamines, amino alcohols and amino 

acids and showed clear ICD effects, due to the formation of CD‐active 1:1 and 1:2 host‐guest 
complexes. Borovkov, Inoue and coworkers have synthesized a CD‐silent zinc bis‐porphyrin 

rotamer linked with a shorter 1,2‐ethane spacer (Figure 1) [49–51]. When it binds chiral sec‐

ondary amines or chiral secondary alcohols through ligand‐to‐metal coordination, the rota‐

mer shows efficient switch between syn‐ and anti‐conformations. This kind of supramolecular 

chirality is caused by the steric interactions between the 3,7‐ethyl groups of the porphyrin and 

the substituents of the ligand. Tsuda and Aida designed a zinc bis‐porphyrin rotamer contain‐

ing a rigid linker and pyridine substituent [52]. When it is dissolved in asymmetric hydrocar‐

bons, such as (S)‐ and (R)‐limonene, it is capable of self‐assembling into a twisted box‐shaped 

tetramer through multipoint non‐covalent interactions and gives rise to the chiral supramo‐

lecular assembly. The homochirality of the self‐assembled tetramer was then characterized 

by analysing its CD spectra as functions of limonene enantiopurity and the time‐dependent 

CD change in a dilute condition. Also, the obtained tetrameric assembly is enantiomerically 

enriched and optically active, confirming the successful preparation of supramolecular chi‐
roptical sensor for chiral limonene. And from the CD spectra of the porphyrin box, the optical 

purity and absolute configuration of limonene can be determined.

Aside from breaking the inner mirror symmetry, the induced optical activity of achiral oligo‐

mers can also be accomplished by forming supramolecular assemblies when the oligomers 

are aggregating in chiral solvents. Meijer et al. presented pioneering studies on the construc‐

tion of supramolecular chirality for self‐assembled C
3
 symmetric disc‐shaped molecules and 

achiral oligo(p‐phenylenevinylene) derivatives (OPVs) through preferential chiral solvation 

(Figure 1) [53–55]. In their work, the chiral inducers, such as (S)‐ and (R)‐citronellic acid, 

(S)‐ and (R)‐citronellol and (S)‐2,6‐dimethyloctane, showed chiroptical induction ability and 

promised homochirality of the assemblies through chiral OH/N, OH/O and CH/π interactions. 
For achiral OPVs equipped with ureidotriazine arrays and n‐butoxy side chains, chiral solvation 

gives rise to quadruple H‐bonded dimers and subsequently forms well‐defined supramo‐

lecular stacks by cooperative π‐π stacking [54, 55]. Würthner et al. demonstrated that chiral 

solvent, (S)‐ and (R)‐limonene, successfully generated one‐dimensional helical nanofibres 
from optically inactive amide‐functionalized perylene bisimide derivatives (PBI) by synergic 

effects of hydrogen‐bonding interactions and π‐π stacking (Figure 1) [56]. The presence of 

reversed CD effects of this PBI gelator in (S)‐ and (R)‐limonene reveals that helically packing 

of the chromophore is successfully directed by the chiral environment, which was also proven 

by the chiral bias towards homochiral aggregates observed by AFM studies.
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3. Chirality of polymers induced by chiral solvation

Apparently, compared with small organic molecules, optically active polymers possess bet‐

ter film‐processing ability, thermodynamic stability and particular physical and chemical 
properties. These polymers are always prepared by polymerization with chiral monomers, 

asymmetric polymerization with achiral monomers, or chiral self‐assembly processes from 

optically inactive sources. The latest method has been studied intensively and been recog‐

nized as one of the most promising ways for preparing optically active polymers. Nowadays, 

inter‐ or intra‐molecular interactions (like van der Waals, CH/π, hydrogen bonding, coulom‐

bic, charge‐transfer and metal‐ligand coordinating interactions) have been used to facilitate 

the chirality induction of optically active polymers from optically inactive polymers. As early 

as in 1993, Green et al. observed for the first time a macromolecular conformational change 
driven by a minute chiral solvation energy [26, 57]. The chirality transfer from non‐racemic 

solvents, such as (S)‐1‐chloro‐2‐methylbutane and (R)‐2‐chloroalkanes, to CD‐silent poly(n‐

hexyl isocyanate) (PHIC) macromolecules was successfully realized (Figure 2). The generation 

of supramolecular chirality of PHIC polymers with a preferred handed helix was also demon‐

strated by CD signals. After the successful chirality transfer from solvent chirality to achiral 

polymers, the substrate structures with different functionality, mostly based on σ‐conjugated 

polymers and π‐conjugated polymers, are also investigated.

3.1. Preparation for optically active σ‐conjugated polymers

Fujiki et al. found that a certain polysilane bearing remote chiral (S)‐2‐methylbutoxyphenyl 

groups was CD‐silent when it was molecularly dispersed in tetrahydrofuran (THF) solu‐

tion, due to the existence of dynamically equivalent amounts of right‐ and left‐handed screw 

sense helical main chain domains. However, after addition of methanol, optically active 

polysilane aggregated in the good/poor cosolvents system and marked bisignate CD signals 

were abruptly observed in the UV region due to the Siσ‐Siσ* transition [58]. This interesting 

observation intrigued them to investigate the chiral‐solvent‐induced aggregation processes 

of CD‐silent polysilanes bearing achiral groups in tersolvents (chiral solvent/good solvent/

poor solvent) systems (Figure 3). Then the clear exciton couplet CD signals of Siσ‐Siσ* tran‐

sitions of achiral polysilane aggregates with achiral n‐propoxyphenyl and n‐hexyl groups, 

Figure 2. Conformational change of poly(n‐hexyl isocyanate) driven by chiral solvation.
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certificated the successful chirality transfer and amplification of the molecular chirality of 
2‐phenylethanol (chiral solvent) [59]. Holder et al. first reported that preferential helical sense 
of inherently achiral σ‐conjugated polysilanes was successfully induced via chiral solvation, 

which was investigated by optical UV‐visible and CD spectroscopy [60, 61]. When polysi‐

lanes, poly(methylphenylsilane) (PMPS) and poly(methyl‐n‐hexylsilane) (PHMS) are totally 

dissolved in good solvents, they normally exist as random coils whose segments have an 

equal probability of adopting either P or M helical screw senses. While dissolved in chiral 

solvents, such as (S)‐(−)‐2‐methyl‐1‐propoxybutane and (S)‐(−)‐(2‐methylbutoxymethyl)
benzene, a preference for one helical sense is achieved. Among these diverse chiral solvents 

 mentioned above, limonene is most widely used as a mirror‐symmetry‐breaking solvent due 

to its nontoxicity and its easy extraction process from natural fruits. Through aggregation 

in the limonene/methanol/THF tersolvent, Fujiki et al. also successfully prepared optically 

active supramolecules from the original CD‐silent σ‐conjugated polysilanes (Figure 3) [62]. 

The chiral solvent ratio and polymer molecular weight dependences were both certified as 
critical factors to the dissymmetry factor, g

CD
. Also, chirality inversion was observed when 

different limonene solvent ratios were applied to PSi1 and PSi3. And apparent CPL signals 
for PSi2 and PSi3 were observed in the supramolecular aggregates formed through chiral 

solvation. These interesting phenomena including chirality inversion and CPL signals are all 

instructive for research on solvent‐chirality‐transfer mechanism.

3.2. Preparation for optically active π‐conjugated polymer

π‐Conjugated polymers are very essential materials for applications in organic solar cells, 

polymeric organic light emitting diodes (OLED), thin‐film transistors, lasers and photovoltaic 
devices. Among this, those polymers with chiroptical properties bring about perfect linearly and 

circularly polarized electroluminescence, which are widely applied in fields of optical switch‐

ing and processing, chiral bio‐imaging and metamaterials [63, 64]. As a typical π‐conjugated 

polymer, achiral polyphenylacetylene possesses a plenty of short random twist segments with 

many helix‐reversal points in the adjacent double bonds around a single bond. Yashima et al. 

reported that the random twist conformation can be transformed into a prevailing one‐handed 

helical conformation upon complexation with optically active amines and amino alcohols in 

polar DMSO, certificated by the observation of characteristic ICD effects in the UV‐vis region 

Figure 3. Optically activity of σ‐conjugated polymers induced by chiral solvation.

Chiral Solvation Induced Supramolecular Chiral Assembly of Achiral Polymers
http://dx.doi.org/10.5772/67700

67



(Figure 4) [53, 65, 66]. The CD signs corresponding to the different helical superstructures can be 
used as a probe for determining the configuration of chiral amines. What's more, this helicity can 
be successfully memorized when the original chiral amines are removed or replaced by achiral 

ones, while the helical conformation is still unchanged.

Among those π‐conjugated polymers, polyfluorenes (PFs) possessing higher photolumines‐

cence efficiency are much easier for film‐processing and structure modification, which are great 
promising materials for organic light emitting diodes (OLED). Traditional methods for synthe‐

sizing PFs always involve expensive chiral catalysts and complex experimental procedures. The 

perfect application of chiral solvation method in preparing optically active σ‐conjugated poly‐

mers and π‐conjugated polyphenylacetylenes gave rise to the possibility of inducing optically 
active PFs. First, Fujiki et al. successfully utilized terpene chirality transfer method to generate 

serials of CD‐ and/or CPL‐active π‐conjugative polymers from the corresponding achiral coun‐

terparts (Figure 5) [67–71]. Meanwhile, many diverse factors, such as tersolvent composition, 

solvent polarity, polymer molecular weight, alkyl chain length, limonene enantiopurity, solu‐

tion temperature, clockwise and counter‐clockwise stirring, and aggregate size are confirmed 
to influence the magnitude of the induced CD and/or CPL amplitude. Through theoretical 
calculation, they assume that the inherent twisting ability (H‐H repulsion) between the near‐

Figure 4. Helical poly(1‐phenylacetyelene) carrying carboxyl group.

Figure 5. Optical activity of π‐conjugated polymers induced by chiral solvation.
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est neighbouring fluorene rings within mainchains of PF8T1, PF8T2, PF8, PF10 and PF8P2 are 
responsible for the preferential handness formed during aggregation process. In comparison, 

fluorene units linked with a C≡C triple bond (PEE) did not generate any optically active aggre‐

gate, ascribed to the lack of H‐H repulsion.

Zhang et al. demonstrated that solvent chirality can be transferred to the aggregates of many 

optically inactive π‐conjugated polymers with different backbone structures, such as main chain 
azo‐containing polyfluorene (F8AZO), poly(9,9‐di‐n‐octylfluorenyl‐2,7‐diyl) (PF8), poly(9,9‐
di‐noctylsila‐fluorenyl‐2,7‐diyl) (PSi8), poly(9‐(1‐octylnonyl)‐9H‐carbazole‐2,7‐diyl) (PCz8), 
P(F8‐alt‐Si8), P(F8‐alt‐Cz8), and P(Si8‐alt‐Cz8), hyperbranched PF8s, side chain azo‐containing 

polymers PAzoMA, P(AzoMA‐rans‐MMA), and star side‐chain Azo polymers (star PAzoMAs) 

as shown in Figure 6 [69, 72–76]. Optically active F8AZO aggregates were successfully gener‐

ated by the chirality transfer from (S)‐ and (R)‐limonene, demonstrated by the intense ICD 

signals corresponding to F8AZO in the visible region [69]. Upon alternating photoirradiation 

at 405 (trans form) and 546 nm (cis form), a first reversible chiroptical switch for Azo‐contain‐

ing π‐conjugated polymer was achieved, resulting from the switching between the trans‐origin 

aggregation and cis‐origin disaggregation of F8AZO in the limonene/2‐propanol/chloroform 

tersolvent system. Then, they generated the first optically active hyperbranched π‐conjugated 
polymer aggregates with strong CD and CPL properties with the help of solvent chirality trans‐

fer from chiral limonene [72]. Their studies showed that degree of branching, poor solvent type, 

volume fraction, limonene enantiopurity and polymer concentration have obvious effects on 
the magnitude and sign of the CD signals. Surprisingly, further studies found chiroptical inver‐

sion during aggregation of achiral PF8 and PSi8 and chiroptical inversion between CD and CPL 

spectra of PSi8 aggregates [73]. The unique  chiroptical   inversion was probably attributed to 
the opposite Mulliken charges between 9‐Si in Si8 and 9‐C in F8 unit and between Cipso(1) 

in Si8 and Cipso(1) in F8 unit, or resulting from the opposite direction of dipole moments in 

Figure 6. Optical activity of main‐chain and side‐chain π‐conjugated polymers induced by chiral solvation.
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three stable rotational isomers of the equatorial limonene rotamer. This novel element‐depen‐

dent chiroptical inversion and structural dependence of π‐conjugated polymers with the help 

of limonene chirality in aggregation states pave a new way for  designing chiroptical functional 

polymers. Furthermore, they successfully constructed the supramolecular chirality for CD‐

silent PF8 by cooling its limonene solution at low temperature [74]. More interestingly, the 

supramolecular chirality can be transferred to solid films and be perfectly memorized. Facile 
generation and inversion of the CPL sign were also observed between aggregation states and 

film states. AFM studies clearly revealed the right‐ and left‐handed twist helical fibres induced 
by nonracemic limonene, which are responsible for the CD and CPL functionality.

Although this chiral solvation strategy has been well applied in preparing many optically active 

main chain π‐ and σ‐conjugated polymers, this concept has been extended to side chain poly‐

meric systems. Guerra et al. reported that the first side chain polymer, syndiotactic polystyrene 
(s‐PS), exhibited intense ICD signals in the polymer absorption region after exposure to non‐

racemic solvent vapour and thermal annealing processes in the film state [77]. The chiropti‐

cal properties obtained for racemic nanoporous δ‐phase s‐PS was assumed due to the induced 

chiral co‐crystallization with solvent molecules, and the sign of CD signals is determined by the 

chirality of the nonracemic guests. However, a more recent study demonstrated that the signs 

depend essentially only on the nature of the polymer host supramolecular chirality, but not on 

the R or S solvent chirality, proven by the VCD spectra of the δ‐phase s‐PS film used [78]. To 

investigate the induction of supramolecular chirality for achiral side‐chain polymers, Zhang et 

al. designed serials of linear and star‐shaped achiral side chain azobenzene‐containing polymer 

(PAzoMA, P(AzoMA‐rans‐MMA), and star PAzoMAs) [75, 76]. Chirality of nonracemic solvents 

were successfully transferred to these polymers, and well‐assembled supramolecular trans‐

azobenzene aggregates are prepared in DCE/(R)‐ or (S)‐limonene mixsolvents. The chirality 

obtained was ascribed to the ordered stacking of azobenzene group on the side chain when the 

polymer molecules were aggregating in the chiral solvents. This supramolecular chirality can 

also be destroyed by the trans–cis photoisomerization process due to the noncoplanar structure 

of the cis‐Azo unit; however, it can be recovered by the heating‐assisted reorganization process. 

The successful construction of a reversible chiral‐achiral switch based on an achiral azobenzene‐

containing side chain polymer will open a new approach for production of chiroptical materials.

4. Conclusion

This chiral solvation approach provided herein allows the production of various CPL‐/CD‐

functionalized polymer solutions or aggregates from CD‐silent artificial polymers under mild 
conditions through the noncovalent interactions between small chiral molecules and achiral 

polymers. What's more, the chiral transfer, amplification and memory of supramolecular chi‐
rality in polymer solution and its solid polymer films were also realized, which is highly sig‐

nificant for the practical applications in chiroptical switch and memory, optical data storage 
and detection of circularly polarized luminescence (CPL). Considering the potential applica‐

tion of chiral materials in nonlinear optical devices, this concept paves a more convenient way 

for designing and constructing chiral polymer materials.
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