
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 3

Motion Control with FPGA

Miguel Angel Martínez Prado,
Juvenal Rodríguez Reséndiz,
Diana Carolina Toledo Pérez,
Carlos Miguel Torres Hernández and
Gilberto Herrera Ruiz

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67200

Abstract

The aim of this chapter is to provide an introduction to the field programmable gate
array (FPGA)-based digital control system design for motion control. It is intended as a
reference for the undergraduate students in science and engineering, professionals, and
enthusiastic people who have a basic knowledge in discrete control theory and digital
systems using reconfigurable logic. The scope of this chapter includes the analysis,
simulation, and implementation of classic control algorithms. The presented topics serve
as a foundation for the implementation of more complex systems. An experimental
section is provided, which validates the proposed digital design.

Keywords: FPGA, motion-control, PID-control, VHDL, robotics

1. Introduction

The reconfigurable logic in industries opened countless opportunities especially in the field of

control and automation. This technology facilitates the implementation of complex control

algorithms with fast response.

Nowadays, the control system engineers require new tools for creating better electronic design for

automation systems. Some modern tools that are available on the market allow the designer to

create, simulate, and verify the desired hardware design. This can help in the evaluation of the

complex system designs with fewer resources.

Among modern tools used by the controllers, the field programmable gate array (FPGA)

provides a shorter processing time than the conventional methods like microprocessor- or

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

microcontroller-based designs. Furthermore, it has benefits such as improved accuracy and

efficiency of the algorithms.

In the industry, the FPGA technology began to be used by the designers in areas like telecom-

munications, signal processing, image processing, and control systems such as robotic arms

and assembly lines. Later, this technology began to be utilized in applications where the fast

processing of information is desired, such as medical equipment, robotics, aeronautics, etc. [1].

Proportional integral derivative (PID) controller is one of the most commonly used design, due

to its simple design and its robustness with respect to the parameter uncertainty [2–4]. They

are usually used in the speed controlling applications of direct current or permanent magnet

motors, through pulse-width modulation (PWM) pulses [5], output current, voltage, or fre-

quency. It is possible to find out in the scientific literature PID implementations on hardware

[6–8] whose authors have demonstrate the effectiveness of their designs; however, most of

these implementations are not easy to develop and for some cases they are destined to be

implemented only in some FPGA families.

In order to enhance the designer experience, the FPGA card manufacturers incorporate

multicore processors equipped with flash memory into their designs for enhancing the com-

puting capacity and data parallel processing. In this way, the controllers can implement

functions that require fast processing in hardware and computationally intensive algorithms

into the processor.

Implementing functions into the FPGA chip, the platforms that are available on the market

works with HDL codes, which decreases hardware resource use and therefore, at the same

time, reduces the cost and energy consumption of the system. Moreover, these platforms

manage simulators for assessment of the design before its implementation.

Section 2 of this chapter is related to the digital controllers, which describes the PID and

other controllers in discrete form. Section 3 provides the hardware description of the PID

controller in VHDL language, and finally, the fourth section provides the simulation and

experimental validation, which demonstrates how to perform numerical simulations using

Simulink and Modelsim. Furthermore, an experimental validation on a DC motor system is

also provided.

2. Discretization of classical controllers

The proportional-integral derivative (PID) controller is widely used in industry due to its high

performance with most of the plants even if they are nonlinear [2]. Besides, its parameters can

be tuned empirically and still achieve a good performance. Due to the complexity of the

algorithm, its implementation has been limited to microcontrollers or digital signal processors

[3], and furthermore, most of the researchers who are experts in control theory do not have a

deep knowledge on reconfigurable logic [4, 5].

PID controller has the following form:

Field - Programmable Gate Array58

uðtÞ ¼ Kp eðtÞ þ
1

Ti
∫
t

0

eðτÞdτþ Td
deðtÞ

dt

" #

(1)

where eðtÞ is the difference between the desired (wðtÞ) and measured (yðtÞÞ response of the

system, i.e.:

eðtÞ ¼ wðtÞ � yðtÞ (2)

and uðtÞ is the control signal, used to control the actuator's operation to obtain a desired

closed-loop performance. Finally, the parameters Kp, Ti, and Td are the proportional gain,

integral, and derivative time constants, respectively. A more popular form of Eq. (1) can be

obtained by using the Laplace transform as follows:

UðsÞ ¼ Kp þ
Ki

s
þ Kds

� �

EðsÞ, (3)

where Ki ¼
Kp

Ti
and Kd ¼ KpTd.

Eqs. (2) and (3) are time-dependent functions; therefore, they cannot be implemented directly

into a digital system. In that case, it is necessary to find out the discrete form of Eq. (1) by

applying numerical methods.

The proportional part of the equation does not require any additional transformation because

it involves a simple multiplication, but the integral and derivative require a numerical approx-

imation. First, the integral of the error function can be considered as the sum of the area of

small rectangles of base longitude of Ts (which is commonly termed as the sampling period),

and height eðkÞ at a given time instant, t ¼ kTs, i.e.:

∫
t

0

eðτÞdτ ≈Ts

X

k

i¼1

eðiÞ: (4)

Similarly, the derivative term can be approximated as:

deðtÞ

dt
≈
eðkÞ � eðk� 1Þ

Ts
(5)

for a given time t ¼ kTs. Now substituting Eqs. (4) and (5) into Eq. (1), it is possible to rewrite

the PID controller in its discrete form as:

uðkÞ ¼ Kp eðkÞ þ
Ts

Ti

X

k

i¼1

eðiÞ þ
Td

Ts
½eðkÞ � eðk� 1Þ�

8

<

:

9

=

;

(6)

Eq. (6) provides the storage of error samples from t ¼ 0 until t ¼ kTs, which can be easily

implemented by software on a microprocessor or DSP target. It is common to have kilobytes of

memory in microprocessor platforms and such storage does not carry any problem; however,

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

59

when we deal with reconfigurable logic, it is of vital importance to save logic resources; there-

fore, a more suitable form of Eq. (6) is needed. Above is achieved by computing the differential

term ΔuðkÞ instead of computing directly uðkÞ. Let us define the differential term ΔuðkÞ as:

ΔuðkÞ ¼ uðkÞ � uðk� 1Þ, (7)

and

uðk� 1Þ ¼ Kp eðk� 1Þ þ
Ts

Ti

X

k�1

i¼1

eðiÞ þ
Td

Ts
½eðk� 1Þ � eðk� 2Þ�

8

<

:

9

=

;

(8)

Subtracting Eq. (8) from Eq. (6) yields:

ΔuðkÞ ¼ Kp eðkÞ � eðk� 1Þ þ
Ts

Ti
eðkÞ þ

Td

Ts
½eðkÞ � 2eðk� 1Þ þ eðk� 2Þ�

� �

(9)

From Eq. (7), it is possible to rewrite the control output uðkÞ in terms of uðk� 1Þ and ΔuðkÞ as:

uðkÞ ¼ ΔuðkÞ þ uðk� 1Þ: (10)

It is worth to note that during the first iteration, i.e., for t ¼ kTs ¼ 0, the term uðk� 1Þ becomes

zero, while for subsequent iterations, this term holds the previously computed value of uðkÞ.

Finally, substituting Eq. (9) in Eq. (10), the PID control law becomes

uðkÞ ¼ Kp eðkÞ � eðk� 1Þ þ
Ts

Ti
eðkÞ þ

Td

Ts
½eðkÞ � 2eðk� 1Þ þ eðk� 2Þ�

� �

þ uðk� 1Þ (11)

The common terms in Eq. (11) can be grouped so that the control law takes the form of a digital

filter, i.e.:

uðkÞ ¼ q0eðkÞ þ q1eðk� 1Þ þ q2eðk� 2Þ þ uðk� 1Þ (12)

where

q0 ¼ Kp 1þ
Ts

Ti
þ
Td

Ts

� �

q1 ¼ �Kp 1þ 2
Td

Ts

� �

q2 ¼ Kp
Td

Ts

Proceeding with the same analysis, the reader could easily derive the formulas for a propor-

tional-integral (PI) digital controller, which has the form:

uðtÞ ¼ q0eðkÞ þ q1eðk� 1Þ þ uðk� 1Þ (13)

where q0 ¼ Kp 1þ Ts=Ti

�

Þ and q1 ¼ �Kp. Similarly, the proportional-derivative (PD) controller

may be written as:

Field - Programmable Gate Array60

uðtÞ ¼ q0eðkÞ þ q1eðk� 1Þ þ q2eðk� 2Þ þ uðk� 1Þ (14)

where

q0 ¼ Kp 1þ
Td

Ts

� �

q1 ¼ �Kp 1þ 2
Td

Ts

� �

q2 ¼ Kp
Td

Ts

Other controllers represented in the Laplace domain can be discretized by using approxima-

tions, e.g., the Tustin formulae:

s ¼
2ðz� 1Þ

Tsðzþ 1Þ
(15)

For example, let us consider the following lead compensator:

UðsÞ

EðsÞ
¼ k

sþ ω1

sþ ω2
(16)

Substituting Eq. (15) in Eq. (16), we obtain:

UðzÞ

EðzÞ
¼ k

2ðz� 1Þ

Tsðzþ 1Þ
þ ω1

2ðz� 1Þ

Tsðzþ 1Þ
þ ω2

¼ k
2ðz� 1Þ þ ω1Tsðzþ 1Þ

2ðz� 1Þ þ ω2Tsðzþ 1Þ

¼ k
ðω1Ts þ 2Þzþ ω1Ts � 2

ðω2Ts þ 2Þzþ ω2Ts � 2

¼ k
ðω1Ts þ 2Þzþ ω1Ts � 2

zþ
ω2Ts � 2

ω2Ts þ 2

¼ k
ω1Ts þ 2

ω2Ts þ 2

� � zþ
ω1Ts � 2

ω1Ts þ 2

zþ
ω2Ts � 2

ω2Ts þ 2

The above equation can be rewritten as:

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

61

UðzÞ

EðzÞ
¼ K

zþ A

zþ B
(17)

where

K ¼ k
ω1Ts þ 2

ω2Ts þ 2

A ¼
ω1Ts � 2

ω1Ts þ 2

B ¼
ω2Ts � 2

ω2Ts þ 2

From a digital point of view, Eq. (17) is still inconvenient. In order to obtain a suitable digital

representation, it is necessary to represent this equation as a difference equation. This can be

performed by multiplying the numerator and the denominator of the right-hand side of

Eq. (17) by z�1. This is equivalent to the shifting operation in the time domain, where the signal

is delayed by one sample. Thus, the lead compensator takes the following form:

UðzÞ

EðzÞ
¼ K

1þ Az�1

1þ Bz�1

Further simplification yields

UðzÞð1þ Bz
�1Þ ¼ KEðzÞð1þ Az

�1Þ

Expanding terms:

UðzÞ þ BUðzÞz�1 ¼ KEðzÞ þ KAEðzÞz�1

Solving the above equation for UðzÞ we have:

UðzÞ ¼ KEðzÞ þ KAEðzÞz�1 � BUðzÞz�1

It is well known that:

EðzÞ ¼ eðkÞ (18)

and

EðzÞz�1 ¼ eðk� 1Þ (19)

therefore, the discrete lead compensator filter can be expressed as:

uðkÞ ¼ KeðkÞ þ KAeðk� 1Þ � Buðk� 1Þ (20)

which is quite similar to Eq. (14).

Field - Programmable Gate Array62

3. Hardware description

There are important features that the reader must consider before starting the description

process. First, the nature of the feedback signal should be considered. If the sensor which

measures the variable to be controlled has an analogue nature, it is necessary to use an

analogue to digital converter (ADC) which has an output with a fixed bit width. In order to

avoid performing arithmetic operations between signals of different bit width, it is strongly

suggested that the setpoint or reference has the same bit width as the measured variable.

Additionally, if the error signal has a wide bus width, let us say wider than 16 bits, this signal

can be saturated in order to avoid wider bus widths in preceding computations.

The second aspect to consider is the number and characteristics of the embedded multipliers or

DSP slices that the target device possesses. Most of the FPGAs available in the market have

multipliers with a fixed bus width, 18 · 18 bits for instance. For any other bus-width, the

synthesis tool shall use logic resources to build a customized multiplier instead of using those

available in the hardware. This bad practice leads to major resource utilization.

In summary, the error signal and the controller gains shall have a bus width, which matches

the bus width of the available embedded multipliers. For example, the available multipliers

have an 18 · 18 bus width, the error signal has 16 bits width, and the controller gains are

required to have a fixed point format 16.16. Then a possible solution that does not imply the

usage of a customized multiplier is to expand the bus width of error and gains to 18 and 36

bits, respectively, being in the latter signal, 18 bits for the integer part and the remaining 18 bits

for the fractional part. Thus, the synthesis tool would use two 18 · 18 embedded multipliers.

Above is possible whenever the bus width of error signal and gains be the multiple of the bus

width of the embedded multipliers and while the extension of the signals preserves their signs.

Finally, the controller output must be congruent with the nature of the actuators. If we deal with

an analogue actuator, it is necessary to include a digital to analogue converter (DAC) which, as

the case of the ADC, has a fixed bus width; therefore, the controller output must agree such

width. However, depending on the polynomial degree of the filter and the bus width of the used

multipliers, the controller output eventually could have a wider bus width; so, it would be

necessary to saturate and truncate decimal data from the controller output signal.

In this section, we shall describe the design of a PID digital controller; however, the reader

could easily modify the proposed design for most of the control above laws. The resultant

design is implemented in VHDL; it is validated in a cosimulation environment, and finally, it is

tested in a real-life application to control the position of a brushed DC servo motor.

The PID digital filter seen as a black-box module is depicted in Figure 1. The ERR signal

represents the error signal, which is the difference between the setpoint and the feedback data.

Similarly, the signals Q0, Q1, and Q2 are the controller gains, and their value depends on Kp,

Ti, Td, and Ts as it is explained in previous sections. On the other side, the UOUT signal is the

filter output, which is feed forwardly to the actuator. CLK and RST are the master clock and

master reset signals, respectively.

Table 1 summarizes the signals properties of the PID_Digital_Controller module. It is impor-

tant to clear that the error signal and the controller gains have 16 and 32 bits of width,

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

63

respectively; above to match the standard data size of most of the common programming

languages; however, these signals are internally expanded to 18 and 36 bits in order to use

two 18 · 18 embedded multipliers as previously mentioned. Additionally, the controller gains

are given in a fixed point format 16.16, i.e., the 16 most significant bits represent the integer

part while the 16 less significant represent the fractional part.

Figure 2 illustrates a block diagram of the digital PID controller. This module comprises five

standard load registers, two multiplexors, a multiplier, an adder, a saturator, and a finite state

machine (FSM). White blocks represent pure combinational processes, whereas gray ones

represent sequential and synchronous processes.

The data path starts at the input registers. At this point, the multiplexors bypass the

corresponding signal error and controller gains selected by the SEL signal, which is driven by

the FSM, the multiplier and adder accumulate this product with the previous result and so on

Figure 1. Black-box module of PID digital filter.

Signal name Direction Bus width Description

RST Input 1 Active low master reset

CLK Input 1 Master clock

TS Input 1 Sampling signal

ERR Input 16 Two's complement error signal

Q0 Input 32 Filter coefficient q0

Q1 Input 32 Filter coefficient q1

Q2 Input 32 Filter coefficient q2

UOUT Output 16 Controller output

Table 1. List of signals properties of PID digital controller.

Field - Programmable Gate Array64

the next terms. At the final stage, a saturator trims the bus width of the controller output and

saturates its value to 16 bits.

Signals EK0, EK1, and EK2 have 16 bits of width; however, at the multiplexor output, their

sign is extended two bits, i.e., the EMUX signal has 18 bits of width. Similarly, the signals Q0,

Q1, and Q2 have 32 bits, and at the multiplexor output, QMUX, these signals are extended to

36 bits. The product of error signal as per its corresponding coefficient has 54 bits; nevertheless,

this signal is extended again in order to avoid a possible overflow because of the recurrent

addition with previous results. Thus, given that there are three sums involved in the solution

of the control algorithm, the signal MULT is extended three bits more to obtain a bus width of

57 bits finally. Signals ACCUM and URES also have a 57 bits bus width.

The pipelined structure of registers at the top-left corner, depicted in Figure 2, is planned to

latch the error signals eðkÞ, eðk� 1Þ, and eðk� 2Þwhen signal TS is asserted. On the other hand,

the register located at the top-right corner together with the adder perform the accumulation

process through the assertion of signal LDS. And finally, the last register in the data path

serves only as a holder for the final result of the algorithm. This latter register loads data when

LDR is asserted.

Figure 3 illustrates the operation of the Digital_PID_Controller_FSM; it includes five states. The

first state is an idle state, which waits for the assertion of the sampling signal TS. Second, third,

and fourth states perform the multiplication and accumulation of the filter terms, and such

partial results are added to the previous final result. The fifth state only asserts the signal LDR

to latch the final result and jumps directly to the first state in order to repeat the whole process.

The following source code corresponds to the top-level entity of the design. Its architecture is

structural since it is composed of many other components as mentioned above, in total there

are 12 instances and 3 concurrent assignations.

Code 1. Digital_PID_Controller.vhd.

Library IEEE;

use IEEE.std_logic_1164.all;

Figure 2. Block diagram of digital PID controller.

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

65

Entity Digital_PID_Filter is

port(

RST : in std_logic;

CLK : in std_logic;

TS : in std_logic;

ERR: in std_logic_vector(15 downto 0);

Q0 : in std_logic_vector(31 downto 0);

Q1 : in std_logic_vector(31 downto 0);

Q2 : in std_logic_vector(31 downto 0);

UOUT : out std_logic_vector(15 downto 0)

);

end Digital_PID_Controller;

Architecture Structural of Digital_PID_Controller is

--Components declaration---

Component Digital_PID_Controller_FSM is port(

RST : in std_logic;

CLK : in std_logic;

TS : in std_logic;

LDS : out std_logic;

LDR : out std_logic;

SEL : out std_logic_vector(1 downto 0));

end Component;

Component LoadRegister is generic(n : integer := 8);

port(

RST : in std_logic;

CLK : in std_logic;

LDR : in std_logic;

DIN : in std_logic_vector(n � 1 downto 0);

DOUT : out std_logic_vector(n � 1 downto 0));

end Component;

Field - Programmable Gate Array66

Component Multiplexor3To1 is generic(n : integer := 8);

port(

DIN0 : in std_logic_vector(n - 1 downto 0);

DIN1 : in std_logic_vector(n - 1 downto 0);

DIN2 : in std_logic_vector(n - 1 downto 0);

SEL : in std_logic_vector(1 downto 0);

DOUT : out std_logic_vector(n - 1 downto 0));

end Component;

Component Multiplier is generic(m, n : integer := 9);

port(

OPA : in std_logic_vector(m - 1 downto 0);

OPB : in std_logic_vector(n - 1 downto 0);

RES : out std_logic_vector((m + n - 1) downto 0));

end Component;

Component Adder is generic(n : integer := 8);

port(

OPA : in std_logic_vector(n - 1 downto 0);

OPB : in std_logic_vector(n - 1 downto 0);

RES : out std_logic_vector(n - 1 downto 0));

end Component;

Component Saturator57To16 is port(

DIN : in std_logic_vector(56 downto 0);

DOUT : out std_logic_vector(15 downto 0));

end Component;

--Signals declaration--

signal LDS : std_logic;

signal LDR : std_logic;

signal SEL : std_logic_vector(1 downto 0);

signal EK0 : std_logic_vector(15 downto 0);

signal EK1 : std_logic_vector(15 downto 0);

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

67

signal EK2 : std_logic_vector(15 downto 0);

signal EAUX : std_logic_vector(15 downto 0);

signal EMUX : std_logic_vector(17 downto 0);

signal QAUX : std_logic_vector(31 downto 0);

signal QMUX : std_logic_vector(35 downto 0);

signal MULT : std_logic_vector(53 downto 0);

signal MULE : std_logic_vector(56 downto 0);

signal USUM : std_logic_vector(56 downto 0);

signal ACCU : std_logic_vector(56 downto 0);

signal URES : std_logic_vector(56 downto 0);

begin

--Concurrent assignations--

EMUX <= EAUX(15) & EAUX(15) & EAUX;

QMUX <= QAUX(31) & QAUX(31) & QAUX(31) & QAUX(31) & QAUX;

MULE <= MULT(53) & MULT(53) & MULT(53) & MULT;

--Component instances--

U01 : Digital_PID_Controller_FSM port map(RST, CLK, TS, LDS, LDR, SEL);

U02 : LoadRegister generic map(16) port map(RST, CLK, TS, ERR, EK0);

U03 : LoadRegister generic map(16) port map(RST, CLK, TS, EK0, EK1);

U04 : LoadRegister generic map(16) port map(RST, CLK, TS, EK1, EK2);

U05 : Multiplexor3To1 generic map(16) port map(EK0, EK1, EK2, SEL, EAUX);

U06 : Multiplexor3To1 generic map(32) port map(Q0, Q1, Q2, SEL, QAUX);

U07 : Multiplier generic map(18, 36) port map(EMUX, QMUX, MULT);

U08 : Adder generic map(57) port map(MULE, ACCU, USUM);

U09 : LoadRegister generic map(57) port map(RST, CLK, LDS, USUM, ACCU);

U10 : LoadRegister generic map(57) port map(RST, CLK, LDR, ACCU, URES);

U11 : Saturator57To16 port map(URES, UOUT);

end Structural;

Field - Programmable Gate Array68

The following code corresponds to the implementation of the FSM depicted in Figure 3. It has

a behavioral architecture since it is composed by a couple of processes; the first one includes

the combinational logic, which performs the state transitions and sets the output logic. The

second process emulates the behavior of a D-type flip-flop, which updates the data with each

rising-edge of the master clock signal.

Code 2. Digital_PID_Controller_FSM.vhd.

Library IEEE;

use IEEE.std_logic_1164.all;

Entity Digital_PID_Controller_FSM is

port(

RST : in std_logic;

CLK : in std_logic;

Figure 3. Finite state machine of the digital PID filter.

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

69

TS : in std_logic;

LDS : out std_logic;

LDR : out std_logic;

SEL : out std_logic_vector(1 downto 0)

);

end Digital_PID_Controller_FSM;

Architecture Behavioral of Digital_PID_Controller_FSM is

signal Sp, Sn : std_logic_vector(2 downto 0);

begin

combinational : process(Sp, TS)

begin

case Sp is

when “000” =>

LDS <= '0';

LDR <= '0';

SEL <= “XX”;

if TS = '1' then

Sn <= “001”;

else

Sn <= Sp;

end if;

when “001” =>

LDS <= '1';

LDR <= '0';

SEL <= “00”;

Sn <= “010”;

when “010” =>

LDS <= '1';

LDR <= '0';

Field - Programmable Gate Array70

SEL <= “01”;

Sn <= “011”;

when “011” =>

LDS <= '1';

LDR <= '0';

SEL <= “10”;

Sn <= “100”;

when others =>

LDS <= '0';

LDR <= '1';

SEL <= “XX”;

Sn <= “000”;

end case;

end process Combinational;

Sequential : process(RST, CLK)

begin

if RST = ‘0’ then

Sp <= “000”;

elsif CLK'event and CLK = '1' then

Sp <= Sn;

end if;

end process Sequential;

end Behavioral;

The LoadRegister module is labeled as Register in Figure 2. The objective of this module is to

store some particular value. While LDR is asserted, this module stores the value present at the

input DIN, and the result is reflected in the output until the next clock event. When LDR is low,

the register preserves the last latched value.

Code 3. LoadRegister.vhd.

Library IEEE;

use IEEE.std_logic_1164.all;

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

71

Entity LoadRegister is

generic(n : integer := 8);

port(

RST : in std_logic;

CLK : in std_logic;

LDR : in std_logic;

DIN : in std_logic_vector(n � 1 downto 0);

DOUT : out std_logic_vector(n � 1 downto 0)

);

end LoadRegister;

Architecture Behavioral of LoadRegister is

signal Qp, Qn : std_logic_vector(n � 1 downto 0);

begin

Combinational : process(Qp, LDR, DIN)

begin

if LDR = ‘1’ then

Qn <= DIN;

else

Qn <= Qp;

end if;

DOUT <= Qp;

end process Combinational;

Sequential : process(RST, CLK)

begin

if RST = ‘0’ then

Qp <= (others => '0');

elsif CLK'event and CLK = '1' then

Qp <= Qn;

end if;

Field - Programmable Gate Array72

end process Sequential;

end Behavioral;

The multiplexor in the following code allows directing each sample of the error signal with

their corresponding coefficient.

Code 4. Multiplexor3To1.vhd.

Library IEEE;

use IEEE.std_logic_1164.all;

Entity Multiplexor3To1 is

generic(n : integer := 8);

port(

DIN0 : in std_logic_vector(n - 1 downto 0);

DIN1 : in std_logic_vector(n - 1 downto 0);

DIN2 : in std_logic_vector(n - 1 downto 0);

SEL : in std_logic_vector(1 downto 0);

DOUT : out std_logic_vector(n - 1 downto 0)

);

end Multiplexor3To1;

Architecture DataFlow of Multiplexor3To1 is

begin

With SEL Select DOUT <=

DIN0 when “00”, DIN1 when “01”, DIN2 when “10”, (others =>'0') when others;

end DataFlow;

The following module performs an arithmetic sum between two vectors. It is worth to note

that this module does not depend on the clock.

Code 5. Adder.vhd.

Library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

Entity Adder is

generic(n : integer := 8);

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

73

port(

OPA : in std_logic_vector(n � 1 downto 0);

OPB : in std_logic_vector(n � 1 downto 0);

RES : out std_logic_vector(n � 1 downto 0)

);

end Adder;

Architecture DataFlow of Adder is

begin

RES <= OPA + OPB;

end DataFlow;

Similarly, the multiplier performs an arithmetic product between two vectors; however, it is

important to preserve the sign of the result; therefore, it is included in the IEEE.std_logic_arith

library.

Code 6. Multiplier.vhd.

Library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

Entity Multiplier is

generic(m, n : integer := 9);

port(

OPA : in std_logic_vector(m � 1 downto 0);

OPB : in std_logic_vector(n � 1 downto 0);

RES : out std_logic_vector((m + n � 1) downto 0)

);

end Multiplier;

Architecture DataFlow of Multiplier is

begin

RES <= signed(OPA) * signed(OPB);

end DataFlow;

Field - Programmable Gate Array74

The last module is provided in the Code 7, which is used to limit the output. For this particular

case, the controller output has been adjusted to 16 bits in order to convert this value to an

analogue signal using a DAC. Since the controller gains are given in a fixed point format 16.16,

the less significant bits of the controller output are trimmed, i.e., only the integer part of the

control output is considered during the digital to analogue conversion.

Code 7. Saturator57To16.vhd.

Library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

Entity Saturator57To16 is

port(

DIN : in std_logic_vector(56 downto 0);

DOUT : out std_logic_vector(15 downto 0)

);

end Saturator57To16;

Architecture Behavioral of Saturator57To16 is

constant UMAX : std_logic_vector(56 downto 0) := ‘0’ & X”0000007FFF0000”;

constant UMIN : std_logic_vector(56 downto 0) := ‘1’ & X”FFFFFF80010000”;

begin

process(DIN)

begin

if signed(DIN) > signed(UMAX) then

DOUT <= UMAX(31 downto 16);

elsif signed(DIN) < signed(UMIN) then

DOUT <= UMIN(31 downto 16);

else

DOUT <= DIN(31 downto 16);

end if;

end process;

end Behavioral;

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

75

4. Simulation and experimental results

In this section, the designed PID controller is tested using the software and then experimental

studies are carried out for a motion control application of a DC brushed servo motor. The

software simulation was performed using Matlab Simulink and ModelSim. Both software

applications can run with shared memory in order to perform the cosimulation process.

The first study consists of two control loops as illustrated in Figure 4. Both control loops have the

same input and plant to be controlled, but the first one is implemented using a Simulink PID

block (software implementation), whereas the second one is obtained using the VHDL imple-

mentation as described in the previous section (hardware implementation). The aim of this study

is to compare the performance between the software- and hardware-based implementations.

Before proceeding with the cosimulation, it is important to remark some differences between

both PID implementations. The software implementation utilizes a floating point data type with

double precision; also, it includes filtering algorithms to compute the derivative and integral

term. On the other hand, the hardware implementation described above utilizes the backward

rectangular method (BRM) to compute the integral and a simple two-point differentiation for the

derivative term; furthermore, the data type utilized has a fixed point format.

The response of the tested control loops is depicted in Figure 5. There are three aspects to be

considered from the output response. The first one is that the starting angle of the response for

the case of the software implementation is higher than the hardware implementation, that is,

the response of the software implementation control loop is faster. Second, the first plant

reaches the setpoint, relatively faster than the second one, which proves the first assumption.

Figure 4. Simulink model for the test of the PID controller.

Field - Programmable Gate Array76

Finally, the control output of the second loop (hardware implementation) is noisy when

compared with the software implementation.

Despite of the aforementioned difference, the performance of the hardware implementation

could be acceptable for the control applications in industrial environments. Such kind of an

application is described below.

Figure 5. Simulation result of both PID implementations: Simulink (top) and VHDL (bottom).

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

77

The application was designed to perform the motion control of a three-degree of freedom

robotic arm as illustrated in Figure 6. This robot is actuated by 12 V brushed DC motors

combined with a 171.79:1 metal spur-gearbox and it has an integrated 48 counts per revolution

(CPR) quadrature encoder on the motor shaft, which provides 8245.92 counts per revolution.

A power amplifier stage has been included, which consists of three Texas Instruments

LMD18245 power amplifiers required to drive and control the current for the servo motors.

These amplifiers can operate with an analogue current reference. For this reason, a digital to

analogue converter (DAC) is required. For this application, the Analog Devices AD5668 is

utilized, which has eight analogue outputs with a resolution of 16 bits.

The Servo_Controller module is mainly composed of a point of sum, a Digital_PID_Controller,

a DAC-Driver, and an Encoder_Quadrature_Interface as shown in Figure 7. The reference

position (REF) signal is treated as a 32-bit register whose value can be written directly from

the PS. On the other hand, the motor position is measured using the Encoder_Quadrature_

Interface module. This module uses the signals CHA and CHB from the encoder as the input,

and it generates an output signal POS which has a width of 32 bits. Both signals REF and POS

Figure 6. Experimental setup.

Figure 7. Servo controller block diagram.

Field - Programmable Gate Array78

Figure 8. Response of the system to the trajectory commanded: (a) joint 1, (b) joint 2, and (c) joint 3.

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

79

are subtracted and trimmed to 16 bits to avoid any saturation in further computations. In

Figure 7, this signal is labeled as ERR, which serves as the input to the Digital_PID_Controller.

A circular trajectory is consideredin order to evaluate the controller performance. The center of

the circumference with a radius of 50 mm is located at (110.0, 0.0, 70.0) being the Z-coordinate

constant through the whole movement, i.e., the entire movement is carried out only in the X-Y

plane. First, the interpolation process generates each point along the circumference. This point is

used to solve the inverse kinematics. Thus, the resulting angle set is converted to encoder counts

and written to the setpoint registers of each servo controller. The sampling time for the genera-

tion of each point is chosen as Ts ¼ 0:001 s.

Figure 8 shows the response of each servo controller to the generated path. It can be clearly

seen that the first and the third joints closely follow the reference trajectory, whereas the second

joint shows a larger variation from the commanded trajectory. This could be due to the

influence of nonlinear dynamics of the servo motor or due to the gravity force. However, the

Cartesian position of the robot remains very close to the commanded trajectory as can be seen

in Figure 9.

5. Conclusions

The endeavor of this chapter is how to deal with theoretical and practical issues regarding the

control systems. The readers who are not familiar with motion control systems can get a basic

knowledge into reconfigurable logic circuit-based digital design. Generally, it is necessary to

combine classroom and practical concepts; for that reasons, these sections are not only aimed

for the students or professors but also for professionals who want to obtain a basic under-

standing about the closed-loop control design.

Figure 9. Cartesian response of the system.

Field - Programmable Gate Array80

For educators, many concepts can be applied in courses as servo systems, programming,

classical control, and digital control, to mention a few. Since FPGA technology is almost

available in all engineering schools, there is no restriction to apply the code shown in this

manuscript. In addition, sequential devices might be used too. It is due to the facility to

translate HDL code to C code. In this sense, microcontrollers, digital signal processors, and

digital signal controllers get a good approach to make a motion control task.

It is recommended to use standard compilers and hardware tools that do not demand high

computational resources. It is because of the synthesis stage, which is often the hard part of the

developing work.

Author details

Miguel Angel Martínez Prado, Juvenal Rodríguez Reséndiz*, Diana Carolina Toledo Pérez,

Carlos Miguel Torres Hernández and Gilberto Herrera Ruiz

*Address all correspondence to: juvenal@uaq.edu.mx

Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas SN, Col.

Las Campanas, Querétaro, Qro, México

References

[1] Monmasson E, Cirstea M N. FPGA design methodology for industrial control systems - A

review. IEEE Transactions on Industrial Electronics. 2007;54:1824–1842. DOI: 10.1109/

TIE.2007.898281

[2] Zhao W, Kim B H, Larson A C, Voyles R M. FPGA implementation of closed-loop control

system for small-scale robot. In: ICAR ‘05. Proceedings, 12th International Conference on

Advanced Robotics, 2005; IEEE Xplore; July 2005;. pp. 70–77. DOI: 10.1109/ICAR.2005.

1507393

[3] Ghosh S, Barai R K, Bhattarcharya S, Bhattarcharya P, Rudra S, Dutta A, Pyne R. An FPGA

based implementation of a flexible digital PID controller for a motion control system. In:

2013 International Conference on Computer Communication and Informatics (ICCCI); 04

Jan–06 Jan 2013; Coimbatore, Tamil Nadu, India. IEEE Xplore; 2013; pp. 1–6. DOI: 10.1109/

ICCCI.2013.6466277

[4] Xu Y, Zhao J, Huang J. Multiple linear motor control system based on FPGA. In: 2014 17th

International Conference on Electrical Machines and Systems (ICEMS); 22 Oct–25 Oct

2014; Hangzhou, China. IEEE Xplore; 2014. pp. 2327–2331. DOI: 10.1109/ICEMS.2014.

7013875

[5] Nandayapa M, Mitsantisuk C, Ohishi K. Improving bilateral control feedback by using

novel velocity and acceleration estimation methods in FPGA. In: 2012 12th IEEE

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

81

International Workshop on Advanced Motion Control (AMC); 25 Mar–27 Mar 2012; Sara-

jevo, Bosnia and Herzegovina: IEEE Xplore; 2012. pp. 1–6. DOI: 10.1109/AMC.2012.

6197024

[6] Bagni D, Mackay D. Floating-point PID controller design with Vivado HLS and system

generator for DSP [Internet]. 2013. Available from: http://www.xilinx.com/support/docu-

mentation/application_notes/xapp1163.pdf [Accessed: 2016-02-25]

[7] Aboelaze M, Shehata MG. Implementation of multiple PID controllers on FPGA. In: 2015

IEEE International Conference on Electronics, Circuits, and Systems (ICECS); 7–9 Dec

2015; Egypt. IEEE Xplore; 2015. pp. 446–449. DOI: 10.1109/ICECS.2015.7440344

[8] Uzunović T, Žunić E, Badnjević A, Mioković I, Konjicija S. Implementation of digital PID

controller. In: 2010 Proceedings of the 33rd International Convention MIPRO; 24–28 May

2010; Opatija, Croatia. IEEE Xplore; 2010. pp. 1357–1361.

Field - Programmable Gate Array82

