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Abstract

Circulating tumor cells (CTCs) have emerged as a new generation of liquid biomarker that 
allows for noninvasive longitudinal disease monitoring. CTCs represent a rare cell popula-
tion in the blood, surrounded by billions of hematopoietic cells. Due to the rarity of CTCs in 
the blood, the isolation of pure CTCs’ populations has proven to be challenging. However, 
a number of new technologies have emerged using CTCs cytometric/immunological and 
physical characteristics. Currently, patients with greater than 5 CTCs have a shorter pro-
gression-free survival, as compared with those with less than 5 CTCs per 7.5 ml of whole 
blood. Although the CTC count itself is an independent prognostic marker, the field is shift-
ing toward understanding metastasis-relevant marker expression on CTCs for the improve-
ment of the prognostic significance of CTCs. This chapter first introduces the principles 
of CTC isolation and detection methods, then the clinical utility of CTCs for prediction of 
prognosis and therapy response. Lastly, the heterogeneity of CTCs will be discussed.

Keywords: circulating tumor cell (CTC), breast cancer, liquid biomarker, metastasis

1. Introduction

Breast cancer is the most commonly diagnosed malignancy as well as one of the leading causes 

of cancer deaths. Treatment strategies in early-stage breast cancer are directed toward radical 

cure and prevention of recurrence or the development of metastatic diseases. However, once 

metastatic disease has been detected, alleviation of symptoms or palliative care becomes the 

focus, with the aim of extending overall and disease-free survival (DFS). Current methods of 

disease monitoring are limited to radio-imaging of detectable metastatic lesions and/or eleva-
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tion of tumor markers in the serum. Due to a lack of sensitive and specificity, accurate disease 

 monitoring remains a challenge. Recently, however, circulating tumor cells (CTCs) have received 

significant attention as a new class of “liquid biopsy” that would enable longitudinal and nonin-

vasive disease monitoring in order to capture an overall snapshot of individual disease.

The presence of cancer cells in the circulation was recognized as early as the nineteenth century, 

when the Australian physician Thomas Ashworth detected the presence of cells in the blood that 

were similar to those from the primary tumor of a woman with metastatic breast cancer (MBC) 

[1]. The early 1900s yielded few descriptions of the isolation of tumor cells from the blood [2, 3]. 

In 1960, Alexander and Spriggs undertook cytopathologic analysis for the presence of CTCs in 

the blood of 140 cancer patients of various sites [4]. Although CTCs were detected in only seven 

of these cases, each of those patients had a markedly short survival of only several months, rein-

forcing the rarity as well as the potential clinical significance of CTCs. In addition to these early 
clinical investigations, parallel efforts using animal models to elucidate the process of cancer cell 
dissemination have further highlighted the clinical relevance of CTCs [5, 6]. Despite growing 

awareness throughout the twentieth century of CTCs’ potential impact, their clinical implica-

tion was not robustly examined until the early 2000s. In 2002, Fehm et al. conducted cytogenetic 

analyses of cells obtained from the blood of cancer patients of several types, including breast, 

and compared chromosome profiles to those from their primary tumors, finding similar malig-

nant features and chromosomal abnormalities between the two. The first large, multi-institutional 
clinical study evaluating the prognostic value of CTCs in patients with MBC was conducted in 

2004 by Cristofanilli et al. Their study concluded that patients with 5 or more CTCs found in 7.5 

ml of pretreatment blood have shorter progression-free survival (PFS) compared to those with 

less than 5 CTCs [7]. Since then, multiple studies have followed investigating the clinical validity 

of CTCs in the prediction of prognosis and therapy response.

These initial findings not only revealed that cancer cells in the circulation originate from the 
solid primary tumor but also provided new insight into the hematogenous metastasis path-

way. Since the majority of breast cancer-related deaths are caused by distant organ metasta-

sis rather than primary tumor burden, understanding this pathway is of great consequence 

to clinicians and researchers working to reduce breast cancer mortality. The completion of 

metastasis requires a sequential multistep process, the first step of which is local invasion. 

Increased motility facilitates the entry of cancer cells from the primary tumor into the blood 

stream. Vascular circulation is the interface between the primary tumor and the target organ 

for metastasis, making cancer cells disseminated in the blood a critical driver of metastasis. 

Although the drastic environmental change from a static solid tumor to dynamic blood flow 
eliminates many of the intravasated tumor cells, those that survive and adhere firmly to the 
vessel surface of a distant organ complete the next step in the metastasis pathway. The firm 
adhesion of CTCs to the endothelium under dynamic blood flow triggers permeabilization of 
endothelial tight junctions, subsequently allowing transendothelial migration of CTCs and 

eventual growth at distant organs [8]. Each of these steps is rate-limiting, and failure of even 

one inhibits metastasis. Thus, only a small fraction of the cancer cells disseminated from the 

primary tumor into circulation eventually give rise to overt organ metastasis.

In this chapter, we discuss the different platforms used to isolate CTCs from the blood as 
well as their clinical relevance in predicting prognosis and treatment response. The cytologi-
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cal  features and heterogeneity among CTCs will also be examined. Finally, throughout the 

 chapter, we will explore new avenues of research on CTCs and their implications in establish-

ing CTCs as the new “liquid biopsy.”

2. Isolation and enumeration of CTCs

CTCs represent a rare cell population in the blood; therefore, they must be well distinguished from 

blood and other noncancerous cells (such as epithelial, fibroblast, and endothelial cells) present 
in the circulation [9–11]. Successful detection of CTCs is comprised of two consecutive steps: (1) 

enrichment, the separation of CTCs from blood cells and (2) confirmation, the identification of 
CTCs based on their unique biological characteristics. Currently, the main principles guiding 

CTC enrichment are based on the unique biological, morphological, and physiochemical charac-

teristics that distinguish CTCs from other cells in circulation [12, 13]. However, each method faces 

its own difficulties. For example, CTC collection based on biological properties using surface 
markers will automatically eliminate CTCs without the marker expression. By contrast, enrich-

ment by density, charge, or size collects any circulating cell with those prerequisite properties. 

A combinatorial approach may overcome current technology limitations. Additionally, a better 
understanding of the properties of CTCs may lead to the development of new enrichment crite-

ria. Since strategies for CTC enrichment and identification vary in their respective strengths and 
weaknesses, the method of enrichment should be determined by the end point of individual stud-

ies. This section introduces commonly used CTC enumeration and identification methodologies 
and further discusses the advantages and potential pitfalls of each enrichment principle.

2.1. Isolation based on biological characteristics of CTCs

Breast cancer originates from epithelial cells in the mammary duct; thus, CTCs with positive 

expression of epithelial surface markers (cytokeratins and/or EpCAM) have traditionally been 

the focus of enrichment methodologies. CTCs are enriched by their affinity to bind antibod-

ies against epithelial surface markers and excluded by the presence of the common leukocyte 

marker (CD45) as well as cytologic criteria [14]. This principle is the most widely adopted basis 

for enrichment techniques, and automated devices have been developed and commercialized 

for this application. While high reproducibility, specificity, and automation are major strengths, 
CTCs without epithelial marker expression likely escape inclusion by this method. Given the 

importance of epithelial mesenchymal transition (EMT) in invasion and metastasis, the potential 

exclusion of CTCs with weak or no epithelial marker expression should be considered [15, 16].

2.1.1. CellSearch® system (Veridex, LLC)

The CellSearch® system is a Food and Drug Administration (FDA)-approved CTC isolation device 

that is widely utilized for CTC enumeration in clinical studies. CellSearch’s  enrichment method 

relies on affinity binding of CTCs to magnetic ferrofluids attached to anti-EpCAM antibodies. 
EpCAM positive pools are then further used for enumeration by positive expression of cytokera-

tins 8+/18+ and/or 19+ that collocate with DAPI and the absence of CD45 [17]. Whole blood is pro-

cessed using an automated blood cell diluting apparatus (CellPrep and Immunicon) and then 
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immunomagnetically labeled EpCAM+ cells are concentrated using an external magnetic field. 
Finally, the immunomagnetically labeled cells are analyzed using either the CellSpotter Analyzer 
or the CellTracks Analyser II which examine cell morphology and staining patterns for CTC con-

firmation [17, 18]. The CTC criteria used in these methods are (1) an intact cell with a round to oval 

morphology and at least 4 μm in size; (2) positive for DAPI with a nucleus inside the cytoplasm 

(of at least >50%) and a nucleus area smaller than the cytoplasm, and (3) positive for cytokeratins 

and negative for CD45 [19]. One advantage of the CellSearch® System is that blood is collected in a 

CellSave tube which contains a mixed fixative. CTCs remain stable for 96 hours and can be trans-

ported at room temperature for later analysis. Since the CellSearch® system is semiautomated, the 

reproducibility of this study is high with minimal inter- or intrareader variability.

Using CellSearch®, Cristofanilli et al. were the first to report that circulating epithelial cells are 
rare in healthy women and those with benign tumors (0.1 ± 0.2 per 7.5 ml blood). Additionally, 

they found 5 CTCs per 7.5 ml blood to be a reliable cutoff for the prediction of patient survival 
among women with malignant breast tumors. A study of 517 breast cancer patients showed that 

patients at or above this cutoff had a shorter median PFS (2.7 months vs. 7.0 months; p < 0.001) 

and shorter overall survival (OS) (10.1 months vs. >18.0 months; p < 0.001) when compared to 

those with fewer than 5 CTCs. These data demonstrate that the number of CTCs prior to treat-

ment is an independent predictor of PFS and OS in patients with MBC [7].

2.1.2. Adnatest (AdnaGen AG)

Adnatest is an immunomolecular assay that combines immunomagnetic-based enrichment 

with multiplex reverse transcription polymerase chain reaction (RT-PCR). In the initial isola-

tion step, EpCAM+/MUC1+ CTCs are enriched using magnetized antibodies and further iden-

tified by tumor-associated gene expression [20–22]. Since phenotypic changes occur in cancer 

cells throughout the disease course and in response to therapies, cancer cells in the primary 

tumor as well as in the circulation are diverse in their gene expression. Considering the het-

erogeneity of cancer cells, the most prominent advantage of Adnatest is that it allows use of 

a variety of antibody-based selection markers, thereby minimizing false negative and false 

positive results. Bredemeier et al. enriched CTCs in 62 MBC patients using immunomagnetic 

beads that target EpCAM, epithelial growth factor receptor (EGFR), and HER2. The enriched 

CTCs were then characterized by their expression of tumor-related genes using a multiplex 

qPCR assay (AdnaTest EMT-2/StemCellDetect™). Using this approach, authors of the study 

established a panel of nine genes able to identify differential expression of each pheno-

type— epithelial (EpCAM), EMT (PIK3CA, AKT2), stem cell (ALDH1), drug resistant (ERCC1, 

AURKA), receptor positive (ERBB2, ERBB3, and EGFR), and leukocyte control (CD45) [23]. 

Adnatest is capable of detecting as few as 2 CTCs in 5 ml of blood [20, 22] and in a compara-

tive study showed greater sensitivity than the CellSearch® system in detecting CTCs (53 vs. 

47% CTC positive, respectively, in a sample of 55 MBC patients) [24].

2.1.3. CTC-Chip

A surface coating of anti-EpCAM antibody enables the microfluidic CTC-Chip to capture 
EpCAM+ cells in its channel while eliminating those that are negative under precisely  controlled 
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laminar flow conditions. Etched in silicon and no larger than a standard microscope slide [25], 

the CTC-Chip contains an array of microposts functionalized with anti-EpCAM antibodies and 

a pneumatic pump to establish flow, all enclosed by a manifold. Once a blood sample has been 
pumped through, the microchip is gradually flushed with PBS to remove any nonspecifically 
bound cells. To identify CTCs, the microchip is then stained with DAPI, pan-cytokeratins (1, 

4, 5, 6, 8, 10, 13, 18, and 19), and CD45 using immunocytochemistry. Cells meeting the mor-

phological characteristics of malignant tumor cells (such as cell size, shape, and nuclear size) 

and positive for cytokeratins are considered CTCs. Assessment of cell membrane integrity fol-

lowing this method showed substantial viability (98.5 ± 2.3%). Additionally, the CTC-Chip 

 captures cells with low EpCAM expression as efficiently as cells with high expression. The 
CTC-Chip successfully  identified CTCs in the peripheral blood of patients with metastatic dis-

ease in 115 of 116 (99%) samples, with a range of 5–1281 CTCs per ml [26].

2.1.4. MagSweeper

The MagSweeper is another EpCAM-based immunomagnetic cell separator. It uses a 

round-bottom, magnetic rod covered with an ultrathin (25 μm) nonadherent plastic sheath. 
This assembly is robotically swept through a well containing a blood sample labeled with 

anti-EpCAM functionalized paramagnetic beads (CELLection Epithelial Enrich Dynabeads: 

Invitrogen). The EpCAM+ cells captured on the covered magnetic rod (MagSweeper) are 

transferred to and washed in a well containing PBS, then released into another well of PBS 

by removing the magnetic rod from its sheath. Finally, EpCAM+ cells are further confirmed 
by morphology and gene expression profiles [27, 28]. The gene expression profiles of MCF7 
cells incubated with anti-EpCAM magnetic beads before and after MagSweeper isolation 

were analyzed using microarray analysis and compared with a similar number of MCF7 

cells grown in culture media. Statistical analysis indicated that the MagSweeper isolation 

process does not induce any significant perturbation in the gene expression profile of cells. 
Additionally, the use of 4.5-μm magnetic beads permits isolation of target EpCAM+ cells, 

even with single-bead attachment, making the procedure suitable for isolation of CTCs with 
moderate-to-low EpCAM expression. However, the attachment of large magnetic beads to 
the cell surface may interfere with certain applications. An additional drawback is that nor-

mal EpCAM+ cells present in the circulation are also potentially selected and need to be 

distinguished from CTCs at a microscopic level. MagSweeper technology succeeded in iso-

lating CTCs from all MBC patients (n = 47) at an average of 12 ± 23 CTCs per 9 ml of blood, 

while no CTCs were found in samples derived from healthy donors [28].

2.1.5. Vita-Assay™ (Vitatex Inc.)

The Vita-Assay™ is a functional assay-based CTC enrichment method that takes advantage of 

invasive CTCs preferential adhesion to the cell adhesion matrix (CAM). Viable, invasive CTCs are 

captured on a plate coated with CAM-mimic, then further identified based on their proclivity to 
degrade and ingest the extracellular matrix. CTCs adhered to the Vita-Assay™ plate are released 

by the addition of an enzyme that dissolves the CAM coating, and then concentrated by centrifu-

gation for cytologic analysis. This application’s criteria for CTCs include positive CAM uptake 

(CAM+) and negative hematopoietic lineage (HL) marker expression. Enumeration of CTCs by 

Circulating Tumor Cells in Breast Cancer: A Potential Liquid Biopsy
http://dx.doi.org/10.5772/66439

123



flow cytometry may be further validated by microscopic comparison of CTC and immune cell 
morphology. The Vita-Assay™ CTC-enrichment platform is capable of enriching rare and inva-

sive CTCs and is not biased by surface markers, morphology, or size. Rather, since it focuses on 

the adhesive properties of CTCs, it offers a potentially robust capture method for invasive CTCs. 

Additionally, Vita-Assay™ allows for sensitive multiplex flow cytometric and microscopic detec-

tion of CTCs. Vita-Assay™ successfully detected CTCs in all blood samples from MBC patients 

(n = 10) with a range of 18–256 CTCs per ml. Moreover, CTCs were detected in blood samples of 

28 of 54 (52%) stage I–III breast cancer patients with a mean count of 61 CTCs per ml [29].

2.2. Isolation based on physicochemical properties of CTCs

Several isolation methods take advantage of differences between the physicochemical properties 
of CTCs and other circulating cells. Enrichment methods have been developed for properties 

including size, density, and surface charge [30]. For example, the well-documented fact that car-

cinoma cells have larger overall size and denser nuclei than normal epithelial and immune cells 

has been adopted for CTC isolation [31, 32]. Similarly, nuclear condensation of carcinoma cells 

has led to the development of density-based CTC enrichment [33]. Lastly, differential surface 
charges between carcinoma and normal epithelial or immune cells are also a strategy used for 

CTC enrichment [34]. Enrichment strategies based on physiochemical properties have emerged 

in order to minimize bias (i.e., exclusion of non-EpCAM+ cells); thus, the sensitivity of CTC iso-

lation using these methods is high. However, their specificity is not always high due to the dif-
ficulty of completely eliminating potential leukocyte contamination during the enrichment step. 
Most of these methods rely on manual cytopathologic identification of CTCs, a highly laborious 
process with varied reproducibility depending on the pathologist. Despite this, the potential for 

versatile applications as well as live CTC collection remains major strengths of this method class.

2.2.1. Size and density

Since CTCs are larger in size than immune or red blood cells, two commercially available 

methods have used this principle to enrich CTCs. Using negative pressure or gravity, cells with 

diameter greater than the 6.5–8.0-μm pores are captured on porous membranes. This results 

in the acquisition of multiple types of cells, including CTCs, leukocytes, fibroblasts, normal 
epithelial, and endothelial cells. CTCs are then distinguished from immune cells by immunos-

taining and morphology. Although, different types of staining methods have been explored for 
reproducibility, no standard staining method for CTCs has been established thus far.

2.2.1.1. RareCells® system (Rarecells)

The RareCells® system allows performance of the Isolation by Size of Epithelial Tumor Cells test 

(ISET® test). The ISET® test enriches CTCs according to their size and subsequently identifies 
them based on their cytopathologic features. The RareCells® system is a negative depression-

based filtration device. It consists of a 10-well filtration module that captures CTCs on a polycar-

bonate Track-Etch-type porous membrane [35–37]. Following red blood cell rupture and mild 

fixation, circulating cells smaller than 8 μm are filtered through the porous membrane, while 
those of a greater diameter are enriched on the membrane. The membranes may subsequently 

be stained for the detection of CTCs or stored for future analysis. The RareCells® system allows 
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for versatile applications, including both fixed and live CTC collection. Using ISET method, 
Hofman et al. conducted a blinded, multicenter study to assess the feasibility of CTC identifica-

tion using  cytopathologic criteria. CTCs were defined as circulating nonhematologic cells exhib-

iting at least 4 of the following criteria: irregular nuclei, anisonucleosis (ratio >0.5), high nuclear/

cytoplasmic ratio, nuclei larger than 24 μm, or the presence of tridimensional sheets. Based on 

these criteria, CTCs were only detected in the blood of patients with malignant disease and were 

absent in healthy subjects [38]. The RareCells® system has shown successful detection of CTCs 

in breast cancer, melanoma, and nonsmall cell lung cancer cases [37, 39–41]. In a comparison 

between the RareCells® system and CellSearch®, the RareCells® system displayed greater sen-

sitivity of detection (93% vs. 40%, respectively) and yielded higher median CTC counts [42].

2.2.1.2. OncoQuick® tube (Greiner Bio-One)

This separation device is composed of a centrifugation tube containing a liquid density separa-

tion medium and porous barrier membrane optimized for the enrichment of CTCs from blood. 

During the enrichment step, blood is layered on top of the gradient and then centrifuged. CTCs 

are enriched in the fluid above the porous barrier and collected in a tube by centrifugation. 
Following immunocytochemistry, CTCs are identified as cytokeratin-positive (7, 8, and 18) 

and CD45 negative with intact nuclei and an increased nuclear-cytoplasmic ratio [43, 44]. The 

purity and efficacy of CTC enrichment using OncoQuick® are higher than that with Ficoll, 

which traps up to 25 times more blood mononuclear cells [45]. However, detection sensitivity 

using OncoQuick® was found to be lower than CellSearch® (23% vs. 54%; p < 0.001) [43].

2.2.2. Electrical properties

CTCs have a unique surface charge that distinguishes them from other cells. Thus, a dielectro-

phoretic flow field can be used to fractionate CTCs from blood cells based on their differential 
electrical properties [34].

2.2.2.1. DEPArray™ technology (Silicon Biosystems)

Utilizing this principle, DEPArray™ is an automated instrument that can identify, quantify, 

and recover individual rare cells. It is used as a second purification step after initial EpCAM-
based CTC enrichment methods. The individually isolated CTCs using DEPArray™ are 

then identified based on their morphological and immunocytochemical features. The system 
includes the DEPArray™ cartridge and DEPArray™ analysis platform. The single-use, micro-

fluidic cartridge contains an array of individually controllable electrodes, each with embed-

ded sensors. This circuitry enables the creation of dielectrophoretic cages around cells. After 

imaging, individual CTCs are gently moved into the holding chamber for isolation and recov-

ery. The DEPArray™ analysis platform utilizes image-based selection to allow identification 
and isolation of CTCs on the DEPArray™ cartridge. The system uses a six-channel fluorescent 
microscope and a CCD camera to capture images and identify cells demonstrating the desired 

fluorescence labeling and morphological characteristics. The main advantage of DEPArray™ is 
its ability to eliminate mononuclear cell cross contamination from the preenriched CTC pool. 

Image-based selection enables the isolation of specific rare cells from other cell types. Moreover, 
the DEPArray™ system yields high-quality nucleic acids for molecular investigations, since the 
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Detection strategy Detection method Advantages Disadvantages

Biological EpCAM 

expression

CellSearch® System 

[17]

Semiautomated system Only epithelial CTCs 

are captured and 

mesenchymal cells are 

discarded

FDA approved

Quantification of CTCs

CTC-chip [25] Captured cells are suitable for 

molecular analyses

High detection rate

Quantification of CTCs

IsoFlux NSG applicable

Custom design for CTC 

isolation

Semiautomated system

Herringbone-Chip 

(HB-Chip) [98]

Enhanced platform for CTC 

isolation

Allows detection of 

microclusters of CTCs

MagSweeper  

[27, 28]

Automated immunomagnetic 

isolation

Allows for gene expression 

profiling analysis

EpCAM 

and MUC1 

expression

AdnaTest [20–22] High sensitivity CTCs cannot be 

morphologically 

characterizedMultiplex PCR assays

EpCAM 

expression and 

microfluidic

SIM-Chip [99] Single-cell isolation  

High purity and recovery 

without cell damage

Possible cell damage

Physicochemical Size RareCells® system 

[35–37]

Single CTC morphological, 

immunocytological, and 

genetic analyses

Cross contamination 

with other rare 

blood cells such as 

megakaryocytes and 

large monocytesHigh sensitivity and specificity

ScreenCell® [100] Isolation of live cells and allows 

for tissue culture experiments

Celsee PREP™ slide Highly efficient CTC detection 

with high sensitivity and 

specificity

Immunohistochemistry, DNA, 

and mRNA analyses

Single cell analyses

Automatic imaging system

Surface charge DEPArray™ [46] Single cell isolation

High quality nucleic acids 

for molecular investigations 

(elimination of blood cells cross 

contamination)
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cells receive minimal disturbance during capture or transport. Additionally, the DEPArray™ 

system allows for the isolation of single cells, making it a promising contributor to the under-

standing of CTC heterogeneity [46].

 A summary for the CTC methods discussed in this chapter along with other methods is 

described in Table 1.

3. Clinical utility of CTCs as a biomarker

Liquid biopsy is a clinically amenable method to enable real-time and longitudinal disease 

monitoring. Currently, available serum markers lack the specificity and sensitivity needed for 
clinical management of breast tumors. Since the detection of CTCs became feasible, a number 

of clinical studies have undertaken exploration of whether CTCs could provide a new mini-

mally invasive, longitudinal disease monitoring strategy in breast cancer [7, 47]. The ability 

of CTCs to predict disease progression in both early and MBC as well as in different tumor 
subtypes is currently under investigation. Moreover, several clinical trials have investigated 

the use of CTCs as an early therapy response marker. This section discusses the potential use 

of CTCs as a biomarker for prognosis and therapy response in breast cancer.

3.1. Prediction of prognosis of metastatic breast cancer by CTC

In a landmark study, Cristofanilli et al. conducted the first large, multi-institutional clinical 
study to evaluate the utility of CTCs as a predictive biomarker for disease progression in 

patients with MBC. Using the CellSearch® system, CTCs were enumerated from 177 patients 

with measurable MBC from 20 clinical centers across the United States. Of these, 49% had ≥5 
CTCs per 7.5 ml of blood at baseline prior to treatment. When compared to patients with fewer 

than 5 CTCs at baseline, these patients had shorter median PFS (2.7 months vs. 7.0 months; p 

< 0.001) and OS (10.1 months vs. >18 months; p < 0.001). After 4 months, 10 of the 177 patients 

had died, each showing an average of 3000 CTCs per 7.5 ml of blood at baseline [7]. This 

data clearly indicated that the presence of CTCs is strongly associated with poor outcomes in 

MBC patients. When another study, conducted by Nakamura et al., examined the correlation 

between CTC count and OS, increased risk was found for patients with higher pretreatment 

Detection strategy Detection method Advantages Disadvantages

Functional Secretion EPISPOT [101] Detects viable cells Detects only Epithelial 

CTCs

Matrix 

adhesion

Vita-Assay™ [29] Enriches viable CTCs from 

blood up to one-million fold

Limited only to 

invasive CTCs which 

are able to ingest cell 

matrix

Table 1. Summary of approaches used for CTC isolation and their relevant devices.
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counts Hazard Ratio (HR): 2.4 for patients with 5–10 CTCs; (95% CI, 0.72–8.24, p = 0.1481); 

HR: 13.95 for patients with 21–100 CTCs; (95% CI, 4.57–42.55, p < 0.0001). Furthermore, when 

the OS of patients with ≥5 CTCs was compared to those with <5 CTCs, the HR was 3.1 times 

higher (95% CI, 1.49–6.29, p = 0.002) [47]. This relationship has been further confirmed by both 
meta- and pooled analyses [48–50]. Comprehensive meta-analysis of 49 studies, including a 

total of 6825 patients (Early stage [M0, n = 2993], metastatic [M1, n = 3069], and pooled patients 

with I–IV stages [n = 763]) found that CTC count was significantly associated with shorter 
PFS and OS in both early stage and MBC patients (HR: 1.78; 95% CI, 1.52–2.09, p < 0.001 for 

PFS; HR: 2.33; 95% CI, 2.09–2.60, p < 0.001 for OS in MBC patients) [48]. Additionally, pooled 

analysis of 20 studies from 17 European breast cancer centers found similar trends. In this 

cohort of 1944 MBC patients, 46.9% had a CTC count of ≥5 CTCs per 7.5 ml at baseline, which 
was associated with both decreased PFS (HR: 1.92; 95% CI, 1.73–2.14, p < 0.0001) and OS (HR: 

2.78; 95%CI, 2.42–3.19, p < 0.0001) compared to those with <5 CTCs [49]. In another recent 

meta-analysis of 24 studies including 3701 MBC patients, in 1 and 2 years PFS and OS rates 

(respectively), higher CTC counts correlated with shorter PFS [50].

Since the studies included in these analyses varied in CTC detection method and time point 

of blood draw, Zhang et al. evaluated whether these differences affect the prognostic value of 
CTC counts. Using a subgroup analysis stratified by detection method and time point of blood 
sampling, their meta-analysis found that the prognostic value of CTCs in PFS was  significant 
in studies using RT-PCR (HR: 2.58; 95% CI, 1.99–3.35) or CellSearch® methodologies (HR: 1.85; 

95% CI, 1.53–2.25). This demonstrated that CTCs are a reliable prognostic marker from pre-

dose/preoperative blood in patients with MBC, regardless of other differences in study design 
[51]. Similarly, CTC counts have also been shown to be a prognostic marker in the postdose 

blood of MBC patients receiving their first cycle of first-line treatment [7, 52].

Together, these studies lay the foundation for CTCs as a valid and reliable prognostic indi-

cator both before and after breast cancer treatment. Given their promising clinical applica-

tion, the question of whether CTCs are superior to other prognostic factors has also been 

addressed. A multivariate, Cox proportional hazards regression analysis showed that CTC 

count at baseline was the most significant predictor of both PFS and OS, regardless of histol-
ogy grade, recurrence, de novo stage IV breast cancer, or hormone and HER2 receptor status. 

Moreover, in a retrospective analysis of MBC patients, comparison of the prognostic signifi-

cance of CTCs with tumor burden, therapy type, and receptor subtype showed that CTCs 

were an independent predictor of prognosis [7, 53].

3.2. Prediction of prognosis of nonmetastatic breast cancer by CTCs

As mediators of metastasis, CTCs’ presence and role in advanced breast cancer cases have 

received much attention. However, their implications in nonmetastatic cases have been a 
focus of investigation as well. Using mRNA expression of cytokeratin 19 (CK19) to identify 

CTCs, Stathopoulou et al. detected CTCs in the blood of 148 patients with operable breast 

cancer prior to initiation of adjuvant therapy. For stage I and II breast cancer, the presence of 

CK19+, CTCs was an independent prognostic factor associated with early relapse (p < 0.001) 

and disease-related death (p = 0.01) during a median follow-up of 28 months [54]. Using the 

same approach, Xenedis et al. analyzed 167 node-negative breast cancer patients before the 
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initiation of therapy and found 21.6% of the patients had CK19+ CTCs, which were associ-

ated with early relapse (p < 0.001) and disease-related death (p < 0.008). Multivariate analysis 

further confirmed the detection of CK19+ CTCs in the blood of node-negative patients is an 

independent prognostic factor [55].

The largest study on CTCs conducted in an adjuvant setting was the SUCCESS study, which 
included 2026 patients (median follow-up of 35 months) and collected CTCs after surgery and 

chemotherapy. The presence of even one CTC before adjuvant systemic treatment was associated 

with poor disease-free survival and OS. Additionally, node-positive patients were found to have 

CTCs more frequently than node-negative patients. In a subgroup analysis, the  presence of CTCs 

was not significantly associated with DFS in node-negative patients; however, in node-positive 
patients, CTC was proportionally associated with number of node involvement and poor prog-

nosis (positive node number of 1–3; p = 0.008), 4–9; p < 0.001; ≥10; p = 0.001). Patients who had 

CTCs present both before and after systemic chemotherapy had the worst 3 years DFS of any 

group in this study. Multivariate analysis further confirmed that detection of CTCs prior to che-

motherapy was an independent prognostic factor for DFS (HR: 2.11; 95% CI,1.49–2.99, p < 0.0001) 

and OS (HR: 2.18; 95% CI,1.32–3.59, p = 0.002) in early breast cancer patients [56]. Although the 

study provided valuable prognostic data, its clinical significance remains uncertain since it only 
provided a short follow-up time. Two separate studies have found the presence of one or more 

CTCs to be of prognostic significance in nonmetastatic, chemotherapy-naïve (HR: 4.62 for PFS; 

95% CI, 1.79–11.9, p = 0.005; HR: 4.04 for OS; 95% CI, 1.28–12.8, p = 0.011; [57]) and surgery-naïve 
patients (HR: 2.72 for relapse-free survival (RFS); 95% CI,1.57–4.72, p < 0.001; HR: 2.29 for OS; 95% 

CI, 1.12–4.67, p = 0.02;[58]). Moreover, a meta-analysis of 49 studies (n = 6825 of both early breast 

cancer and MBC patients) showed that in early breast cancer patients, CTC count correlated with 

both shorter DFS (HR: 2.86; 95% CI, 2.19–3.75, p < 0.001) and OS (HR: 2.78; 95% CI, 2.22–3.48, 

p < 0.001) [51]. Similar to MBC patients, posttherapy CTC count was shown to be an indepen-

dent prognostic factor in non-MBC patients. In a study of stage I–III node-negative breast cancer 

patients (n = 175) who had completed adjuvant chemotherapy, Ignatiadis et al. detected CTCs 

using a panel of three biomarkers (CK19, mammaglobin (MGB1), and HER2) using RT-PCR. The 

detection of all three markers was associated with shorter DFS (for CK19+; HR: 2.967; 95% CI, 

1.64–5.34, p < 0.001, for MGB1+; HR: 3.275; 95% CI, 1.58–6.76, p = 0.001, and for HER2+; HR: 2.869; 

95% CI,1.63–5.02, p < 0.001) in univariate analysis [59]. While these studies suggest the indepen-

dent prognostic significance of CTCs in non-MBC patients both before and after adjuvant chemo-

therapy, the data remains somewhat controversial.

Kuniyoshi et al. reported no correlation between PFS and the presence of CK19 or HER2 

CTCs in non-MBC patients (n = 167) at baseline or the first two subsequent follow-ups during 
chemotherapy [60]. This data was further supported by the recently published results from 

the SUCCESS-A trial, a randomized, multicenter trial (EudraCT2005000490-21) that evaluated 

the prognostic value of CTCs in 1221 early-stage (94% of patients were stages I and II) breast 

cancer patients prior to adjuvant chemotherapy. Using a density gradient followed by label-

ing with the anticytokeratin antibody, the SUCCESS-A trial detected CTCs in only 20.6% of 

all patients, and univariate analyses demonstrated that the presence of one or more CTCs had 

no significant impact on DFS or OS over a median follow-up of 64 months [61]. The incon-

sistent results regarding the prognostic utility of CTC counts in non-MBC patients may be 

partially attributable to the use of different CTC detection methods. While studies using the 
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CellSearch® system have consistently reported CTCs as a significant independent prognostic 
marker in non-MBC patients, those using other methods (such as mRNA or cytokeratin-pro-

tein expression) yielded data to the contrary. These conflicting reports underscore the need 
for standardization of CTC-detection methodologies.

3.3. Subtype-dependent prognostic significance of CTCs

Breast cancer is a heterogeneous disease, and large-scale gene expression analysis of primary 

tumors has made it possible to stratify clinical cases into four intrinsic subtypes based on recep-

tor expression—Luminal A, Luminal B, HER2+, and triple negative (TN). These subtypes are 

significantly associated with differences in clinical outcomes and define a patient’s course of 
therapy. In a large retrospective study using CellSearch®, Giordano et al. addressed subtype-

specific differences among CTCs in 517 MBC patients prior to first course of therapy. CTC 
counts were predictive of prognosis in Luminal and TN breast cancer subtypes but were less so 

in the HER2-positive subtype. In Luminal A patients, the median OS and PFS of those with ≥5 
CTCs (n = 292) were significantly shorter than those with <5 CTCs (OS, 18.8 vs. 48.7 months; p < 

0.001; and PFS, 5.9 vs. 7.1; p = 0.004). Within the TN subtype, patients with >5 CTCs (n = 124) had 

a median OS significantly shorter than patients with <5 CTCs (10.4 vs. 17.8 months respectively; 
p = 0.001); however, there was little difference in median PFS for these patients (PFS, 5.1 vs. 4.8, 
respectively; p = 0.274). By contrast, among HER2+ patients, there was no significant association 
between CTC count and OS or PFS (median OS, 27.2 vs. 21.4 months; p = 0.991; median PFS 

7.6 vs. 8.6; p = 0.458) [62]. Likewise, another retrospective study using CellSearch® found simi-

lar trends in the relationship between CTCs and subtype among MBC patients. Patients were 

stratified into groups based on their CTC count at baseline (0, 1–4, or ≥ 5 CTCs) and subtype. 
Similar to Giordano’s findings, CTCs were predominately found in patients with Luminal-A/
Luminal-B/HER2-negative subtypes. Moreover, patients of all subtypes, except HER2+, with 

no CTCs detected in the blood had a better prognosis compared with those with 1–4 or >5 
CTCs [63]. However, a large, multicenter study conducted in Germany found that CTC count 

at baseline was positively associated with shorter OS in all tumor subtypes, including HER2+ 

patients [64]. Additionally, two recent reports have investigated the prognostic role of CTCs, 

specifically in TN subtype. A meta-analyses including 10 studies with a total of 642 metastatic 
and nonmetastatic TN breast cancer patients found the presence of CTCs, predicted aggressive 

disease progression (HR: 2.18; 95% CI, 1.59–2.99, p = 0.010) and reduced OS (HR: 2.02; 95% CI, 

1.59–2.57, p = 0.169) [65]. Additionally, Karhade et al. evaluated CTCs at baseline in 113 stage 

I–III nonmetastatic TN patients and found that presence of ≥2 CTCs predicted shorter PFS (HR: 
8.30; 95% CI, 2.61–26.37, p < 0.001) and OS (HR: 7.19; 95% CI, 1.98–26.06, p < 0.0004) [66].

In summary, the prevalence and clinical relevance of CTCs vary by breast cancer subtype. 

Currently, data indicates that the prevalence of CTCs is high among metastatic Luminal A as 

well as both metastatic and nonmetastatic TN breast cancers. However, data regarding the 

prognostic significance in HER2+ tumors remains inconclusive.

3.4. Prediction of therapy response by CTCs

Neoadjuvant therapy is increasingly popular among patients (e.g., TN, HER2+, or large tumor 

burden, etc) who would qualify for adjuvant chemotherapy. Several studies have explored 

Breast Cancer - From Biology to Medicine130



the clinical validity of CTCs in this setting, specifically the REMAGUS02, GeparQuattro, and 
BEVERLY-2 trials. Each of these studies enumerated CTCs before and after neoadjuvant ther-

apy, yet produced contradictory findings. The REMAGUS02 trial found no correlation between 
the presence of CTCs and pathological complete response, tumor size, grade, or lymph node 

status. However, multivariate analysis revealed that patients without CTCs before and after 

neoadjuvant therapy had better distant metastasis-free survival (DMFS) (before; Relative Risk 

(RR): 2.4; 95% CI,0.9–6, p = 0.06), although no difference was noted in DMFS or OS after a 

median follow-up of 70 months [67]. On the other hand, the GeparQuattro trial failed to show 
any correlation between the presence of CTCs and, worse, DFS or OS [68]. The BEVERLY-2 

study, however, showed that the presence of CTCs at baseline was an independent prognos-

tic factor for poor DFS (HR: 4.75; 95% CI,1.56–14.50, p = 0.006) at 3 years of follow-up [69]. 

Another study compared CTC enumeration with CT scan results in MBC patients follow-

ing therapy. CTCs were measured at baseline and 4 weeks following therapy, and CT scans 

were obtained at 9–12-week intervals to assess response to therapy using RECIST criteria. 

CTC counts were reviewed by a local and central laboratory, while two central radiologists 

reviewed the CT scans. Superior interreader agreement for CTCs was observed at 0.7% vari-

ability, and radiological responses showed 15.2% variability. Patients with <5 CTCs following 

4 weeks of therapy who had stable or partial response on the CT scans demonstrated the best 

median OS of 26.9 months. After these results, however, it is still unclear whether the change 

in therapy course can be based on CTC detection following chemotherapy in MBC patients 

[70]. In 2014, the first interventional study based on postchemotherapy CTC detection was 
launched by the SWOG trial. The main goal of the S0500 SWOG study was to demonstrate an 

OS benefit in CTC-positive patients who were nonresponsive to therapy by switching them 
from first to second-line therapy. Patients who had >5 CTCs after 3 weeks of therapy were 
randomized to ARM 1 (continuation of same therapy) or to ARM 2 (switch to second-line 

therapy). Disappointingly, no difference in OS or DFS was observed in either arm. There are 
several ongoing interventional clinical trials that stratify patients based on CTC count for 

either aggressive chemotherapy or hormonal therapy [52]. Another trial is investigating the 

change of therapy based on CTC number at the third or subsequent lines of therapy for MBC 

[71]. In conclusion, the present data is insufficient to recommend the use of CTC enumeration 
for risk stratification and treatment response. Also, early changes in therapy based on CTC 
enumeration in MBC patients are not recommended at this time, although ongoing studies 

may yield more definitive results.

4. CTC heterogeneity

A number of studies have addressed the heterogeneous nature of CTCs with the ultimate goal 

of understanding what molecular signature is required for successful metastasis. The two 

main phenomena that orchestrate tumor heterogeneity and metastases are cancer stem cells 

(CSC) and EMT. CSCs are pluripotent, highly resistant to conventional chemotherapy [72–74] 

and contribute to the heterogeneous nature of the tumor as well as its ability for self-renewal 

and metastasis [75]. Notably, not all tumor cells are capable of distant organ metastasis; CSCs 

seem to have such metastatic potential [76]. Likewise, the process of EMT plays an essential 

role in invasion and metastasis. At the primary tumor site, a subpopulation of cells loses their 
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epithelial characteristics (such as cell polarity or adhesion to the matrix and other cells) and 

acquires mesenchymal features (including the ability to invade the basement membrane and 

surrounding tissues), which in turn supports eventual intravasation into the circulation, the 

first step in the metastatic cascade [77]. These two processes are interconnected, adding fur-

ther complexity to our understanding of metastasis. Recent studies have shown a direct link 

between EMT and CSCs in breast cancer, suggesting that EMT generates cancer cells with 

stem cell-like traits. Mani et al. showed that the induction of EMT in immortalized human 

mammary epithelial cells results in de novo expression of stem cell markers and the acquisi-

tion of functional stem cell properties, including the ability to form mammospheres [78–80]. 

Both CSC and EMT markers have been identified in CTCs, and while a CTC count itself is an 
independent prognostic marker, the addition of functional marker expression among CTCs 

will likely strengthen their prognostic value. This section specifically focuses on CTC hetero-

geneity of CSC and EMT nature.

4.1. Stem-like CTCs

CSCs are derived both intrinsically and extrinsically [72–74]; although the mechanism for 

extrinsic acquisition of CSC properties is not clearly understood, several lines of evidence 

suggest a close link to EMT [81–84]. CSCs are pluripotent and highly resistant to conven-

tional chemotherapy [72–74]. Currently, there is no therapeutics effective in eradicating CSCs 
[85]; therefore, CTCs with CSC properties are postulated to be an important subset. In 2010, 

Theodoropoulos et al. investigated whether bulk CTCs contain a subset of cells with CSC 

characteristics. The protein expression of CSC markers CD44, CD24, and ALDH1 was assessed 

in cytokeratin+ CTCs isolated from MBC patients using immunofluorescence microscopy. 
In approximately 1500 CTCs identified from 20 MBC patients, 35.2% had the stem-like phe-

notype (CD44+/CD24−/low), whereas 17.7% of the CTCs were ALDH1−high/CD24−/low [86]. This is 

in concordance with another study that found 19% of EpCAM+/Cytokeratin+ CTCs are also 

CD44+/CD24−/low cells [87]. Further support came from an experimental model that demon-

strated a stem-like CD44+ CTC subset isolated from MBC patient blood having metastatic 

potential. Interestingly, the six recipient NSG, immunocompromised mice in this study devel-

oped multiple bone, lung, and liver metastases within 6–12 months following injection of bulk 

CTCs into their bone marrow, confirming the existence of metastatic-initiating cells (MICs) 
among CTCs. To determine the phenotype of the MIC-CTC subpopulation, flow cytometry 
analyses showed that all analyzed CTCs expressed CD44 and CD47. CD47 has been impli-

cated in facilitating cancer cell evasion of the innate immune system through its inhibitory 

role in phagocytosis. Around 33% of CD44+/CD47+ CTCs express the hepatocyte growth factor 

(HGF) receptor MET, a tyrosine kinase involved in the activation of the migration and puta-

tive invasion program in several cancers. To functionally assess the presence of MICs in this 

cell population, CD44+/CD47+/MET+/– CTCs were isolated by FACS and directly transplanted 

into the femoral medullar cavity of an NSG recipient mouse. After 8 months, bone metasta-

sis developed in the mouse, demonstrating that CD44+CD47+MET+/- CTCs contain functional 

MICs. These markers were further examined in four patients before and after disease pro-

gression. An increased frequency of CTCs with CD44+/CD47+/MET+ was detected after dis-

ease progression (fold increase of 1.78; p = 0.019). Additionally, in a total of eight patients, 
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those with >12 CD44+/CD47+/MET+ (triple positive) CTCs per 7.5 ml of blood had significantly 
more metastasis sites than those with <12 triple positive CTCs (mean: 3.25 sites vs. 2.25 sites; p 

= 0.03), and the presence of CD44+/CD47+/MET+ CTCs was associated with shorter OS (HR: 7.4; 

p = 0.0246) [88]. The association of CSC-CTCs with advanced disease was further supported by 

the work of Papadaki et al. who found that MBC patients have a higher percentage of ALDH1+ 

CTCs than those with early breast cancer. ALDH1+ CTCs were observed in 38.7% of CTCs 

from early-breast cancer patients compared to 83.5% from MBC patients [89]. Together, these 

data suggest that CTCs with CSC characteristics have more  biological relevance for disease 

development, progression, and outcomes than bulk CTC data. However, the value of CSC-

like CTCs in prognosis and therapy-response prediction requires further confirmation in a 
large prospective clinical study.

4.2. Mesenchymal CTCs

EMT contributes to the acquisition of invasiveness in cancer cells, and therefore it is believed 

that CTCs with mesenchymal features may contribute to metastasis. However, this question 

has not been extensively addressed due to the use of affinity-based CTC enrichment methods 
that rely on EpCAM and/or Cytokeratin markers, lacking mesenchymal cell surface marker 

selection. EMT is a gradual process that yields epithelial cells which have not gone through 

EMT, intermediate mesenchymal (cells that have partially completed EMT), and exclusively 

mesenchymal cells (ones that have completed EMT). Yu et al. characterized the EMT status 

of CTCs captured on the microfluidic herringbone chip with an antibody cocktail directed 
against EpCAM, EGFR, and HER2. These researchers established a quantifiable, dual-col-
orimetric RNA-in situ hybridization (ISH) assay to examine tumor cells for expression of 

seven pooled epithelial transcripts (Cytokeratin 5, 7, 8, 18, and 19, EpCAM, and Cadherin 1) 

and three mesenchymal transcripts (Fibronectin 1, Cadherin 2, and Serpin peptidase inhibi-

tor/clade E [SERPINE1/PAI1]). Five categories of cells ranging from exclusively epithelial, 

intermediate (more epithelial, equal, and more mesenchymal), and exclusively mesenchymal 

were determined [90]. Similarly, a study by Polioudaki et al. used the ratio of Cytokeratin 

to Vimentin protein expression (measured by immunofluorescence) to study on a single cell 

basis the EMT status of 110 CTCs detected in 5 MBC patients. This study identified that 46% of 
CTCs were “epithelial,” 5.4% were “mesenchymal,” and 48.2% were “intermediate” [91]. The 

existence of CTCs across the EMT spectrum was further confirmed by another single cell level 
study. Using DEPArray to select viable CTCs from 56 MBC patients, Bulfoni et al. determined 

the EMT status of single CTCs by staining with an antibody cocktail that recognized both 

epithelial (EpCAM, E-Cad) and mesenchymal (CD44, CD146, and N-Cadherin) markers. This 

study also reported the presence of diverse CTC phenotypes based on their EMT statuses [92]. 

CTC heterogeneity was further investigated on a genetic level using single CTCs. Powell et al. 

were the first to perform microfluidic-based single cell transcriptional profiling of 87 cancer-
associated and reference genes in CTCs. Their study found that CTCs are heterogeneous and 

can be separated into two major subgroups based on 31 highly expressed genes including 

mesenchymal and metastatic associated genes (VIMENTIN, TGFß1, ZEB2, FOXC1, CXCR4, 

NPTN, S100A4, and S100A9) [93].
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Several studies have investigated the clinical relevance of CTCs based on their EMT status. Yu 

et al. reported the CTCs isolated from ER+/PR+ breast cancer patients were predominantly epi-

thelial, whereas those from the TN and HER2+ subtypes were predominantly mesenchymal 

in a sample of 41 MBC patients [90]. Similarly, Polioudaki et al. retrospectively analyzed 1000 

CTCs isolated from 61 MBC patients at baseline using CellSearch® and investigated the cor-

relation between the level of cytokeratin expression and tumor subtype. Interestingly, CTCs 

from TN patients showed a lower average cytokeratin expression level compared to those 

from the remaining patients (122 vs. 175; p < 0.001) [91]. Moreover, Kallergi et al. found that 

the proportion of CTCs coexpressing cytokeratins 7, 8, or 18 together with the mesenchymal 

marker Twist (measured by Immunofluorescence) is lower in patients with non-MBC than in 
patients with MBC (53% vs. 97%, respectively; p < 0.001). Similarly, the proportion of CTCs 

coexpressing cytokeratins and Vimentin was lower in patients with non-MBC than in those 

with MBC (56% vs. 74%; p = 0.005) [94]. Likewise, Papadaki et al. found that nuclear Twist 

localization was detected in the CTCs of 70.3% of MBC patients, whereas it was detected in 

only 32.3% of CTCs from early breast cancer patients [89]. Moreover, Markiewicz et al. found 

that CTCs isolated from lymph node-positive breast cancer patients are more frequently 

Vimentin and Snail mRNA expression positive compared to those from lymph node-negative 

patients [95]. Polioudaki et al. reported that 1-year OS of patients with high cytokeratin+ CTCs 

was 73.3%, whereas 1-year OS declined by 46.2% in patients with low cytokeratin+ CTCs (p = 

0.038) [91].

4.3. CTC with CSC and EMT characteristics

Given the implications of both CSCs and EMT in metastasis, the existence of CTCs display-

ing both traits has been investigated. Aktas et al. tested the mRNA expression of three EMT 

markers (Twist1, Akt2, PI3Kα) and the CSC marker ALDH1 in CTCs from 39 MBC patients 
and found CTCs expressing at least one EMT marker, ALDH1, or both in 21 patients (81% 

of CTC-positive patients) [96]. The presence of CTCs coexpressing one of the EMT markers 

and ALDH1 was further confirmed by Raimondi et al. The mRNA expression of ALDH1 
in bulk CTCs is correlated with the mRNA expression of Vimentin and Fibronectin (p < 

0.001) [97]. Papadaki et al. further investigated the coexpression of ALDH1 and Twist in 

individual CTCs from both early and MBC patients and found that the prevalence of an 

ALDH1+/Twist+ subpopulation was significantly higher in MBC patients compared to those 
with early disease (76% vs. 15.4%, p = 0.001) [89]. Overall, these results indicate that the 

identification of a subpopulation of CTCs bearing mesenchymal properties, cancer stem 
cell characteristics, or both may help in discerning which patients are at higher risk for 

disease progression.

5. Summary

CTCs have received significant attention as a liquid biopsy to facilitate longitudinal disease 
monitoring. The current consensus based on large clinical studies is that CTC count is an inde-

pendent prognostic marker in MBC, yet it is still controversial whether CTC count is predictive 
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of prognosis in non-MBC or could be used for monitoring of therapy response. Several clini-

cal trials are currently ongoing to determine the utility of CTCs in making an early decision to 

change the course of therapy and spare toxicity. The isolation of CTCs has been a challenging 

task due to their rarity in the blood; however, a number of new isolation and detection strate-

gies have emerged in the past 10 years, making CTC detection in relatively small amounts of 

blood feasible. The current challenge in this era is tackling the heterogeneous nature of CTCs 

and understanding which subpopulations drive metastasis. The count of CTCs with mesenchy-

mal features was shown to be more sensitive in the prediction of prognosis than the number of 

bulk CTCs. Similarly, CTCs with both stem-like and mesenchymal features sensitively predicted 

prognosis. Currently, the detection of mesenchymal CTCs that have lost their epithelial mark-

ers requires laborious work necessitating either the detection of intracellular markers or mRNA 

expression. Therefore, discovery of a new CTC-specific functional surface marker that is relevant 
to metastasis would greatly advance the realistic clinical utility of CTCs. Additionally, in-depth 

understanding of CTC’s heterogeneity utilizing single cell level analysis will improve our knowl-

edge of hematogenous metastasis.
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AKT2 RAC-beta serine/threonine-protein kinase
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BEVERLY-2  Single-arm phase II trial assessed the efficacy and safety of combining 
 neoadjuvant chemotherapy with bevacizumab and trastuzumab for the 

treatment of HER2-positive breast cancer
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CD45 Receptor-type tyrosine-protein phosphatase C
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DAPI 4’,6-Diamidino-2-phenylindole

DEP DielEctroPhoretic

DFS Disease-Free Survival

DNA Deoxyribonucleic acid

EGFR Epithelial Growth Factor Receptor

EMT Epithelial Mesenchymal Transition

EpCAM Epithelial cell adhesion molecule

EPISPOT EPithelial ImmunoSPOT

ER Estrogen receptor

ERBB2 Receptor tyrosine-protein kinase erbB-2 (Gene)

ERBB3 Receptor tyrosine-protein kinase erbB-3 (Gene)

ERCC1 DNA excision repair protein ERCC-1

FDA Food and Drug Administration

FOXC1 Forkhead box protein C1

HB Heringbone

HER2 Receptor tyrosine-protein kinase erbB-2 (protein)

HGF Hepatocyte growth factor

HL Hematopoietic lineage

HR Hazard ratio

ISET Isolation by size of epithelial tumor cells test

ISH In situ hybridization

MBC Metastatic breast cancer

MET The hepatocyte growth factor receptor

MGB1 Mammaglobin

MICs Metastatic-initiating cells

mRNA Messenger ribonucleic acid

MUC1 Mucin-1

NPTN Neuroplastin

NSG NOD Scid Gamma

OS Overall Survival
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PFS Progression-Free Survival

PIK3CA  Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha 
isoform

PR Progesterone receptor

REMAGUS02  Phase II clinical study: Standard Neoadjuvant Chemotherapy Versus 

Genomic Driven Chemotherapy in Patients With Breast Cancer

RNA Ribonucleic acid

RR Relative risk

RT-PCR Reverse transcription polymerase chain reaction

S0500 SWOG  Treatment decision making based on blood levels of tumor cells in women 

with metastatic breast cancer receiving chemotherapy

S100A4 Gene encodes Protein S100-A4

S100A9 Gene encodes Protein S100-A9

SERPINE1/PAI1 Plasminogen activator inhibitor 1

SIM Single-cell isolation microfluidic

SUCCESS  Simultaneous Study of Gemcitabine-Docetaxel Combination adjuvant 

treatment

TGFβ1 Transforming growth factor beta-1

TN Triple negative

ZEB2 Zinc finger E-box-binding homeobox 2
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