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Abstract

Biometric fingerprint scanners scan the external skin's features onto a 2-D image. The
performance of the automatic fingerprint identification system suffers first and foremost
if the finger skin is wet, worn out or a fake fingerprint is used. We present an automatic
segmentation of the papillary layer method, from images acquired using contact-less 3-D
swept source optical coherence tomography (OCT). The papillary contour represents the
internal fingerprint, which does not suffer from the external finger problems. It is embed-
ded between the upper epidermis and papillary layers. Speckle noise is first reduced using
non-linear filters from the slices composing the 3-D image. Subsequently, the stratum
corneum is used to extract the epidermis. The epidermis, with its depth known, is used as
the target class of the ensuing novelty detection. The outliers resulting from novelty
detection represent the papillary layer. The contour of the papillary layer is segmented as
the boundary between target and rejection classes. Using a mixture of Gaussian's novelty
detection routine on images pre-processed with a regularized anisotropic diffusion filter,
the papillary contours—internal fingerprints—are consistent with those segmented man-
ually, with the modified Williams index above 0.9400.

Keywords: biometrics, novelty detection, segmentation, internal fingerprint, optical
coherence tomography (OCT)

1. Introduction

Biometric identification uses identifiers unique to individuals; because of that, it edges out

token-based and knowledge-based identification systems on safety and reliability. Individuals

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



can be described using biometric identifiers provided that they are sufficiently different for a

population. Usable biometric identifiers should be easy to acquire; the acquired measurement

should be in a form conducive to the extraction of the descriptive features. Extraction should

preferably not be intrusive to an individual. They should be extractable on the whole popula-

tion using the identification system. Fingerprints are popular biometric identifiers for identify-

ing and authenticating individuals. Of all identifiers, fingerprints perform competitively on the

factors used in assessing the suitability of any trait [1].

The external skin of the palm finger consists of a series of ridges and furrows, whose pattern

determines the fingerprint's uniqueness. Local ridge characteristics that occur at the ridge's

bifurcation and ending contribute to this uniqueness. Old age, disease or manual labour can

depreciate the fingerprint's uniqueness if the ridges are worn out.

The external finger skin is the interface between an individual and a fingerprint recognition

system. The performance of such systems depends on the conditions of the external finger

skin. It suffers if the skin is scarred, wet, worn out or if a fake fingerprint is used [2]. Further-

more, standard 2-D readers capture the fingerprint onto a glass surface or a fingerprint paper

card in the case of ink-based offline methods. To obtain the 2-D fingerprint image, the subject

has to press their finger against a surface. The performance of a fingerprint recognition system

using such contact-based acquisition is again negatively affected by the pressure exerted by the

finger when making contact with the surface [3]. The pressure is usually non-uniform and

results in captured 2-D images that have non-linear distortions. Lastly, 2-D imaging and signal

processing of surface topology of a finger do not protect bypassing such systems by a fake

fingerprint, which has the third dimension in depth [4].

The internal structure of a finger, the papillary layer, can be used to represent a fingerprint to

alleviate the problems associated with the external skin's ridges and valleys. Actually, the

papillary layer is the source of the fingerprint structure. It is the blueprint of the visible

fingerprint undulations. During development, the basal layer of the epidermis grows faster

than the two layers beneath and on top of it, the dermis and upper epidermis layers [5].

Pressure causes the basal layer to deform into the folds pattern that stays with an individual

forever. That folds pattern forms an internal fingerprint; it is protected because it is inside the

skin, and hence, it cannot be destroyed by superficial skin cuts. The fingerprint recognition

system that uses such a fingerprint cannot be fooled by fake fingerprints as fake fingerprints

are superficial to finger skin whereas the fingerprint at the papillary layer is beneath the

epidermis. Manapuram et al. [6] proposed using optical coherence tomography (OCT) to

image the three-dimensional structure of a finger to a depth that reaches the papillary layer of

the finger. The internal fingerprint embedded between the upper epidermis and papillary

layers is used for identification, instead of the surface fingerprint. Additionally, since OCT is

contact-less, that fingerprint does not suffer distortions caused by the finger when making

contact with the scanner.

A typical fingerprint recognition system is made up of sensing and acquisition, image

enhancement, feature extraction, matching and decision-making components. Since the inter-

nal fingerprint is the blueprint to the external skin ridges and folds, the same recognition

pipeline is applied. This chapter is focused on segmentation of the internal fingerprint, the
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papillary layer, from swept source optical coherence tomography (SS-OCT) 3-D images. The

tissue beneath the surface has been imaged using time domain OCT for biometrics before

[4, 6], while in the Fourier domain OCT, swept source OCT is preferred over spectral domain

OCT as it minimizes dispersion and speckle effects better [7, 8]. In Ref. [9], spectral domain

OCTwas used to extract intricate biometric details such as the distribution of sweat pores and

the pattern of the capillary bed and on the other hand, Zam et al. [10] used correlation

mapping OCT.

Over a pre-determined depth range, Refs. [8] and [9] averaged XY cross-sectional images to

project a 3-D image to 2-D image to segment the internal fingerprint. The fingertip curvature is

removed by detecting points at the boundary between air and tissue in Ref. [10]. The points are

then aligned to a straight line and concatenated to form a 2-D fingerprint. Akbari and Sadr [11]

used vertical gradient thresholding to segment the external fingerprint from an artificial

dummy covering it; this was an implicit segmentation of the internal fingerprint. Column

accumulation functions are used to segment the internal fingerprint in Ref. [12]; they actually

sample the three-dimensional contour of the papillary layer.

This chapter presents the pipeline to segment the internal fingerprint. The method preserves

the curvature of the papillary layer. First, the cross-sectional images of the 3-D OCT image are

filtered to reduce the effects of speckle noise. Then, the multilevel image thresholds the Otsu

segmentation method [13], which is used to detect the outermost skin layer from each filtered

slice. The stratum corneum, the outermost skin layer, is used to estimate the extent of the

epidermis. The epidermis forms the target data of the ensuing novelty detection, which is

applied to image slices, and the boundary to the outlier objects is the contour of the papillary

layer—the internal fingerprint. The segmented internal fingerprint has the 3-D profile features

that 2-D fingerprints’ pattern loses [14]. OCT does not suffer the problem of typical 2-D

acquisitions, where variance in pressure exerted to acquire 2-D fingerprints results in devia-

tions in the features extracted from each acquisition on the same finger.

2. Materials and methods

A swept source OCT system (OCS1300SS, Thorlabs, USA) was used to capture the internal

finger structure. The central wavelength of 1325 nm and spectral bandwidth of 100 nm were

parameters of the swept laser optical source with an average power output of 10.0 mW. The

source had an axial scan rate of 16 kHz. The OCT system had a maximum imaging depth of

3 mm. Scattering properties of a sample as a function of depth are contained in an A-scan for

a fixed position of the scanned beam. A collection of A-scans results in a cross-sectional image

(B-scan). The collection of B-scans results in a volumetric image as shown in Figure 1.

2.1. 3-D internal fingerprint segmentation

We use novelty detection machine learning techniques to separate the papillary junction

from the upper epidermis. As can be seen in Figure 1, the human finger skin shows distinct

regions when imaged with OCT. Corneum stratum is clearly visible as a high-pixel intensity
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region due to its tissue scattering properties. The rest of the epidermis forms a different

class altogether (hereupon referred to as the upper epidermis), with its low and uniform

intensity pixels sandwiched between the stratum corneum and the papillary junction. The

papillary junction is a distinct region with high-pixel intensity and internal fingerprint

undulations clearly visible. We use the stratum corneum, Section 2.2, just to locate the

extent of the low-pixel intensity epidermis region—the upper epidermis. This upper epider-

mis forms the one class in novelty detection that can be characterized and learnt, the target

class. Our hypothesis is that the papillary junction pixels, being different in texture, will be

classified as an outlier by a novelty detection routine trained using this low-pixel intensity

upper epidermis region. The routines are trained using only such low-intensity pixel values

but are expected to classify all pixels at a height lower than the low pixel's intensity region

used for training. Figure 2 shows such a low-pixel intensity upper epidermis region used as

a training set for novelty detection routines for a single cross-sectional image. This band of

training data pixels is located using the stratum corneum edge. Pixels below this band

(annotated by a green colour) are sent to novelty detection routines to classify as the target

or the outlier.

A 3-D OCT scan is processed on a cross-sectional basis to segment the internal fingerprint.

First, the cross sections are filtered to reduce speckle noise. Then, a threshold is applied to

detect the stratum corneum. The stratum corneum is used to locate the upper epidermis, which

in turn is used to train novelty detection routines to find the undulations of the papillary

junction. The undulations of the papillary junction are the internal fingerprints; a 3-D finger-

print is found by concatenating the 2-D cross-sectional images. The workflow is illustrated in

Figure 3. Below is the expansion of the speckle noise reduction, stratum corneum edge detec-

tion and the eventual novelty detection methods used as a papillary contour segmentation

pipeline.

Figure 1. 3-D OCT scan made of 512 cross-sectional images at a human fingertip.
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2.2. Corneum stratum detection

As a pre-processing step, cross-sectional images of the 3-D OCT scan are filtered using the

anisotropic diffusion - Perona and Malik's partial differential equations (PDE) - filter due to its

soft-edge preservation characteristics [15]. The edges of the papillary junction undulations are

soft. The heat equation (equivalent to the convolution of the signal with Gaussian's at each

scale) with the signal as the initial datum u0 is improved by the Perona and Malik filter by

reformulating it as a non-linear equation of the porous medium type:

∂u

dt
¼ div

�

gðj∇ujÞ∇u
�

, uð0Þ ¼ u0 (1)

In this equation, g is a smooth non-increasing function. Its regularized version was also

applied as it is stable in the presence of speckle noise [16]. The stability brought about by Catté

et al. [16] is due to the replacement of the gradient j∇uj by its estimate jDGσ � uj in the Perona

and Malik model (1); Gσ is a Gaussian function.

The two filters were compared to the total variation denoising technique, which performs

denoising as an infinite-dimensional minimization problem [17]. Speckle noise results from

the coherent nature of laser radiation and the interferometric detection of the scattered light

[11]. To minimize speckle noise, [14] applied rotating kernel transformation, while [12]

employed parallel processing to speed up median filtering to suppress speckle noise.

Figure 2. A band located using the corneum stratum edge and used as a training set for novelty detection routines.

Figure 3. The internal fingerprint segmentation workflow.
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After the pre-processing step, we then segment the cross-sectional images using the two-image

thresholds of the Otsu method to detect the stratum corneum edge. The filtered cross-sectional

image forms an input to a non-parametric method of threshold selection. The filtered image

pixels can be represented in L gray levels ½1, 2, …, L�, where we assume that there are two

thresholds, 1 ≤ k1 < k2 < L, for separating an image into three classes. Otsu [13] introduced

the discriminant criterion measures used in discriminant analysis to evaluate how strong a

threshold is. In this case, segmentation is seen as an optimization problem to search for the two

thresholds, k01 and k
0
2, that maximize the discriminant criterion measure σB2

—a function of the

two variables k1 and k2:

σB
2ðk01, k

0
2Þ ¼ max

1 ≤ k1<k2<L
σB

2ðk1, k2Þ (2)

Thresholds are selected in a sequential search by using cumulative probabilities of class

occurrence and class mean levels [13]. The highest threshold extracts the stratum corneum.

The stratum corneum edge is represented by the topmost pixels of its perimeter.

2.3. Novelty detection to segment papillary layer

Novelty detection is used as a segmentation method because the 3-D internal fingerprint is

defined as the boundary between the upper epidermis pixels and the papillary layer pixels.

Novelty detection is applied to cases where the class of objects that are not of interest, for

example outliers, cannot be sufficiently modelled [18]. Only the upper epidermis pixels, the

target class as shown by a green band in Figure 2 can be sufficiently modelled in this case.

Novelty detection routines are trained to recognize the upper epidermal layer. The upper

epidermal layer is extracted using the detected stratum corneum edge. According to Ref. [8],

the epidermis extends to an average of 0.34 mm at the palm finger region. Epidermal pixel

values, from a depth of 10 to that of 20 pixels from the stratum corneum edge, are used as

objects of novelty detection routines. An example training dataset extracted using this proce-

dure is shown in Figure 2 as a band of pixels annotated by a green colour. All pixels at a depth

below the green band constitute the test set that is an input to a trained novelty detection

routine. The aim is to train novelty detection techniques to recognize only the upper epidermis

layer. The papillary layer would be the rejection region of this technique, with the papillary

contour at the boundary between target and rejection (outlier) classes.

Gaussian, mixture of Gaussians (MoG), k-means and k nearest neighbour (kNN) routines are

used. The target data are modelled as a Gaussian distribution when using a Gaussian routine.

To create a more robust description of the target objects, MoG uses n Gaussians [19], where n is

determined empirically. k-Means novelty detection technique describes the target dataset

using k clusters. The cluster centres are placed using the standard k-means clustering proce-

dure [19]. The kNN routine labels test objects by comparing them to target objects using the

Euclidean distance [20].

Training novelty detection routines involve setting a percentage error a routine can make, that

is, the number of target objects that may be misclassified as outliers on the training set. To train
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a Gaussian routine, the density estimate is avoided to minimize numerical instabilities, and

just the Mahalanobis distance is used:

f ðxÞ ¼ ðx� μÞT
X�1

ðx� μÞ (3)

The distance f ðxÞ of a test object x from the mean of the target data; the novelty detection

routine is defined as:

hðxÞ ¼
target if f ðxÞ ≤θ
outlier if f ðxÞ > θ

�

(4)

The mean μ and covariance matrix ∑ are just training set estimates, and the threshold θ is

based on the percentage error a routine is allowed to make [21]. An object is labelled a target

object if its distance from mean is less than the set threshold and labelled an outlier otherwise.

Training MoG and k-means routines involve determining the number of Gaussians and clus-

ters, respectively, to optimally represent the training data. The leave-one-out cross-validation

error is used to optimize k for the kNN routine on the training dataset.

The same percentage error is set during the training of different routines to compare perfor-

mance on a test set. The function derived using the set percentage error is used to map pixels

(extracted at a depth higher than the section used for training) as a target or an outlier on each

cross section of the 3-D image. For each cross-sectional image of a 3-D OCT scan, pixels below

the green band, as in Figure 2, are objects to be classified as either the target or the outlier.

Objects/pixels classified as target objects are labelled one and as outliers, labelled zero. The

labels are translated back to the object/pixel coordinates; and the papillary contour is an edge

between the zero- and the one-labelled regions of an image. The papillary layer contour is the

boundary between the target (upper epidermis) and rejection (papillary layer) classes. The 3-D

papillary contour is obtained by concatenating the detected 2-D contours together. The proce-

dure is shown in Algorithm 1.

Algorithm 1. Algorithm to segment an internal fingerprint

Input = 512 cross sections

output = []

for all i in length(input) do

this_cross_sec = input(i)

denoised_im = filter(this_cross_sec)

c_s = corneum-stratum-detect(denoised_im)

train_data = denoised_im(c_s +10: c_s + 20)

trained_routine = novelty-detection-routine(train_data, fraction_reject)

test_im = denoised_im(c_s + 21: length(denoised_im))

Novelty Detection‐Based Internal Fingerprint Segmentation in Optical Coherence Tomography Images
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test_im_labels = map-labels(test_im * trained_routine)

papillary_contour = perimeter-rejection-class(test_im_labels)

output = concatenate(output, papillary_contour)

end for

2.4. Evaluation of the segmented papillary contour

Papillary contours were outlined manually from the slices composing the 3-D image. The

manual outlines represented the gold standard used in assessing the performance of different

routines. The agreement between the gold standard papillary contours and those segmented

automatically was assessed using the Hausdorff distance [22] and the modified Williams index

(MWI) [23]. The MWI specifies whether the contour outlined by routine 0 agrees with the set of

nmanual contours as much as a manual contour agrees with another contour from the manual

set; it is defined as:

MWI ¼

1
n

Xn

j¼1
1
D0j

2
nðn�1Þ

Xn�1

j¼1

Xn

j0¼jþ1
1

Djj0

(5)

where

Djj0 ¼
1

N

XN

i¼1

Hðxij, xij0Þ (6)

Djj0 denotes the agreement between two observers j and j0. xij denotes observer j outlining

image i and Hðx, yÞ is the Hausdorff distance between images contours x and y.

3. Results

The two-image thresholds of the Otsu method were determined automatically for each cross

section. The input to the two-image thresholds Otsu segmentation method was the denoised

cross-sectional image. The output was the exterior edge of the stratum corneum. Each

denoising technique pronounced pixel intensities of the stratum corneum layer differently;

the Otsu method was able to detect the change in the gradient between the stratum corneum

layer and air. Figure 4 shows the detected edge for the three denoising routines that were used.

The objects used to train novelty detection routines had one feature, pixel intensity value of the

unit 8 cross-sectional image. The pixels were extracted at 10 pixel depth from the stratum

corneum contour detected using the two image thresholds Otsu method. A set of 50 YZ cross-

sectional scans was used to study the agreement between papillary contours segmented by

two researchers and the novelty detection routines. The comparisons were made using the

Hausdorff distance. T11 and T12 represent the first observer, outlining the papillary contours

Computed Tomography - Advanced Applications196



for the first and second time. T2 represents the second observer, while Gau, MoG, KM and

kNN represent Gaussian, mixture of Gaussians, k-means and k nearest neighbour routines

respectively. The agreement between contours outlined by an observer and between observers

is shown in Table 1.

The Hausdorff distance was used to determine both the number of Gaussians and clusters to use

from the 50 scans. A plot of the Hausdorff distance as a function of the number of Gaussians or

clusters is shown in Figure 5. Three Gaussians were used with the mixture of Gaussians, and

three clusters were used with the k-means routine. k was optimized using the leave-one-out

cross-validation for each cross-sectional image segmentation using the kNN routine.

The Hausdorff distance was used to obtain the MWI for comparing computer-generated

contours to hand-drawn ones. The MWI is the ratio between the average computer-observer

Figure 4. A raw cross-sectional image (a) together with the corneum stratum edge overlaid on its filtered version using

anisotropic diffusion (b), its regularized version (c) and the total variation denoising technique (d).

T11 and T12 T21 and T22 T11 and T21 T12 and T22

Mean � Std 4.5424 � 0.4363 4.4313 � 0.3823 4.5054 � 0.4062 4.4993 � 0.4240

Table 1. Comparison of manual papillary segmentation between two observers.
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agreement and the average observer-observer agreement. Contours outlined by two volun-

teers constituted four manual observations per object. Table 2 shows the agreement between

the volunteers and novelty detection routines in segmenting anisotropic diffusion filtered

scans and the MWI of the routines, together with the 95% confidence interval estimate for the

MWI, assuming a standard normal distribution. Table 3 shows the evaluation of the novelty

Figure 5. Hausdorff distance as a function of the number of Gaussians for MoG and clusters for k-means.

T11 and AL T21 and Al MWI Confidence interval

Gau 4.7554 � 0.4355 4.7282 � 0.3832 0.9450 (0.9416, 0.9485)

MoG 4.7262 � 0.3823 4.7111 � 0.4111 0.9498 (0.9465, 0.9530)

KM 4.7627 � 0.4917 4.7920 � 0.4914 0.9386 (0.9353, 0.9420)

kNN 4.7664 � 0.4053 4.7118 � 0.4271 0.9455 (0.9421, 0.9489)

Table 2. Comparison between manual papillary segmentation and segmentation using novelty detection techniques on

anisotropic filtered images.

T11 and AL T21 and Al MWI Confidence interval

Gau 4.7113 � 0.4091 4.7302 � 0.4106 0.9504 (0.9474, 0.9535)

MoG 4.680 � 60.3934 4.7088 � 0.3598 0.9548 (0.9518, 0.9578)

KM 4.7350 � 0.4038 4.7435 � 0.4028 0.9473 (0.9442, 0.9505)

kNN 4.7295 � 0.3667 4.7631 � 0.3678 0.9474 (0.9445, 0.9502)

Table 3. Comparison between manual papillary segmentation and segmentation using novelty detection techniques on

regularized anisotropic filtered images.
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detection segmentation techniques with the regularized anisotropic diffusion filtered images

as the input, while Table 4 shows that of total variation filtered images as input.

Mixture of Gaussians had the best overall performance in segmenting the papillary contour

across the three denoising techniques. For each denoising technique, the papillary contour

segmented using the MoG has been overlaid and compared with a manual papillary outline

for that cross section in Figure 6. Novelty detection techniques generally struggled to segment

the papillary contour from scans pre-processed using the total variation denoising technique.

The 3-D papillary contour segmented using the worst performing novelty detection routine,

k-means, on total variation denoised scans is shown in Figure 7, side by side with the same

T11 and AL T21 and Al MWI Confidence interval

Gau 4.9777 � 0.4550 5.0235 � 0.4336 0.8967 (0.8937, 0.8997)

MoG 5.0263 � 0.3451 5.0317 � 0.3532 0.8902 (0.8874, 0.8931)

KM 5.1393 � 0.4133 5.1580 � 0.4228 0.8703 (0.8674, 0.8733)

kNN 4.9324 � 0.3660 4.8878 � 0.3632 0.9138 (0.9109, 0.9167)

Table 4. Comparison between manual papillary segmentation and segmentation using novelty detection techniques on

total variation filtered images.

Figure 6. A raw cross-sectional image with papillary contour manually outlined (a) together with the overlaid papillary

contour segmented using the MoG routine when that cross section is pre-processed using anisotropic diffusion (b), its

regularized version (c) and the total variation denoising technique (d).
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scan segmented using the MoG routine when pre-processed using the regularized anisotropic

diffusion filter, the best performing workflow.

4. Discussion

The aim of our chapter was to segment the internal fingerprint from swept source optical

coherence tomography 3-D scans. This forms one component of the internal fingerprint recog-

nition system that uses an OCT scanner as a contact-less acquisition device. The system is

composed of the following components: sensing, 3-D internal fingerprint segmentation, fea-

ture extraction, matching and decision-making components. We use an SS-OCT system as a

sensing component. The feature extraction and subsequent components have not been

implemented.

No evaluation of internal fingerprint segmentation was found in the literature for direct

comparison with our results. An edge-based segmentation technique was applied to detect an

artificial layer glued to a fingertip in Ref. [11]. They used vertical gradient edge detection

technique, where the dummy fingerprint was glued to the fingertip and the method marked

out the border between the real skin and the artificial layer. However, the segmented border

was subjectively evaluated.

Both Refs. [8] and [9] averaged XY cross-sectional images of a 3-D OCT scan to obtain the 2-D

internal fingerprint image. Lui and Buma [9] had removed the overall fingertip curvature

without affecting the fine-scale undulation of the friction ridge by fitting a third-order polyno-

mial to the stratum corneum edge. We deduce that their resultant 2-D internal fingerprint was

more accurate than that of Ref. [8] because the rectangle selected to average across cut more

evenly across the papillary region for the straightened fingertip rather than the fingertip

retaining the original curvature. They both did not perform quantitative evaluation of their

XY averaging segmentation technique.

Sousedik et al. [12] segment an OCT scan of a fingertip into two 3-D fingerprint layers—the

surface fingerprint and an internal one embedded between the upper epidermis and the

Figure 7. A 3-D papillary contour segmented using the k-means routine on a scan pre-processed using the total variation

technique (a), side by side with the same scan pre-processed with regularized anisotropic diffusion and segmented using

MoG.
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papillary layers. However, they do not produce a continuous 3-D internal fingerprint layer but

rather a scattered point cloud. This is the fundamental difference between their method and

the one presented in this chapter, which produces a continuous 3-D surface of the internal

fingerprint. They do not perform quantitative evaluation of the internal fingerprint segmenta-

tion but rather they evaluate the ability to detect the two layers of fingerprints; they got a 90%

ability in the scans without anomalies related to subject finger motion.

We quantitatively evaluated the performance of the internal fingerprint segmentation method

that is proposed [24]. Aside from evaluating performance of the proposed segmentation

procedure, using the internal fingerprint has benefits over the surface fingerprint. It is more

difficult to spoof automated fingerprint identification systems that use an internal fingerprint.

Substrates that are used to make fake fingerprints (gelatin, silicon, waxes of difference concen-

tration) have varying scattering properties. Even those with scattering properties close to those

of human fingers (polydimethylsiloxane mixed with titanium oxide [9]) have a problem in that

the OCT will reveal a stratum corneum layer of abnormal thickness. The proposed segmenta-

tion method uses the fact that the epidermis extends to an average of 0.34 mm at the palm

finger region [9]; it can be adapted to raise an alert if an internal fingerprint is not detected

within an expected range. Furthermore, using the internal fingerprint minimizes the impact of

fingerprint surface cuts, but deep cuts will still present a problem.

An advantage of extracting features from a 3-D internal fingerprint is that the 2-D (flat)

fingerprint pattern loses the 3-D profile features that also provide information that can be used

to uniquely identify an individual [14]. The automated fingerprint identification system that

uses OCT as a sensor includes all of the 2-D morphological features, along with the 3-D profile

which will increase discrimination performance. Performance comparisons will be made by

using extended 2-D minutiae features in the 3-D space to include height and angle information

and by using finger surface codes as 3-D features [25]. Figure 8 shows the internal and external

fingerprint of the same finger—the external one is a conventional 2-D optical scan that is

cropped to correspond to the OCT-scanned internal one. We propose that an eventual recog-

nition performance of the system being developed will be an improvement over conventional

Figure 8. The image on the left is a conventional 2-D external fingerprint that has been cropped to an area corresponding

to that scanned by the OCT, right image, of the same finger.
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systems as physical deterioration of an external fingerprint will be countered by using the

internal fingerprint.

Sousedik et al. [12] used a support vector machine to detect the layer that corresponds to a fake

fingerprint glued to a fingertip, using the overall energy of the layers as a feature vector. They

did not use machine learning for matching different fingertips but rather for detecting artefacts

glued to fingertips. Kumar and Kwong [25] implemented matching the 3-D surface finger-

prints obtained using a single camera, using both the finger surface code and 3-D minutiae as

features. They got a better matching performance when combining 3-D features with 2-D

features than using just 2-D features. This suggests that 3-D fingerprint features will be

effective in the matching and the decision-making component of the internal fingerprint-based

identification system.

With human observers used as a gold standard, mixture of Gaussians performed best in

segmenting the 3-D papillary contour—internal fingerprint—according to the Hausdorff dis-

tance. On the selected pre-processing technique, the regularized anisotropic diffusion filter, the

average Hausdorff distance was the lowest. The standard deviation was the lowest, which

suggests that the mixture of Gaussians stably produces contours consistent with those of

human volunteers. The average Hausdorff distance of the method is higher than that among

human volunteers as the method does not outperform humans. To train novelty detection

techniques that are compared, they were set at the same percentage error that they can make

on the target data.

Other novelty detection routines can be used in the proposed segmentation workflow. There is

little difference in the segmentation performance between the routines that were tested. We

have not implemented 3-D internal fingerprint recognition routines to assess the impact of the

difference in segmentation performance on the eventual recognition performance of the entire

system. The impact of segmentation performance of different novelty detection routines on the

overall system recognition performance might not be significant, in which case the novelty

detection routines could be ranked by other desirable aspects, for instance speed.

Novelty detection techniques had the poorest performance segmenting OCT scans pre-

processed with the total variation denoising filter, according to the Hausdorff distance. Such

filtered cross-sectional images had high- and low-intensity specks across the epidermal and

papillary layers observed visually. The specks negatively affected the performance of novelty

detection routines. The kNN routine, which computes the distance to the optimized k nearest

neighbours, had the best performance of these routines. Scans pre-processed with the aniso-

tropic diffusion filter also had such specks, be it on a level less than that observed with the total

variation denoising filter. That might explain why superior performance was obtained when

using its regularized version. Quantitative performance evaluation of different filtering tech-

niques was not explicitly done, and if done it will definitely order the different OCT speckle

noise reduction techniques according to performance.

When the upper limit of the MWI confidence interval is greater than one, it demonstrates that

an automatically detected contour agrees with the set of manual contours at least as well as

manual segmentations are in agreement. The upper limit obtained with the best segmentation
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pipeline—using a regularized anisotropic diffusion filter and a mixture of Gaussians routine—

was not greater that one. To improve novelty detection, texture features could be explored. The

epidermis and the dermis layers have different textures. Moreover, neighbourhood informa-

tion was not incorporated in novelty detection as individual pixel values were used as features.

A nine-pixel neighbourhood can be used as a feature set instead of a single pixel. This might

better represent spatial information. Even though the computer-observer agreement was not at

least as well as observer-observer agreement, the confidence interval was narrow suggesting

that the variability was not erratic and that the method is stable.

Unrolling algorithms can be used to convert the segmented 3-D internal fingerprints to their 2-D

equivalent fingerprints. The 2-D equivalent fingerprints will not have the distortions caused

by pressure exerted when capturing conventional 2-D fingerprints. Alternatively, 3-D profile

features can be extracted from the segmented 3-D internal fingerprints. Such features can be

used for matching instead of features extracted from traditional contact-based scanners that

often suffer non-linear distortions.

5. Conclusion

The proposed workflow automatically segments the contours of the papillary layer—the

internal fingerprint. The 3-D OCT scan is processed on a per cross-sectional image basis. First,

the slices are filtered by a regularized anisotropic diffusion filter to reduce the effects of speckle

noise. Then, the Otsu method is used to detect the stratum corneum, and multilevel image

thresholds are determined automatically for each slice. The stratum corneum is used as a

marker to extract a set of epidermal layer pixels to be used as the training data in the ensuing

novelty detection. The mixture of Gaussians mapping is used to label pixels at a depth higher

than the depth used to extract the training pixels on each cross section. The contour of the

papillary layer is the internal fingerprint. The 3-D internal fingerprint image is obtained by

concatenating the 2-D papillary contours together.

Laser radiation loses focus towards the extremes of a fingertip because of the fingertip's

curvature. The result is that skin penetration weakens and the weak reflected light translates

into low-pixel intensity values. This affects stratum corneum detection, and at times, the Otsu

segmentation method returns a non-continuous stratum corneum edge. Corneum stratum

edge detection will be improved using regression methods. The left topmost and right topmost

extreme pixels of the returned connected components constituting the stratum corneum can be

stitched together. Vertically sweeping an image from left to right, the right topmost extreme

point will be connected to the closest, Euclidean distance-wise, left topmost extreme pixel

using regression methods. A linear least squares fitting technique will not always give the

output as a single connected object when fed with two disjointed edges in an image; hence,

non-linear regression routines will be investigated.

The epidermis extends to an average of 0.34 mm at the finger region [8]. The 10-pixels depth

from which the extraction of the epidermis layer began was empirically determined. The aim

was to exclude the stratum corneum was extracting pixels that forms the training set of novelty
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detection routines. The routines were given pixel values at a depth higher than the extracted

training pixel dataset to classify, with the undulations of the papillary contour expected to be

the border between the target and rejection regions.

An automated segmentation workflow has been established for the 3-D internal fingerprint.

The segmented internal fingerprint does not suffer problems associated with the external

fingerprint. The method preserves the 3-D profile features that are lost with the 2-D finger-

prints’ pattern. It has the potential to segment the papillary contours as well as a manual

segmentation, with post-processing improvements.
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