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Abstract

We investigated the influence of the imagined muscle contraction strengths on spinal
motor neuron excitability in healthy volunteers. F-wave was used for assessing spinal
motor excitability. The F-waves during motor imagery (MI) under 10, 30, 50, 70, and
100% maximal voluntary contractions (MVCs) were compared. Furthermore, we
investigated changes of the F-waves during motor imagery for 5min. Motor imagery
under 10, 30, 50, 70, and 100% maximal voluntary contractions can increase spinal
motor neuron excitability. However, the imagined muscle contraction strengths were
not involved in changes of spinal motor neuron excitability. Additionally, spinal
motor neuron excitability after 5min from onset of motor imagery returned to the rest
level. Thus, in clinical use of motor imagery, slightly imagined muscle contraction
strength is enough for facilitating spinal motor neuron excitability. Also, duration of
motor imagery needs to be considered.

Keywords: motor imagery, F-wave, imagined muscle contraction strength, duration,
physical therapy

1. Introduction

Motor imagery (MI) is defined as a cognitive process in which the subjects imagine that

they perform movements without actually performing movements and muscle contrac-

tions [1].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



MI has been shown to improve various motor functions in healthy subjects. Specifically,

Yue and Cole [2] suggested that MI of little finger abduction under maximal voluntary

contraction (MVC) for 4weeks could increase muscle strength. Additionally, MI of ankle

dorsiflexion under MVC for 4weeks could increase muscle strength [3]. Also, Guillot et al.

[4] suggested that muscle flexibility was improved after MI of stretching for 5weeks.

Furthermore, in clinical settings, MI can be applied in physical therapy for patients with

damage to the central nervous system, such as stroke, Parkinson's disease, and spinal cord

injury.

The effects of MI have been discussed in numerous neurophysiological studies. Various brain

activities, including primary motor area, supplementary motor area, premotor area, somato-

sensory area, prefrontal cortex, parietal lobule, cingulate area, cerebellum, and basal ganglia,

were activated during MI by using positron emission tomography (PET), functional magnetic

resonance imaging (fMRI), and near infrared spectroscopy (NIRS) [5–8]. These regions were

also activated in motor execution. Thus, MI and motor execution are considered to share

common neural networks. Furthermore, enhanced corticospinal excitability may explain the

increase in motor evoked potentials (MEPs) amplitude by applying transcranial magnetic

stimulation (TMS) over the primary motor area during MI [9]. These previous studies

suggested that MI can facilitate the central nervous system.

However, other studies could not show the certain results in spinal motor neuron excit-

ability during MI by using the F-wave, H-reflex, and T-reflex. The F-wave, H-reflex, and

T-reflex are considered as indices of spinal motor neuron excitability. We previously

studied spinal motor neuron excitability during MI of isometric thenar muscle activity.

The persistence and F/M amplitude ratio during MI of thenar muscle activity under 50%

MVC were significantly increased compared to that at rest [10]. Taniguchi et al. [11]

reported that the F/M amplitude ratio after volitional relaxation for 3h was significantly

decreased. When subjects did volitional relaxation and MI of thumb abduction simulta-

neously, the F/M amplitude ratio was maintained at that before volitional relaxation level.

This indicated that MI can increase spinal motor neuron excitability. Whereas Kasai et al.

[9] reported that the H-reflex amplitude was not changed during MI of wrist flexion

movement, Oishi et al. [12] reported that there are various results in the H-reflex ampli-

tude during MI in speed skaters. Thus, it might be suggested that spinal motor neuron

excitability was not always increased during MI, although MI can increase the central

nervous system.

Our final goal is to find the way that MI obtained the most beneficial effect. To assess

spinal motor neuron excitability is as important as the central nervous system, because we

think that facilitation of spinal motor neuron excitability is required for improvement of

motor function. Thus, in this chapter, we would like to introduce our previous work about

spinal motor neuron excitability during MI under various MI conditions. First, we

described spinal motor neuron excitability during MI under various imagined muscle

contraction strengths. Next, we described the influence of duration of MI on spinal motor

neuron excitability. Additionally, at the end of the chapter, we discuss how to apply MI to

physical therapy.
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2. Spinal motor neuron excitability of MI under various imagined muscle

contractions

2.1. Spinal motor neuron excitability of MI under 10, 30, 50, and 70% MVC

2.1.1. Purpose

We previously reported that spinal motor neuron excitability during MI of isometric thenar

muscle activity under 50% MVC was significantly increased in comparison with that at rest

[10]. In actual motion, Suzuki et al. [15] compared spinal motor neuron excitability during

actual isometric thenar muscle activity under 25, 50, 75, and 100% MVC. The persistence

and F/M amplitude ratio increased linearly with the muscle contraction strength. Spinal

motor neuron excitability during MI increases linearly with the imagined muscle contrac-

tion strength if MI and motor execution share common neural networks. However, it was

unclear whether the imagined muscle contraction strength affects the changes of spinal

motor neuron excitability. Then, we investigated changes of spinal motor neuron excitabil-

ity during MI of isometric thenar muscle activity under various imagined muscle contrac-

tion strengths. Specifically, we used 10, 30, 50, and 70% MVC for the imagined muscle

contraction strength. In addition, we assessed spinal motor neuron excitability by using

F-wave.

2.1.2. Materials

We included 10 healthy volunteers (5 males and 5 females; mean age, 28.7�4.5years. All

subjects provided informed consent prior to the study's commencement. This study was

approved by the Research Ethics Committee at Kansai University of Health Sciences. The

experiments were conducted in accordance with the Declaration of Helsinki.

2.1.3. Methods

Subjects were in a supine position with muscles relaxed and instructed to fix one eye on a

pinch meter monitor [digital indicator F304A (unipulse)] throughout the test (Figure 1). Abra-

sive gel was applied to keep the skin impedance below 5kΩ. The temperature was maintained

at 25�C. A Viking Quest electromyography (EMG) machine (Natus Medical Inc., Pleasanton,

USA) was used for F-wave recording (Figure 1). We recorded F-waves from the left thenar

muscles after stimulating the left median nerve. A pair of disks was attached with collodion to

the skin over the belly and the bones of the metacarpophalangeal joint of the thumb. The

stimulating electrodes comprised the cathode placed over the left median nerve 3cm proximal

to the palmar crease, and the anode was placed 2cm more proximally (Figure 2). The maximal

stimulus was determined by delivering 0.2-ms square-wave pulses of increasing intensity to

elicit the largest compound muscle action potential (M-wave). The supramaximal stimuli

(adjusted up to 20% higher than the maximum stimulus intensity) were delivered at 0.5Hz.

The bandwidth filter ranged from 2Hz to 3kHz.

We showed the typical F-wave forms from thenar muscle after applying 30 electrical stimuli on

the median nerve (Figure 3).
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In the resting trial (rest), the F-waves were recorded during relaxation. Next, we measured

MVC by asking the subjects to apply maximum pressure to the pinch meter sensor between

left thumb and index finger for 10s. Subsequently, the subjects were required to learn isometric

thenar muscle activity under 10%MVC for 1min. The subjects were instructed to keep the 10%

MVC value, which was displayed on the digital pinch meter monitor. For MI trial, the subjects

were instructed to imagine 10% MVC thenar muscle activity while holding the sensor between

their thumb and index finger without exerting any muscle contractions. F-waves were mea-

sured both during (10% MI) and immediately after 10% MI (post). The above process was

defined as the MI using a 10% MVC condition (10% MI condition). This training process was

repeated for MI of 30, 50, and 70% of MVC, and F-waves were recorded as described. Trials

under these conditions were performed randomly on different days.

Figure 2. The F-wave recording condition.

Figure 1. The F-wave recording instruments.
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2.1.4. Date analysis

The F-waves result from backfiring of spinal anterior horn neurons following distal antidromic

electrical stimulation of α-motor neurons [16–18], in this case the median nerve. The F-waves

from 30 stimuli were analyzed with respect to persistence, F/M amplitude ratio, and latency.

Persistence was defined as the number of measurable F-wave responses divided by 30

supramaximal stimuli. The F/M amplitude ratio was defined as the mean amplitude of all

responses divided by M-wave amplitude. Latency was defined as the mean latency from the

time of stimulation to onset of measurable F-waves. Persistence reflects the number of

backfiring anterior horn cells [17, 18]. The F/M amplitude ratio reflects the number of

backfiring anterior horn cells and the excitability of individual cells [17, 18]. Therefore, these

parameters are considered to be the indexes of spinal motor neuron excitability.

2.1.5. Statistical analysis

The normality of F-wave data was confirmed using the Kolmogorov-Smirnov and Shapiro-

Wilk tests. The persistence, F/M amplitude ratio, and latency among three trials (rest, MI, post)

under each MI condition (10% MI, 30% MI, 50% MI, and 70% MI conditions) were compared

using the Friedman test and Scheffe's post hoc test. The relative values among the four MI

conditions were compared using the Friedman test. We used IBM SPSS statistics ver.19 for all

statistical analysis.

Figure 3. The typical F-wave forms.

The Effect of Motor Imagery on Spinal Motor Neuron Excitability and Its Clinical Use in Physical Therapy
http://dx.doi.org/10.5772/67471

33



2.1.6. Results

Persistence during MI under the four MI conditions was significantly increased compared to

that at rest (Scheffe's test; 10% MI vs rest, 70% MI vs rest, **p<0.01; 30% MI vs rest, 50% MI vs

rest, *p<0.05; Figures 4–7). Persistence immediately after MI was significantly decreased com-

pared with that at MI (Scheffe's test; 10% MI vs post, 30% MI vs post, 70% MI vs post, *p<0.05;

Figures 4, 5, and 7). Persistence at post tended to be decreased compared with that at 50% MI

(Scheffe's test; p=0.067; Figure 6).

Figure 4. The F-waves at rest, MI, and post trials under the 10% MI condition.

Figure 5. The F-waves at rest, MI, and post trials under the 30% MI condition.

Figure 6. The F-waves at rest, MI, and post trials under 50% MI condition.
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The F/M amplitude ratio during MI under the three MI conditions was significantly increased

compared to that at rest (Scheffe's test; 10% MI vs rest, 50% MI vs rest, **p<0.01; 30% MI vs

rest, *p<0.05; Figures 4–6). The F/M amplitude ratio during 70% MI tended to be increased

compared to that at rest (Scheffe's test; p=0.082; Figure 7). The F/M amplitude ratio immedi-

ately after 50% MI was significantly decreased compared to that at 50% MI (Scheffe's test;

*p<0.05; Figure 6).

Alternatively, no significant differences in latency were observed among three trials (rest, MI,

and post) under the four MI conditions (Figures 4–7).

The relative values of persistence, F/M amplitude ratio, and latency did not exhibit significant

differences among the four MI conditions (Figures 8–10).

Figure 7. The F-waves at rest, MI, and post trials under 70% MI condition.

Figure 8. Comparison of relative values of persistence among the four MI conditions.
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2.2. Spinal motor neuron excitability during MI under 50 and 100% MVC

2.2.1. Purpose

In previous work, MI under 10, 30, 50, and 70% MVC was shown to increase spinal motor

neuron excitability [13, 14]. The imagined muscle contraction strengths did not influence the

facilitation amount of spinal motor neuron excitability [13, 14]. However, Cowley et al. [20]

suggested that the H-reflex amplitude during MI of plantar flexion under 100% MVC was

significantly higher than that under 50% MVC. Therefore, we hypothesized that the MI of

thenar muscle activity under 100% MVC will be higher than that under 50% MVC. In this

study, we investigated spinal motor neuron excitability during MI under 50 and 100% MVC.

2.2.2. Materials

We included 15 healthy subjects (13 males; 2 females; mean age, 25.3�5.04years). All subjects

provided informed consent prior to the study's commencement. This study was approved by

the Research Ethics Committee at Graduate School of Kansai University of Health Sciences.

The experiments were conducted in accordance with the Declaration of Helsinki.

Figure 10. Comparison of relative values of latency among the four MI conditions.

Figure 9. Comparison of relative values of F/M amplitude ratio among the four MI conditions.
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2.2.3. Methods

The environment and conditions of the F-wave recording are the same as in previous work.

The protocol of this study is as follows. In the resting trial (rest), the F-waves were recorded

during relaxation. Next, we measured 100% MVC; that is, the subjects held the sensor of the

pinch meter while exerting their maximum effort for 10s. Subsequently, the subjects were

instructed to learn the isometric thenar muscle activity under 100% MVC for 1min as a motor

task. They performed the activity using visual feedback while watching the digital monitor of

the pinch meter. They were then instructed to perform MI of learned thenar muscle activity

under 100% MVC by holding the sensor between the thumb and index finger. F-waves were

recorded during the MI (100% MI). F-waves were recorded immediately after 100% MI trial

(post). We defined the above process as the MI using the 100% MVC condition (100% MI

condition). With regard to the MI using the 50% MVC condition (50% MI condition), F-waves

were recorded using the same process. These conditions were randomly performed on differ-

ent days.

2.2.4. Statistical analysis

For statistical analysis, the normality of F-wave data was confirmed using the Kolmogo-

rov-Smirnov and Shapiro-Wilk tests. Persistence, F/M amplitude ratio, and latency

among three trials (rest, MI, and post) under each MVC MI condition were compared

using the Friedman test and Scheffe's post hoc test. We also evaluated the relative values

obtained under the two MI conditions by dividing the values of persistence, F/M ampli-

tude ratio, and latency at rest with those obtained during MI at post. The relative values

between the two MI conditions were compared using the Wilcoxon signed rank test. The

significance level was set at p<0.05. We used IBM SPSS statistics ver.19 for statistical

analysis.

2.2.5. Results

Persistence during MI under the twoMI conditions was significantly increased compared with

that at rest (Scheffe's test; **p<0.01; Figures 11 and 12). Persistence immediately after MI (at

post) under the two MI conditions did not show significant differences compared with that at

rest (Figures 11 and 12). No significant differences were observed between the relative values

of persistence obtained under the two MI conditions (Figure 13).

Figure 11. Changes in the F-wave under 50% MI condition.
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The F/M amplitude ratio during MI under the two MI conditions was significantly increased

compared with that at rest (Scheffe's test; **p<0.01; Figures 11 and 12). The F/M amplitude

ratio immediately after MI (at post) under the two MI conditions did not show a significant

difference compared with that at rest (Figures 11 and 12). No significant differences were

observed between the relative values of F/M amplitude ratio obtained under the two MI

conditions (Figure 14).

There were no significant differences in latency among three trials (rest, MI, post) under the

two conditions (Figures 11 and 12). No significant differences were observed between the

relative values of latency obtained under the two MI conditions (Figure 15).

Figure 13. Comparison of relative values of persistence between 50 and 100% MI condition.

Figure 12. Changes in the F-wave under 100% MI condition.
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Figure 14. Comparison of relative values of F/M amplitude ratio between 50 and 100% MI condition.

Figure 15. Comparison of relative values of latency between 50 and 100% MI condition.
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2.3. Discussion

2.3.1. Spinal motor neuron excitability during MI of thenar muscle activity

Summarizing the previous work, MI of isometric thenar muscle activity under 10, 30, 50, 70,

and 100% MVC can increase spinal motor neuron excitability. However, excitability does not

vary with the imagined muscle contraction strengths.

Concerning the increase of spinal motor neuron excitability during MI, it was considered to

influence the descending pathways corresponding to the thenar muscle. The previous studies

have demonstrated that the activation of multiple cortical and subcortical regions contributes

to motor preparation and planning during MI [5–8]. The activities of multiple brain regions as

motor preparation and planning plausibly increased spinal motor neuron excitability via the

corticospinal and/or extrapyramidal tract. Furthermore, MI is the mental rehearsal of a move-

ment without any overt movement and muscle contraction [1]. Therefore, it is considered that

motor inhibiting function was participated in simultaneously with motor preparation and

planning. The supplementary motor area and premotor area are known to have functions of

motor planning and inhibition in the GO/NO-GO task [21, 22]. Thus, spinal motor neuron

excitability during MI may be generated by various functions (i.e., motor planning, prepara-

tion, and inhibition). In summary, it is plausible that the activation of multiple brain regions

contributes to motor planning, preparation, and inhibition during MI increased spinal motor

neuron excitability via the corticospinal and/or extrapyramidal tract.

Additionally, participants in all previous studies were instructed to perform MI while holding

the sensor of a pinch meter. Therefore, the influence of haptic and proprioceptive perceptions

during MI while holding the sensor on spinal motor neuron excitability should be considered.

Mizuguchi et al. [23] reported that the MEP amplitude during MI was larger when a ball was

squeezed than when no ball was held. Suzuki et al. [10] analyzed the changes in spinal motor

neuron excitability between with and without holding the sensor MI tasks. The F-waves

during MI while holding the sensor were greatly facilitated than without holding the sensor.

The haptic and proprioceptive perceptions also contribute to the increase in spinal motor

neuron excitability together with MI-activated pathways.

2.3.2. The changes of spinal motor neuron excitability during MI under different imagined muscle

contraction strengths

Our previous results suggested that the facilitation amount of spinal motor neuron excitability

during MI under various imagined muscle contraction strengths (i.e., 10, 30, 50, 70, and 100%

MVC) was similar. There are several previous studies investigating the changes of spinal

motor neuron excitability of MI under different imagined muscle contraction strengths. Hale

et al. [24] reported that the soleus H-reflex amplitude was significantly increased during MI of

ankle plantar flexion under 20, 40, 60, 80, and 100% MVC than that at rest. However, no

significant differences were observed in changes of the soleus H-reflex amplitude among five

MI conditions. Bonnet et al. [25] reported that the soleus H-reflex amplitude was significantly

increased during MI of ankle plantar flexion under 2 and 10% than that at rest. Additionally,

there were no significant differences in changes of the soleus H-reflex amplitude between 2
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and 10% MI condition. Similarly, Aoyama and Kaneko [26] reported that there were no

differences in changes of the soleus H-reflex amplitude ratio between 50 and 100% MVC MI

condition, although the H-reflex amplitude was increased during MI under two imagined

muscle contraction strengths. In actual movement, spinal motor neuron excitability was

increased linearly with muscle contraction strengths [15]. However, higher imagined muscle

contraction strengths did not progressively enhance spinal motor neuron excitability.

Concerning these results, also, one possibility is the contribution of a neural mechanism that

inhibits actual movement and muscle contraction during MI. Park and Li [27] reported that the

MEPs amplitude during MI of finger flexion or extension under 10, 20, 30, 40, 50, and 60%

MVC was significantly higher than that at rest. However, there were no significant differences

in changes of the MEPs amplitude among all MI conditions. Similarly, an event-related poten-

tial study found that the magnitude of primary motor cortex activity during MI did not

correlate with the imagined contraction strengths but supplementary motor area and premotor

area activities during MI did [28]. As mentioned above, supplementary motor area and

premotor area have crucial roles in larger force generation [29], motor planning, preparation,

and motor inhibition [21, 22]. Therefore, the supplementary motor area and premotor area

may inhibit the actual muscle activity depending on the muscle contraction strength. These

inputs from the supplementary motor area and premotor area may suppress any additional

excitability conferred by MI with high imagined contraction strength. Furthermore, spinal

motor neuron excitability during MI is thought to be affected by the central nervous system

via the corticospinal and extrapyramidal tract. Thus, the degree of the changes of spinal motor

neuron excitability during MI under different imagined muscle contraction strengths may be

modulated by both excitatory and inhibitory inputs from the central nervous system.

MI ability is a factor that affects spinal motor neuron excitability. Lorey et al. [30] studied the

relationship between activation of the cerebral cortex during MI and the vividness of MI by

fMRI. The primary motor cortex, premotor area, primary somatosensory area, inferior parietal

lobe and superior parietal lobe, putamen, and cerebellum showed activation during MI. In

particular, activation of the premotor area, parietal lobule, and cerebellum was associated with

increased vividness of MI, suggesting a correlation between the activation of the cerebral

cortex and vividness of the MI. Therefore, MI ability may be a possible factor that affects spinal

motor neuron excitability.

However, Bonnet et al. [25] reported that the T-reflex amplitude during MI under 10% MVC

was significantly higher than that under 2% MVC. Additionally, Cowley et al. [20] reported

that the soleus H-reflex amplitude ratio during MI under 100% MVC was significantly higher

than that under 50% MVC. To clarify the reason why these results differed from our previous

results, further research will be required.

2.4. Conclusion

We investigated spinal motor neuron excitability during MI of isometric thenar muscle activity

under 10, 30, 50, 70, and 100% MVC [13, 14, 19]. As a result, MI of isometric thenar muscle

activity can facilitate spinal motor neuron excitability. However, the imagined muscle contrac-

tion strengths were not involved in the changes of spinal motor neuron excitability.
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3. Whether duration of MI affects spinal motor neuron excitability?

3.1. Purpose

Our previous work suggested that MI can increase spinal motor neuron excitability, and differ-

ences in the imagined muscle contraction strengths are not involved in changes of spinal motor

neuron excitability. Therefore, the previous results implied that MI of isometric thenar muscle

activity under slight MVC (i.e., 10% MVC) can substantially facilitate spinal motor neuron

excitability. Described in the introduction, one of our final goals is to find the way that MI

obtained the most beneficial effect. Hale et al. [24] suggested that spinal motor neuron excitabil-

ity was gradually increased with the number of MI trials. Gentili et al. [31] proposed that a

number of MI trials are necessary to improve motor performance. To obtain a more beneficial

effect of MI, the number of MI practices is considered to be important. On the other hand, in the

optimal duration of MI that can facilitate motor performance, the most is unclear. Previous

research used various durations of MI session, which ranged from a few seconds to approxi-

mately 200min (for review, see Driskell et al. [32]). A meta-analysis by Driskell et al. [32]

suggested that a longer MI session does not always provide a beneficial effect on sports perfor-

mance. Furthermore, they recommended approximately 20min to achieve a more beneficial

effect. Hinshaw [33] also suggested that MI for 10–15min was considered to elicit the largest

effect on performance, and Twining [34] indicated that 5min is the temporal limitation when we

can concentrate and performMI. Alternatively, the influence of duration of MI on the changes of

spinal motor neuron excitability is not apparent. In our previous work [10, 13, 14, 19], partici-

pants were asked to perform MI for 1min. Thus, this research aimed to investigate the influence

of MI for 5min on spinal motor neuron excitability by analyzing F-waves.

3.2. Materials

We included 10 healthy volunteers (8 males; 2 females; mean age, 25.3�5.0years). All partici-

pants gave their written informed consent prior to the study's commencement. This study was

approved by the Research Ethics Committee at Graduate School of Kansai University of Health

Sciences. The experiment was conducted in accordance with the Declaration of Helsinki.

3.3. Methods

The environment and conditions of the F-wave recording are the same as those for previous

work. The protocol of this study is as follows. For the resting trial (rest), the F-waves were

recorded while the muscle was relaxed. For the MI trial, participants first learned how to

perform isometric thenar muscle activity under 50%MVC as a motor task for 1min. They were

then instructed to imagine the isometric thenar muscle activity under 50%MVC by holding the

sensor between the thumb and index finger for 5min. The F-waves were recorded at 1, 3, and 5

min after the onset of motor imagery (1min MI, 3min MI, and 5min MI, respectively). Imme-

diately after MI, the F-waves were recorded (post).

3.4. Statistical analysis

For statistical analysis, first, the normality of F-wave data was confirmed using the Shapiro-

Wilk tests. Persistence, F/M amplitude ratio, and latency among five trials (rest, 1min MI, 3min
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MI, 5min MI, and post, respectively) were compared using the Friedman test and Scheffe's

post hoc test. The significance level was set at p<0.05. We used IBM SPSS statistics ver.19 for

statistical analysis.

3.5. Results

Persistence at 1 and 5min MI was significantly greater than that at rest (Scheffe's test, **p<0.01;

Figure 16). Also, persistence at 3min MI was significantly greater than that at rest (Scheffe's

test, *p<0.05; Figure 16). Additionally, persistence at 1, 3, and 5min MI had similar results

(Figure 16).

The F/M amplitude ratios at 1 and 3min MI were significantly greater than those at rest, at 1

min MI (Scheffe's test, **p<0.01), and at 3min MI (Scheffe's test, *p<0.05; Figure 16). However,

the F/M amplitude ratio at 5min MI was similar compared with that at rest (Figure 16).

Additionally, the F/M amplitude ratio at 5min MI was significantly smaller than that at 1 and

3min MI (Scheffe's test, *p<0.05; Figure 16).

Immediately after MI, persistence and the F/M amplitude ratio recovered to the rest level

(Figure 16).

Figure 16. Changes of the F-waves during MI for 5min.
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There were no significant differences in latency among all five trials (Figure 16).

3.6. Discussion

In our previous study, it is plausibly possible that participants did MI for 5min because the

persistence and F/M amplitude ratio were increased compared with those at rest. Specifically,

persistence during MI for 5min was kept significantly higher compared with that at rest. The

F/M amplitude ratios at 1 and 3min MI were significantly higher compared with those at rest.

However, the F/M amplitude ratio at 5min MI was significantly smaller compared with that at

1 and 3min MI. Therefore, the facilitation effect of spinal motor neuron excitability by MI may

be decreased between 3 and 5min after the initial MI.

In regard to the F/M amplitude ratio at 5min MI being significantly decreased compared to

that at 1 and 3min MI, there are several considerable factors. The first possible factor is the

habituation of MI. MI is closely related to attentional processing [35]. Brain activation was

decreased by habituation after the cognitive motor task required sustained attention (e.g.,

continuous performance test: CPT) for 10min. Furthermore, corticospinal excitability was

diminished by habituation [36]. Also, at the spinal level, T-reflex amplitude was significantly

decreased by habituation after sustained mental work load (e.g., a paced two-choice serial

reaction task) for 20min [37]. Hence, it is considered that the further activation of the central

nervous system and spinal level during MI might not be required by habituation.

The second possible factor is mental fatigue. Mental fatigue alters motor performance. Specif-

ically, high-load mental cognitive tasks (e.g., incongruent Stroop task) for about 20min altered

maximal force production of elbow flexor [38], and task-induced mental fatigue altered the

speed accuracy of actual performance and MI [39]. Furthermore, repetitive MI led to partici-

pants having difficulties in maintaining focused attention on imagined movement. Repetitive

MI of pointing tasks did significantly extend the duration of actual performance [40]. Also, in

regard to influence of repetitive MI on the central nervous system excitability, repetitive MI of

handgrip movements significantly decreased the MEPs amplitude compared with that at rest

[41]. Considering the previous results, it is possible that mental fatigue evoked by sustained

mental exertion induced significant reduction in the F/M amplitude ratio to the rest level.

In our previous study, despite reduction of the facilitation effect of the F/M amplitude ratio 5

min after MI, persistence during MI for 5min was kept at a higher level compared with that at

rest. In previous research using electromyography (EMG), muscle fatigue reduced the maxi-

mal force production and mean power frequency, and it conversely increased the EMG ampli-

tude [42]. Previous researchers interpreted these phenomena to additional recruitment of

motor units, an increased firing rate, and synchronization of motor units’ recruitment [43].

Furthermore, Levenez et al. [44] demonstrated that sustained dorsiflexion under 50% MVC

induced decline of soleus H-reflex amplitude. Rossi et al. [45] demonstrated that sustained

MVC of abductor digiti minimi induced decline of the F-wave amplitude, although the F-wave

persistence was unchanged. Therefore, depression of the facilitation effect of the F/M ampli-

tude after 5min from the onset of MI implicated decline of the individual anterior cell excit-

ability. Further, regarding the result that persistence was kept at a higher level during MI for 5

min compared with that at rest, it is considered that there was additional recruitment and/or
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increasing firing rate of the anterior horn cells to compensate for the decrease of individual

anterior horn cell excitability evoked by mental fatigue.

Finally, we considered the practice time and vividness of MI as a possible factor. Using MI in

physical practice for learning motor skills, Twining [34] indicated that 5min is the temporal

limitation when we can concentrate and performMI. In mental chronometry, the time required

for actual performance and executing it mentally was similar [46]. In other words, it was

difficult for participants to perform MI accurately for more than 1min. In the present research,

participants practiced isometric thenar muscle activity under 50% MVC as a motor task for

only 1min. Hence, practice time for 1min might be insufficient to learn entirely the thenar

muscle activity under 50% MVC. Indeed, introspective comments recorded from subjects after

MI for 5min indicated that they felt difficulty in performing MI vividly with time. From the

viewpoint that the time required to execute and imagine the movement is similar [46], it may

be necessary to match the time of task practice and MI. However, we did not study the time-

dependent change of the vividness of MI precisely in the present research, and further research

will be required.

3.7. Conclusion

We investigated the change of spinal motor neuron excitability during MI for 5min. Persistence

was significantly increased during MI for 5min. However, the F/M amplitude ratio at 5min

returned to the rest level. As a result, MI for 5min may affect spinal motor neuron excitability.

Thus, the duration of MI needs to be considered.

4. The use of MI in clinical settings

From the results of our previous work [13, 14, 19], MI of isometric thenar muscle activity under

10, 30, 50, 70, and 100% MVC can facilitate spinal motor neuron excitability. Furthermore, the

imagined muscle contraction strength is not involved in changes of spinal motor neuron

excitability. In other words, MI under slight MVC (10% MVC) can sufficiently increase spinal

motor neuron excitability. In the study about duration of MI, the F/M amplitude ratio returned

to rest level between 3 and 5min after initial MI. It is considered that the adequate duration of

MI might be 1 or 3min.

Finally, we discuss the application of MI to patients in clinical settings. Functional reorganization

of the central nervous system may be elicited after brain and spinal cord injury. After brain and

spinal cord injury, motor cortex excitability decreased due to various factors, including the

damage of neural substrates, loss of sensory inputs, and disuse of the affected limb [47]. The

corticospinal excitability would be decreased following the significant decrease of both size and

number of the corticospinal neurons [48]. Therefore, we considered that facilitating the excitabil-

ity of the central and spinal neural level could be necessary for improvement of motor function.

MI can increase the MEPs amplitude in patients with post-stroke [49] and spinal cord injury [50],

and the F-waves post-stroke [51]. From these previous results, we believe that MI is the effective

method for improvement of motor function after damage to the central nervous system.
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