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Abstract

The objective of the current research was to evaluate the effects of drought and elevated 
CO

2
 on  seed production and seed nutrition under controlled conditions in soybean. 

Soybean plants were subjected to ambient and elevated CO
2
 and under irrigated and 

drought conditions. The results showed that drought or drought with elevated CO
2
 

resulted in high protein and oleic acid, but low in oil and linoleic and linolenic acids. 
Significant decrease of sucrose, glucose, and fructose concentrations was noticed, but 
high content of raffinose and stachyose was observed. Nutrients such as N, P, K, and 
some micro-nutrients were reduced under drought or drought with normal or elevated 
CO

2
 concentrations.  Seed δ 15N (15N/14N ratio) and δ 13C (13C/12C ratio) natural abundance 

isotopes were also altered under drought or drought with ambient or elevated CO
2
 con-

centrations, reflecting nitrogen and carbon metabolism changes.  The current research 
demonstrated that global climate changes may lead to changes in seed nutrition, and 
nitrogen and carbon metabolism. Efforts of breeders to select for these traits will sustain 
food source and food security for humans and livestock as soybean is a major source for 
protein and oil for human consumption and soymeal for animals.

Keywords: elevated carbon dioxide, climate change, seed composition, seed nutrition, 
drought, soybean
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1. Introduction

Global climate changes due to elevated CO
2
 are expected to lead to high heat and drought in 

some regions, affecting crop production and seed nutrition [1]. Climate change, whether is 
caused naturally or human-made, threatens crop production and food security. It was reported 
that food systems that include food availability, food access, and food utilization will suffer 
when food systems are stressed [1]. It is predicted that climate change will alter the food systems 
through its effects on crop production and rainfall, leading to drought or flooding or warmer 
or cooler temperatures [1]. Global warming resulted from climate change leads to high risk of 
drought and warmer temperatures, resulting in an increase of water demands and evaporation 
(http://www.c2es.org/science-impacts/extreme-weather/drought) [2]. The USA historically has 
suffered major droughts, and the living memories of the Dust Bowl of the 1930s or the drought 
of the 1950s and recently the droughts of 2011 in Texas and 2012 in the USA are examples, high-
lighting our vulnerabilities to drought as we move forward to warmer and drier climate (http://
www.c2es.org/science-impacts/extreme-weather/drought) [2]. It was also reported that a dou-
bling of CO

2
 concentration could result in changes in global climate, including precipitation 

patterns, resulting in drought conditions in some areas of the world [3]. Generally, elevated CO
2
 

concentration during crop growth enhances CO
2
 exchange rate and final yield [4] as growth at 

elevated CO
2
 stimulates photosynthesis and increases carbon supply in C

3
 crops and enhances 

nutrient supply to match the increase in C acquisition [4]. However, drought stress results in a 
decrease in CO

2
 exchange rate. The mechanisms involved in the reduction of CO

2
 exchange rate 

are still not well understood, although part of the reduction was attributed to stomatal closure 
[5], leaf water potentials [6], decreases in activities of Photosystem I and Photosystem II [7–9], 
effects on assimilation products, and photosynthetic enzyme activities [6].

The effects of climate changes on yield were previously reported [1], and it was shown that 
severe drought stress can lead to crop losses of up to 90% [10–12]. While there has been con-
siderable progress in understanding the sensitivities of crop yield to climate change, evalua-
tion of climate change factors such as CO

2
, elevated temperature, or drought on seed nutrition 

remains rather limited [13]. Drought resulted from climate change is expected to alter the 
biochemistry and physiology of crops, impacting the nutritional value of the crop grains. 
Alteration of carbohydrates including starch and soluble sugars such as glucose, fructose, and 
sucrose occurs under stress conditions [14]. It is well known that carbohydrates are the major 
product of photosynthesis, which are transported to stems and leaves (important reserve of 
photo-assimilates for grain filling) and consequently to the sink (grains) during grain-filling 
stage [15]. The sugars, sucrose and raffinose, are also known to protect cells against oxidative 
damage and accumulate later during responses to stress [16, 17]. It was reported that the high 
levels of raffinose and stachyose were thought to play a role in the acquisition of desiccation 
tolerance due to over expression of galactinol synthase and accumulation of galactinol and 
raffinose improving drought tolerance [18, 19]. The mechanisms of involvement of these sug-
ars in drought tolerance are still not fully understood [19–21]. The accumulation of proline, 
amino acids, and organic acid such as malic acid, fumaric acid, and citric acid is also a common 
biochemical indicator occurring at high level under drought stress [12]. The accumulation of 
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these compounds is a part of the mechanism of osmotic adjustment to maintain water poten-
tial gradient under drought conditions and to protect subcellular structure from the damaging 
effects of drought stress [22]. The high level of proline accumulation under drought stress was 
previously identified as a mechanism for the protection of cytosolic proteins and organelles 
[12]. Therefore, these biochemical compounds are important to understand the relationship 
between drought stress and drought tolerance and for decision-making when breeding for 
drought tolerance [23]. Since drought stress results in limiting the growth and development 
of the plant and consequently the supply of the photosynthate to grain during grain filling 
[24], the chemical composition of the grain and its quality can be affected by drought stress 
[12, 25]. The effect of drought on seed quality could be due to the decrease of total soluble 
sugars especially in the grain under drought stress due to decreases in the levels of sucrose, 
stachyose, and verbascose. Sucrose plays an important role in the development of the grain 
and is sensitive to drought stress and involved in the synthesis of raffinose oligosaccharides 
including stachyose and verbascose, and these sugars play an important role in seed tolerance 
to desiccation and against oxidative effects of drought stress [18, 26]. Some sugars, for exam-
ple, maltose, accumulate in the grain under drought stress, maybe due to starch degradation 
[12]. For example, during the remobilization phase, starch remobilized was significantly lower 
under drought stress, but the total amounts of soluble sugars and amino acids remobilized 
were greater [12], contrasting previous studies that showed higher carbohydrate accumula-
tion under drought stress [27]. Therefore, the role of carbohydrates in drought tolerance is still 
not well understood, and further investigations are needed to reach the conclusive results.

Research on the possible effects of elevated CO
2
 and drought resulted from climate changes 

on biochemical and chemical composition and mineral nutrition of major crops is limited. We 
chose soybean as a subject of our research because soybean is a major crop in the world; it 
is a major source of human nutrition because it contains protein (40%), oil (20%), fatty acids, 
amino acids, carbohydrates (30%), crude fiber (5%), and ash (5%) and it contains minerals 
(such as P, K, Ca, Mg, Fe, Cu, Mn, Zn, and Mo), vitamins (B1, B2, and B6), phytoestrogen, 
such as isoflavones, and phenolics. The objective of the current research was to investigate 
the possible effects of elevated CO

2
 and drought on seed chemical composition (protein, oil, 

fatty acids, sugars, and minerals). A special attention was given to possible alteration of seed 
δ15N (15N/14N ratio) and δ 13C (13C/12C ratio) natural abundance isotopes as they reflect nitro-
gen and carbon metabolism.

2. Materials and methods

2.1. Growth conditions

The experiments were conducted under controlled environments of growth chambers. 
Soybean seeds were planted in vermiculite and grown under greenhouse conditions until 
V1 stage where similar plants were transported to pots filled with field soil. The soil tex-
ture was 8% sand, 31.6% silt, and 60.4% clay. Soil nutrient concentrations of macro- and 
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micronutrients were adequate to support the growth and development of plants till matu-
rity. When plants reached R5 (beginning of seed-fill stage) [28], they were transferred to 
the growth chambers until full maturity. Two soybean cultivars, Freedom and Hutcheson 
of maturity group V, were used. The plants were subjected to the following four treat-
ments (T): T1 = plants were grown irrigated and subjected to 360 μmol mol−1 CO

2
 concentra-

tion; T2 = plants were grown irrigated and subjected to 700 μmol mol−1 CO
2
 concentration; 

T3 = plants were subjected to drought and to 360 μmol mol−1 CO
2
 concentration; and 

T4 = plants were subjected to drought and to 700 μmol mol−1 CO
2
 concentration. Drought 

stress treatment was imposed by growing the plants at soil water potential of about −199 kPa. 
For irrigated plants, soil water potential was kept at about −15 to −20 kPa, which was con-
sidered to give the field water holding capacity. Soil water potential was monitored by 
using soil water potential sensors and read by Soil Moisture Meter (Watermark Company, 
Inc., Wisconsin, USA). For irrigated experiment, the plants were watered as needed. For 
CO

2
 treatment, CO

2
 concentration was supplied by CO

2
 cylinder located outside the growth 

chamber, and the rate of CO
2
 was controlled by a regulator, monitoring the CO

2
 concentra-

tion flow. The CO
2
 flowed through the tube to the growth chamber. The growth chamber 

was equipped with CO
2
 sensor to read the concentration of CO

2
 inside the growth cham-

ber. The plants were grown under growth chamber conditions supplied with light source 
of photon flux density of about 1000 μmol m−2 s−1 and provided with a combination of 
10,400 W high-pressure sodium and metal halide lights. The experiments were conducted 
under constant normal temperature of 26/16°C, day/night.

2.2. Determination of seed minerals, N, S, and C

Mature seeds were ground using a Laboratory Mill 3600 (Perten, Springfield, IL, USA), and 
the ground samples were analyzed for minerals, N, S, and C, by digesting 0.6 g of the ground-
dried plant materials in HNO

3
 in a microwave digestion system as detailed elsewhere [29, 

30]. Potassium was determined by inductively coupled plasma spectrometry [29, 30]. Each 
content of N, C, and S was measured in a 0.25 g ground-dried sample which was combusted 
in atmospheric oxygen of 1350°C, and then the elements N, S, and C were converted to N

2
, 

SO
2
, and CO

2
, respectively. The contents of N, S, and C in seed were measured by an elemen-

tal analyzer using thermal conductivity cells (LECOCNS-2000 elemental analyzer, LECO 
Corporation, St. Joseph, MI, USA) [29, 30].

2.3. Determinations of seed protein, oil and fatty acids

The mature seed samples of 25 g were ground using the Laboratory Mill 3600, and seed protein, 
oil, and fatty acids in the samples were analyzed by near-infrared reflectance [29–31] using a 
diode array feed analyzer AD 7200 (Perten, Springfield, IL USA). The calibration equation was 
developed using Preteen’s Thermo Galactic Grams PLS IQ software, and the calibration curve 
was established using Association Official Analytical Chemists (AOAC) methods. The con-
tents of protein and oil were determined based on a seed dry matter [29, 31]. The contents of 
palmitic, stearic, oleic, linoleic, and linolenic fatty acids were determined based on a total oil 
basis [29].
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2.4. Determinations of sucrose, raffinose, stachyose, glucose, and fructose

Seed sucrose, raffinose, and stachyose were determined as detailed elsewhere (Bellaloui et al. 
[29]) by near-infrared reflectance using the AD 7200 array feed analyzer. Sugars were deter-
mined based on a seed dry matter basis [29–31]. The concentration of glucose in mature seed 
was determined by an enzymatic reaction using a Glucose (HK) Assay Kit, Product Code 
GAHK-20 (Sigma-Aldrich Co., St Louis, MO, USA) as detailed elsewhere [29]. The concen-
trations were determined spectrophotometrically by reading the samples at absorbance 
of 340 nm using the Beckman Coulter DU 800 spectrophotometer. The concentration was 
expressed as mg g−1 dry weight. Fructose concentration in mature seed was determined based 
on an enzymatic reaction using a Fructose Assay Kit, Product Code FA-20 (Sigma-Aldrich 
Co., St. Louis, MO, USA) as detailed by Bellaloui et al. elsewhere [29]. Fructose concentra-
tion was determined spectrophotometrically by the Beckman Coulter DU 800 spectropho-
tometer by reading the samples at absorbance of 340 nm. Fructose concentration in seed was 
expressed as mg g−1 dry weight.

2.5. Boron determination

Boron concentrations in mature seeds were determined using the Azomethine-H method 
[32, 33] as reported elsewhere [29]. Briefly, 1.0 g of ground sample was ashed at 500°C, 
extracted with 20 ml of 2 M HCl at 90°C for 10 min, and then 4 ml of a buffer solution 
(containing 25% ammonium acetate, 1.5% EDTA, and 12.5% acetic acid) was added to a 
filtered 2-ml sample. An amount of 4 ml of fresh azomethine-H solution (0.45% azomethine-
H and 1% of ascorbic acid) [34] was added. Boron concentration was determined spectro-
photometrically by reading the samples at absorbance of 420 nm using a Beckman Coulter 
DU 800 spectrophotometer (Beckman Coulter, Inc., Brea, CA, USA). The concentration was 
expressed as mg kg−1 dry weight.

2.6. Iron determination

Iron concentration in mature seed was determined according to the method described else-
where [35, 36]. Briefly, 2 g of dry ground samples were acid wet digested, extracted, and 
reacted with reduced ferrous Fe with 1,10-phenanthroline and as detailed elsewhere [29]. 
After the extraction, the soluble constituents were dissolved in 2 M HCl, and the phenanth-
roline solution of 0.25% (w/v) in 25% (v/v) ethanol and quinol solution (1% w/v) was used as 
a reagent. Standard curve of Fe was created by preparing a range of concentrations from 0.0 
to 4 μg ml−1 of Fe in 0.4 M HCl. Iron concentration was determined spectrophotometrically 
by reading the samples at absorbance of 510 nm using the Beckman Coulter DU 800 spectro-
photometer. The concentration was expressed as mg kg−1 dry weight.

2.7. Phosphorus determination

Phosphorus content in mature seeds was measured according to [37]. Phosphorus determina-
tion was based on the yellow phosphor-vanado-molybdate complex as detailed elsewhere 
[29]. Briefly, dry ground seed samples of 2 g were ashed. Then, 10 ml of 6MHCl was added, 
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and phosphorus was extracted using 2 ml of 36% v/v HCl under heat and filtration and 5 ml 
of 5 M HCl. A volume of 5 ml of reagent (ammonium molybdate-ammonium metavanadate) 
was added to 5 ml of the filtrate. The reagent ammonium molybdate-ammonium metavana-
date was prepared by dissolving 25 g of ammonium molybdate and 1.25 g of ammonium 
metavanadate in distilled water. The standard curve solutions of P were prepared by using 
a range of concentrations from 0 to 50 μg ml−1 using dihydrogen orthophosphates. The con-
centration of P was determined spectrophotometrically by reading the absorbance at 400 nm 
using the Beckman Coulter DU 800 spectrophotometer.

2.8. Experimental design and statistical analysis

Two experiments were carried out in a split plot design with arrangement of treatments in 
a randomized complete block design (RCBD) with four replicates. Main plot was drought/
CO

2
 treatment and subplot was cultivar. Each experiment was considered as a replicate for 

the main plot. One growth chamber was used for each drought/CO
2
 treatment. Treatments 

in each experiment were the following: T1 = plants were grown irrigated and subjected 
to 360 μmol mol−1 CO

2
 concentration; T2 = plants were grown irrigated and subjected to 

700 μmol mol−1 CO
2
 concentration; T3 = plants were grown under drought and subjected to 

360 μmol mol−1 CO
2
 concentration; and T4 = plants were grown under drought and subjected 

to 700 μmol mol−1 CO
2
 concentration. Two soybean cultivars were used. The analysis of vari-

ance of data was conducted using PROC MIXED in SAS [38]. Experiment (EXP), drought, 
CO

2
 concentration (CO

2
), and their interactions were considered fixed effects, and replica-

tion within EXP and replication × drought × CO
2
 × CV within EXP were considered random 

effects. The level of significance was P ≤ 0.05. Detailed design of the current experiments was 
similar to that previously reported by Bellaloui et al. [39].

3. Results and discussion

Analysis of variance showed that the main effects of experiment (EXP), drought, CO
2
, and 

cultivar (CV) were the most significant factors affecting variability of seed protein, oil, fatty 
acids, and sugars (Table 1). There were no significant effects of the interactions between EXP 
and other factors, which were expected. Interactions between CO

2
, CV, and drought showed 

significant effects for some seed constituents such as protein, oleic, glucose, fructose, and 
sucrose, indicating the different responses of cultivars to drought and CO

2
 (Table 1). Since 

there were no significant interaction effects between EXP and the others factors, the results 
were combined across the two experiments. Analysis of variance showed that drought, CO

2
, 

and CV were the major factors affecting the variability for macro- and micronutrients in seed 
(Table 2). There were no effects of EXP on nutrients, as expected, because the experiments 
were conducted under controlled environmental conditions of growth chambers. Both CO

2
 

and CV significantly interacted with drought, indicating that the effect of CO
2
 was influenced 

by drought and the cultivars responded differently due to genotype and genetic background 
effect (Table 2).
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Treatments Protein Oil Oleic Linolenic Glucose Fructose Sucrose Raffinose Stachyose

EXP ns1 ns ns ns ns ns ns ns ns

Drought2 * * ** ** *** ** ** * *

CO
2

** * * * *** ** *** * *

CV * ns * ns ns * * ns ns

EXP × drought ns ns ns ns ns ns ns ns ns

EXP × CO
2

ns ns ns ns ns ns ns ns ns

EXP × CV ns ns ns ns ns ns ns ns ns

Drought × CO
2

ns ns ns ns ns ns ns ns ns

Drought × CV ns ns * ns * * *** ns ns

CO
2
 × CV * ns ns ns ns * * ns ns

EXP × drought × CO
2
 × CV ns ns ns ns ns ns ns ns ns

Treatments used were four: T1 = plants were grown irrigated and subjected to 360 μmol mol−1 CO
2
 concentration; T2 = plants were grown irrigated and subjected to 

700 μmol mol−1 CO
2
 concentration; T3 = plants were grown under drought and subjected to 360 μmol mol−1 CO

2
 concentration; and T4 = plants were grown under drought 

and subjected to 700 μmol mol−1 CO
2
 concentration. Plants were grown in the greenhouse, and they were transferred to growth chambers at the beginning of seed-fill stage 

(R5) until full maturity (R8). The experiments were conducted under constant normal temperature of 26/16°C, day/night.
¹ * = significance at P ≤ 0.05; ** = significance at P ≤ 0.01; *** = significance at P ≤ 0.001; ns = not significant.
² Drought treatment was imposed by growing the plants at soil water potential of about −199 kPa. For irrigated plant, soil water potential was kept at about −15 to −20 kPa.

Table 1. Analysis of variance for soybean cultivars (Freedom and Hutcheson, Maturity group V) for seed protein, oil, fatty acids (%), and sugars (glucose, fructose, sucrose, 
raffinose, and stachyose, mg g−1) and their responses to the main factors of experiment (EXP, two experiments were conducted), drought, carbon dioxide (CO

2
), cultivar 

(CV), and their interactions.
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Treatments N P K Mg Fe B Cu Zn Mn

EXP ns1 ns ns ns ns ns ns ns ns

Drought2 *** *** ** * * *** * * *

CO
2

* * * * * * * ** **

CV * ** * * *** * * * *

EXP × drought ns ns ns ns ns ns ns ns ns

EXP × CO
2

ns ns ns ns ns ns ns ns ns

EXP × CV ns ns ns ns ns ns ns ns ns

Drought × CO
2

* * * * * *** * ** *

Drought × CV ** * * * ** * * * *

CO
2
 × CV ** ns * ns ns * ns * ns

EXP × drought × CO
2
 × CV ns ns ns ns ns ns ns ns ns

Treatments used were four: T1 = plants were grown irrigated and subjected to 360 μmol mol−1 CO
2
 concentration; T2 = plants were grown irrigated and subjected to 

700 μmol mol−1 CO
2
 concentration; T3 = plants were grown under drought and subjected to 360 μmol mol−1 CO

2
 concentration; and T4 = plants were grown under drought 

and subjected to 700 μmol mol−1 CO
2
 concentration. Plants were grown in the greenhouse, and they were transferred to growth chambers at the beginning of seed-fill stage 

until maturation (R8). The experiments were conducted under constant normal temperature of 26/16°C, day/night.
* = significance at P ≤ 0.05; ** = significance at P ≤ 0.01; *** = significance at P ≤ 0.001; ns = not significant
Drought treatment was imposed by growing the plants at soil water potential of about −199 kPa. For irrigated plant, soil water potential was kept at about −15 to −20 kPa.

Table 2. Analysis of variance for soybean cultivars (Freedom and Hutcheson, maturity group V) for seed macro- and micronutrients (N, P, K, and Mg: %; Fe, B, Cu, Zn, 
and Mn: mg kg−1) as affected by the main effect factors of experiment (EXP, two experiments were conducted), carbon dioxide (CO

2
), cultivar (CV), and their interactions.
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Mean values of seed constituents showed that seed protein, oleic acid, raffinose, and stach-
yose were higher, and oil, linolenic acid, glucose, fructose, and sucrose were lower under 
drought or drought with elevated CO

2
 conditions (Table 3). Seed N was higher under drought 

or drought with elevated CO
2
. However, seed contents of P, K, Mg, Fe, B, Cu, Zn, and Mn 

were generally lower under drought or drought with elevated CO
2
. Comparing with ambient 

CO
2
, elevated CO

2
 showed higher contents of seed protein, oil, glucose, sucrose, raffinose, 

and stachyose and lower contents of seed N, P, B, and Cu in Freedom cultivar only. Cultivar 
Hutcheson responded differently to ambient CO

2
 or elevated CO

2
. The different responses of 

cultivars to ambient CO
2
 or elevated CO

2
 are suggested to be due to genotype and/or genetic 

background (Tables 1–4). What is clear is that seed oleic acid was higher and linolenic acid 
was lower and most nutrients were lower under elevated CO

2
 (Tables 3–6). δ 15N (15N/14N 

Ratio) and δ 13C (13C/12C Ratio) natural abundance isotopes showed alterations under drought 
and drought with elevated CO

2
, indicating that there were changes of nitrogen and carbon 

metabolism under drought stress (Figures 1 and 2).

The higher contents of seed protein, oleic acid, raffinose, and stachyose under drought or 
drought with elevated CO

2
 conditions could be due to drought effects and physiological and 

biochemical responses to stress. It was reported that drought resulted from climate change is 
predicted to alter the biochemistry and physiology of crops, impacting the nutritional value 
of the crop grains [12]. The effects of elevated CO

2
 and drought on seed composition (protein, 

oil, fatty acids, and sugars) and minerals were previously reported. However, results of the 
effects of elevated CO

2
 on seed composition are still conflicting. For example, small effects 

of elevated CO
2
 on seed composition were found [40], whereas others found a significant 

effect of elevated CO
2
 on soybean seed oil in cultivars Essex, Holladay, and NK6955 [41]. 

The authors also found that oleic fatty acid concentration was positively affected and protein 
concentration was not affected by CO

2
. Recently, it was found that elevated CO

2
 resulted in 

decreased content of protein and increased contents of oil and oleic acid [39].

It was reported that alteration of carbohydrates such as starch and soluble sugars such as 
glucose, fructose, and sucrose occurred under stress conditions [14] and sugars of sucrose and 
raffinose may play a role in protecting cells against oxidative damage and accumulate as a 
response to stress [16, 17]. Other researchers suggested that high levels of raffinose and stach-
yose contribute to the acquisition of desiccation tolerance due to overexpression of galactinol 
synthase and accumulation of galactinol and raffinose improving drought tolerance [18, 19]. 
Sucrose was reported to be involved in the synthesis of raffinose oligosaccharides includ-
ing stachyose and verbascose, and these sugars play an important role in seed tolerance to 
desiccation and drought stress [18, 26]. Some sugars, for example, maltose, accumulate in the 
grain under drought stress, maybe due to starch degradation [12]. The mechanisms of the 
involvement of these sugars in drought tolerance are still not fully understood [19–21]. It was 
concluded that these biochemical compounds can be used as drought indicators and can be 
used in breeding program to select for drought tolerance [12, 23]. CO

2
 elevation resulted in a 

decrease of seed Na, Ca, Mg, S, Fe, Zn, and Mn [42, 43]. The percentage decrease of nutrients 
by elevated CO

2
 ranged from 0.7 to 19.5%, except for K and P [44]. The decrease of macro- 

and micronutrients by elevated CO
2
 was due to the dilution effect induced by the increase of 

carbohydrates in seeds [12, 39, 42–44].
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Treatments1 Protein Oil Oleic Linolenic Glucose Fructose Sucrose Raffinose Stachyose

T1 38.5 c 21.3 b 22.2 c 9.6 a 1.4 b 1.01 a 61 b 8.7 d 33.6 d

T2 39.0 c 22.1 a 27.5 b 8.7 b 2.1 a 0.98 a 67 a 9.6 c 34.9 c

T3 41.2 a 19.4 c 29.7 a 6.3 c 0.8 c 0.54 b 32 d 11.5 a 45.3 a

T4 40.3 b 19.6 c 29.5 a 6.8 c 0.9 c 0.52 b 39 c 10.3 b 40.7 b

Treatments used were four: T1 = plants were grown irrigated and subjected to 360 μmol mol−1 CO
2
 concentration; T2 = plants were grown irrigated and subjected to 

700 μmol mol−1 CO
2
 concentration; T3 = plants were grown under drought and subjected to 360 μmol mol−1 CO

2
 concentration; and T4 = plants were grown under drought 

and subjected to 700 μmol mol−1 CO
2
 concentration. Plants were grown in the greenhouse, and they were transferred to growth chambers at the beginning of seed-fill stage 

(R5) until full maturity (R8). The experiments were conducted under constant normal temperature of 26/16°C, day/night.
1 Means within a column of each water treatment followed by the same letter are not significantly different at the 5% level as determined by Fishers’ least significant 
difference (LSD) test. Values are means of four replicates. Drought treatment was imposed by growing the plants at soil water potential of about −199 kPa. For irrigated 
plant, soil water potential was kept at about −15 to −20 kPa.

Table 3. Drought and elevated carbon dioxide effects on soybean (Freedom cultivar, maturity group V) seed protein, oil, fatty acids (%), and sugars (glucose, fructose, 
sucrose, raffinose, and stachyose, mg g−1).
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Treatments1 N P K Mg Fe B Cu Zn Mn

T1 6.5 a 0.64 a 1.9 a 0.34 a 75 a 64 a 12.4 a 51.2 a 42.5 a

T2 5.1 c 0.53 b 1.5 b 0.33 a 72 a 57 b 9.3 b 52.3 a 41.2 a

T3 6.7 a 0.47 c 1.1 c 0.23 b 65 b 41 d 8.2 c 46.5 c 37.6 c

T4 6.1 b 0.46 c 1.2 c 0.34 a 63 b 47 c 8.5 c 49.6 b 40.0 b

Treatments used were four: T1 = plants were grown irrigated and subjected to 360 μmol mol−1 CO
2
 concentration; T2 = plants were grown irrigated and subjected to 

700 μmol mol−1 CO
2
 concentration; T3 = plants were grown under drought and subjected to 360 μmol mol−1 CO

2
 concentration; and T4 = plants were grown under drought 

and subjected to 700 μmol mol−1 CO
2
 concentration. Plants were grown in the greenhouse, and they were transferred to growth chambers at the beginning of seed-fill stage 

(R5) until full maturity (R8). The experiments were conducted under constant normal temperature of 26/16°C, day/night.
1 Means within a column of each water treatment followed by the same letter are not significantly different at the 5% level as determined by Fishers’ LSD test. Values are 
means of four replicates. Drought treatment was imposed by growing the plants at soil water potential of about −199 kPa. For irrigated plant, soil water potential was kept 
at about −15 to −20 kPa.

Table 4. Drought and elevated carbon dioxide effects on soybean (Freedom cultivar, maturity group V) seed macro- and micronutrients (N, P, K, and Mg: %; Fe, B, Cu, 
Zn, and Mn: mg kg−1).
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Treatments1 Protein Oil Oleic Linolenic Glucose Fructose Sucrose Raffinose Stachyose

T1 39.8 c 21.3 a 21.4 c 10.5 a 2.4 a 1.23 a 68 a 11.2 c 41.4 c

T2 40.1 c 21.4 a 29.7 a 9.7 b 2.6 a 1.21 a 66 a 12.5 b 40.5 d

T3 43.5 b 18.5 b 29.6 a 7.5 c 0.7 c 0.73 c 51 c 13.5 a 47.6 a

T4 44.1 a 18.3 b 28.1 b 7.3 c 1.3 b 0.85 b 60 b 13.7 a 46.8 b

Treatments used were four: T1 = plants were grown irrigated and subjected to 360 μmol mol−1 CO
2
 concentration; T2 = plants were grown irrigated and subjected to 

700 μmol mol−1 CO
2
 concentration; T3 = plants were grown under drought and subjected to 360 μmol mol−1 CO

2
 concentration; and T4 = plants were grown under drought 

and subjected to 700 μmol mol−1 CO
2
 concentration. Plants were grown in the greenhouse, and they were transferred to growth chambers at the beginning of seed-fill stage 

(R5) until full maturity (R8). The experiments were conducted under constant normal temperature of 26/16°C, day/night.
1 Means within a column of each water treatment followed by the same letter are not significantly different at the 5% level as determined by Fishers’ LSD test. Values are 
means of four replicates. Drought treatment was imposed by growing the plants at soil water potential of about −199 kPa. For irrigated plant, soil water potential was kept 
at about −15 to −20 kPa.

Table 5. Drought and elevated carbon dioxide effects on soybean (Hutcheson cultivar, maturity group V) seed protein, oil, fatty acids (%), and sugars (glucose, fructose, 
sucrose, raffinose, and stachyose, mg g−1).
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Treatments1 N P K Mg Fe B Cu Zn Mn

T1 6.9 a 0.72 a 2.7 a 0.31 a 76 b 67 a 11.3 a 48 a 43 a

T2 5.3 c 0.59 b 1.7 b 0.26 b 81 a 65 a 10.5 b 43 b 39 b

T3 6.3 b 0.42 c 1.2 c 0.20 c 60 c 51 b 8.1 d 31 d 31 c

T4 6.1 b 0.45 c 1.1 c 0.22 c 63 c 53 b 9.8 c 35 c 33 c

Treatments used were four: T1 = plants were grown irrigated and subjected to 360 μmol mol−1 CO
2
 concentration; T2 = plants were grown irrigated and subjected to 

700 μmol mol−1 CO
2
 concentration; T3 = plants were grown under drought and subjected to 360 μmol mol−1 CO

2
 concentration; and T4 = plants were grown under drought 

and subjected to 700 μmol mol−1 CO
2
 concentration. Plants were grown in the greenhouse, and they were transferred to growth chambers at the beginning of seed-fill stage 

(R5) until full maturity (R8). The experiments were conducted under constant normal temperature of 26/16°C, day/night.
1 Means within a column of each water treatment followed by the same letter are not significantly different at the 5% level as determined by Fishers’ LSD test. Values are 
means of four replicates. Drought treatment was imposed by growing the plants at soil water potential of about −199 kPa. For irrigated plant, soil water potential was kept 
at about −15 to −20 kPa.

Table 6. Drought and elevated carbon dioxide effects on soybean (Hutcheson cultivar, maturity group V) seed macro- and micronutrients (N, P, K, and Mg: %; Fe, B, Cu, 
Zn, and Mn: mg kg−1).

Effects of D
rought and Elevated A

tm
ospheric Carbon D

ioxide on Seed N
utrition...

http://dx.doi.org/10.5772/67511
145



Carbon dioxide and drought treatments
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Figure 1. Cultivar Freedom (maturity group V). δ 15N (15N/14N ratio) (A) and δ 13C (13C/12C ratio) (B) natural abundance 
isotope in soybean seed as influenced by drought and elevated CO

2
. Treatments used were four: T1 = plants were 

grown irrigated and subjected to 360 μmol mol−1 CO
2
 concentration; T2 = plants were grown irrigated and subjected 

to 700 μmol mol−1 CO
2
 concentration; T3 = plants were grown under drought and subjected to 360 μmol mol−1 CO

2
 

concentration; and T4 = plants were grown under drought and subjected to 700 μmol mol−1 CO
2
 concentration. Plants 

were grown in the greenhouse, and they were transferred to growth chambers at the beginning of seed-fill stage (R5) 
until full maturity (R8). The experiments were conducted under constant normal temperature of 26/16°C, day/night.
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Figure 2. Cultivar Hutcheson (maturity group V). δ 15N (15N/14N ratio) (A) and δ 13C (13C/12C ratio) (B) natural 
abundance isotope in soybean seed as affected by drought and elevated CO

2
. Treatments used were four: 

T1 = plants were grown irrigated and subjected to 360 μmol mol−1 CO
2
 concentration; T2 = plants were grown 

irrigated and subjected to 700 μmol mol−1 CO
2
 concentration; T3 = plants were grown under drought and subjected 

to 360 μmol mol−1 CO
2
 concentration; and T4 = plants were grown under drought and subjected to 700 μmol mol−1 

CO
2
 concentration. Plants were grown in the greenhouse, and they were transferred to growth chambers at the 

beginning of seed-fill stage (R5) until full maturity (R8). The experiments were conducted under constant normal 
temperature of 26/16°C, day/night.
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Our results showed that elevated CO
2
 concentration enhanced oleic acid and carbohydrates 

(mainly sucrose and glucose) and reduced NPK and some micronutrients compared with 
ambient CO

2
. The increase of carbohydrates due to elevated CO

2
 could result from enhanced 

photosynthesis resulting in higher total carbohydrates [4]. The decrease of NPK and some 
micronutrients was due to the dilution of concentrations of the nutrients by higher levels of 
carbohydrates as supported by previous research [12, 39, 42–44]. Higher seed protein, oleic 
acid, raffinose and stachyose, and lower oil, linolenic acid, glucose, fructose, and sucrose 
under drought or drought with elevated CO

2
 conditions can be used as biochemical indica-

tors/markers to be used for breeding to select for drought tolerance.

Therefore, research is needed to quantify the negative impact of elevated CO
2
 and its interac-

tions with biotic and abiotic stresses, including drought, on seed quality to breed for higher 
seed nutritional qualities and develop appropriate crop management systems [43, 45]. It was 
reported that the physiological processes influenced by drought can be identified by the bio-
chemical characterization of plant tissues under stress conditions [46]. Limited research was 
conducted to characterize the biochemical compounds such as protein, amino acids, carbohy-
drates, and phenolics in the breeding program as a tool for selection, but this tool has promise 
in selecting for abiotic stress tolerance [24, 47]. The changes of δ 15N (15N/14N Ratio) and δ 13C 

(13C/12C Ratio) natural abundance isotopes under drought and drought with elevated CO
2
 

indicated the increase of 15N derived from plant gas exchange through stomatal conductance 
and CO

2
 fixation [48, 49]. The alteration of 13C/12C ratio indicated a possible shift of carbon 

metabolism leading to less discrimination against δ 13C [50].

4. Conclusions

The current research demonstrated that elevated CO2, drought, and drought combined with 
elevated CO

2
 altered seed biochemical compounds, including protein, carbohydrates, and 

minerals. This research increases our knowledge of the interaction between elevated CO
2
 and 

drought resulting from climate changes for seed chemical composition and mineral nutrition.

The high level of oleic acid and low level of linolenic acid are desirable, and they contribute to oil 
stability and long shelf life of the oil. Sugars of both raffinose and stachyose may play a possible 
role in drought stress response. Alterations of δ 15N and δ 13C natural abundance isotopes indi-
cated changes in nitrogen and carbon metabolism. The characterization of these seed biochemi-
cal compounds under elevated CO

2
 or drought stress can be used as biomarkers in breeding 

program to select for crop drought tolerance and high seed nutritional qualities, as these traits 
are related to seed production, quality, and food security. Since limited research was conducted 
on the effects of climate change on seed quality and mineral nutrition, further research is needed.
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