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Abstract

This chapter describes a new framework for the design of a novel suboptimal state-
feedback-sliding mode control for output tracking while H2=H∞ performances of the
closed-loop system are under control. In contrast to most of the current sliding surface
design schemes, in this new framework, the level of control effort required to maintain
sliding is penalized. The proposed method for the design of optimal-sliding mode
control is carried out in two stages. In the first stage, a state-feedback gain is derived
using a linear matrix inequality (LMI)-based scheme that can assign a number of the
closed-loop eigenvalues to a known value while satisfying performance specifications
and ensuring that all the closed-loop poles are located in a preselected subregion. The
sliding function matrix related to the particular state feedback derived in the first stage
is obtained in the second stage by using one of the two different methods developed for
this goal. We present a numerical example to demonstrate the remarkable performance
of the proposed scheme.

Keywords: optimal H2=H∞
-based sliding mode control, output tracking, partial

eigenstructure assignment, regional pole placement

1. Introduction

Sliding mode control (SMC) is now a well-developed method of control and its invariance

properties against matched uncertainties have inspired researchers to apply this technique to

different applications [1–6]. Traditionally, SMC is designed in two stages. In the first stage, a

sliding surface whose sliding motions have suitable dynamics is chosen. Many methods have

been proposed in the existing literature for this purpose, for example, eigenstructure assignment,

pole placement, optimal quadratic methods, and linear matrix inequality (LMI) methods; see for

instance [4, 5, 7, 8]. Then, a controller is designed to induce and maintain the sliding motion.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



However, these traditional design methods are unable to limit the available control action

required for satisfying the control objective [3], since during the switching-function synthesis,

there is no sense of the level of the control action required to persuade and retain sliding [3]. It

is worth noting that without having limits on the available control actions, a sliding surface

and thereby a control law may always be obtained which is not practically applicable, as it

may lead to high level of control efforts.

To tackle this problem, for instance, the authors of [9] propose a scheme to design a sliding

surface which minimizes an objective function of the system state and control input, in the

meantime. However, since the method in [9] needs to ensure that at least one eigenvalue of the

closed-loop system (for single-input systems) is a real value, not necessarily any arbitrary

weighting matrices in the objective function may result in a sliding mode control. This refer-

ence, therefore, either reselects the weighting matrices or approximates the closed-loop system

eigenvalues so that a set of eigenvalues are generated which can be divided into the null-space

and range-space dynamics. However, no precise scheme is given on how to reselect the

weighting matrices. Further, the approximation of eigenvalues may lead to a loss in optimality

and possibly robustness.

For addressing the limitations of [9], Tang and Misawab [10] propose an LQR-like scheme in

which a weighting matrix is computed which is closest to the desired one and can result in the

desired eigenvalues. Following this, the associated SMC is designed according to the obtained

eigenvalues and weighting matrix. Nevertheless, both methods in [9, 10] are suitable to single-

input systems. Alternatively, Edwards [3] proposes two new frameworks exploiting two special

system coordinate transformations, which are fundamentally different from the aforementioned

schemes.

This chapter aims to propose a different way for the sliding surface design while optimizing

the control effort associated with the linear part of the control law. This approach is a middle-

of-the-road method in that it uses a specific partial eigenstructure assignmentmethod to assign m

arbitrary stable real eigenvalues while an appropriate sliding motion dynamics will be ensured

by enforcing different Lyapunov-type constraints such as the H2=H∞
and regional pole-place-

ment constraints. The advantages of the proposed approach for the design of sliding surface

compared to all the aforementioned references are threefold: (i) it can set the stage for design-

ing SMC while the level of control efforts is taken into account; (ii) it makes it possible to

integrate several Lyapunov-type constraints, for example, regional pole-placement constraints,

in the SMC design problem; and (iii) the controller can be computed in a numerically very

efficient method. The proposed scheme for the design of suboptimal SMC is indeed a two-

stage LMI-based approach. In the first stage, while enforcing different Lyapunov-type con-

straints, for example, the mixed H2=H∞
, a state-feedback gain is derived, using an LMI-based

optimization program employing an instrumental matrix variable, which can precisely assign

some of the closed-loop eigenvalues to a priori known value. Following this, the sliding

surface, associated with the state-feedback gain obtained in the first stage, is determined in

the second stage. Two different approaches are presented for deriving the associated

switching-function matrix. This chapter indeed examines the problem of designing a state-

feedback SMC which utilizes integral action to provide tracking. From the implementation

point of view, the simplicity of such a scheme is very advantageous.

Recent Developments in Sliding Mode Control Theory and Applications2



The structure of the chapter is as follows. Section 2 is dedicated to the problem statement and

preliminaries. Section 3 explains the novel design strategy for the design of H2=H∞
-based

SMC. Section 4 discusses two different approaches for deriving the sliding function matrix

associated with the linear controller obtained in Section 3. Section 5 summarizes the proposed

H2=H∞
-based SMC. In Section 6, we discussed the issue of designing SMC with additional

regional pole-placement constraints. Section 7 illustrates this method via an example consider-

ing the flight control problem. Section 8 finally concludes the chapter.

2. Problem statement and preliminaries

Consider the following linear-time invariant (LTI) system:

_~xðtÞ ¼ ~A~xðtÞ þ ~B½uðtÞ þ f ðtÞ�, (1)

where ~x ∈ℝ
~n and u∈ℝ

m are the state vector and control input vector, respectively. The

matrices in Eq. (1) are constant and of appropriate dimensions. The unknown signal f ðtÞ∈ℝ
m

denotes matched uncertainty in Eq. (1) whose Euclidean norm is bounded by a known func-

tion ρðtÞ. Without the loss of generality, it is assumed that rank ð~BÞ ¼ m and the matrix pair

ð~A; ~BÞ are controllable.

In order to provide the problem with a tracking facility, we exploit an integral action as

follows. Defining

_ξðtÞ ¼ ðtÞ � ~yðtÞ, (2)

where ðtÞ is the input reference to be tracked by ~yðtÞ ¼ ~C~xðtÞ∈ℝ
p, and ξ represents the

integral of the tracking error, that is, ðtÞ � ~yðtÞ, and introducing x :¼
ξ
~x

� �

∈ℝ
n, an augmented

system can be derived as

_xðtÞ ¼ AxðtÞ þ B2uðtÞ þ B ðtÞ, (3)

with

A ¼
0 �~C
0 ~A

� �

; B2 ¼
0
~B

� �

; B ¼
Ip
0

� �

: (4)

Note that if the matrix pair ð~A, ~BÞ is controllable and the matrix triplet ð~A, ~B, ~CÞ has no zeros

at the origin, it can be shown that ðA, B2Þ is controllable [11].

Consider a linear switching surface as

S ¼ fx : σðtÞ≜SxðtÞ ¼ 0g, (5)

where S∈ℝ
m · n is the full-rank-sliding matrix to be designed later so that the associated

reduced-order-sliding motions have suitable dynamics.
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Let us consider the following controller:

uðtÞ ¼ �ðSB2Þ
�1ðSA� ΦSÞxðtÞ þ ϑðtÞ, (6)

where Φ∈ℝ
m ·m is a stable matrix and ϑðtÞ∈ℝ

m denotes the nonlinear part of the controller

with the following form:

ϑðtÞ ¼ �ðSB2Þ
�1ρðtÞ

σðtÞ

‖σðtÞ‖
if σðtÞ 6¼ 0; (7)

in which the scalar function ρð�Þ satisfies ‖ρðtÞ‖ ≥‖SB2f ðtÞ‖; for example, see [2]. It is worth

noting that the term ðSB2Þ
�1
ΦSxðtÞ in the controller Eq. (6) is to govern the convergence rate of

the system state to the sliding manifold in association with the nonlinear controller. Further,

�ðSB2Þ
�1SA is the so-called equivalent control necessary to maintain sliding in the absence of

uncertainty. Here, similar to [3], it is assumed that Φ ¼ λIm, where λ < 0 is a given constant

value. Note that unlike in [3], λ can also belong to the spectrum of A. Because we set Φ ¼ λIm,

the control law uðtÞ in Eq. (6) can be written as

uðtÞ ¼ ðSB2Þ
�1SAλxðtÞ þ ϑðtÞ, (8)

where Aλ ¼ λIn � A. Now assuming that there is no matched uncertainty in Eq. (3) and letting

ρð�Þ ! 0, we can consider that the controller in Eq. (8) contains only the linear part. Hence,

_xðtÞ ¼ AxðtÞ þ B2uðtÞ þ B ðtÞ þ B1wðtÞ

z2ðtÞ ¼ C2xðtÞ þD2uðtÞ

z
∞
ðtÞ ¼ C

∞
xðtÞ þD

∞
uðtÞ,

uðtÞ ¼ ðSB2Þ
�1SAλxðtÞ,

(9)

where wðtÞ is a fictitious exogenous disturbance, z2ðtÞ∈ℝ
q1 and z∞ðtÞ∈ℝ

q2 are the H2 perfor-

mance output vector and H
∞

performance output vector of the system, respectively. The

matrices in Eq. (9) are constant and of appropriate dimensions. Without the loss of generality,

it is also assumed that m ≤ qi ≤n, i ¼ 1, 2. Now, the objective can be regarded as finding a sliding

matrix S so that the resulting reduced-order motion, when restricted to S, is stable and meets

H2=H∞ performance specifications. Indeed, we need to choose S, with a given λ < 0, so that

the obtained reduced-order-sliding mode

• guarantees ‖Twz2‖
2
2 < δ, where ‖Twz2‖2 is theH2 norm of the closed-loop transfer function

from wðtÞ to z2ðtÞ and δ > 0 is a predetermined closed-loop H2 performance, and

• minimizes the H
∞
performance, subject to the above item.

For this purpose, one may resort to solve a H2=H∞
-state-feedback problem and thereby find

the switching matrix associated with the derived optimal state-feedback gain (say F). Broadly

speaking, this simple scheme may not necessarily result in any solution, unless the obtained

state-feedback gain F can ensure that m of the closed-loop poles are exactly located at λ. Hence,

in order to design an H2=H∞
-based SMC, we need to address the following two problems:

Recent Developments in Sliding Mode Control Theory and Applications4



1. Blend the mixed H2=H∞ problem with the eigenstructure assignment method, that is,

design a state-feedback F enforcing H2=H∞
constraints while ensuring that m poles of the

closed-loop system are precisely located at λ.

2. Obtain the sliding matrix S associated with the particular state-feedback F, derived in the

previous step.

The abovementioned problems are dealt with in the following two sections.

Remark 1. Note that the linear part of the control law can be considered as

uðtÞ ¼ ½ F ~F �
ξðtÞ
~xðtÞ

� �

≜FxðtÞ, (10)

where ~F ∈ℝ
m ·~n is the state-feedback gain and F ∈ℝ

m · p is the feed-forward gain due to the reference

signal ðtÞ.

The following lemma is recalled from [12], which will be useful in the sequel of this chapter.

Lemma 1 [12]. The following two statements are equivalent:

1: Ψþ Sþ ST < 0:

2. The following LMI is feasible with respect to U.

Ψþ P� ðU þUTÞ ST þUT

SþU �P

� �

< 0,

where P is a positive definite matrix.

It should be noted that Lemma 1 provides a necessary and sufficient condition. However, while

imposing some constraints (e.g., structural constraints) on U, the sufficiency of the lemma is

not violated; that is, always (2) ) (1).

3. Partial eigenstructure assignment for the design of H2=H∞-based SMC

3.1. LMI characterizations

We need to consider the state-feedback synthesis with a combination of H2=H∞
performance

specifications. In what follows, to avoid the conservatism introduced by the so-called quadratic

approach for the design of feedback gains with respect to H2=H∞
performance specifications,

we need to recall the so-called extended LMI methods developed for the H2 and H
∞
control

problems from, for example, [12, 13]. This form of LMI characterization will also be shown to

be very useful for the novel SMC of this chapter, as it provides us with the possibility to design

a certain partial eigenstructure assignment scheme which can ensure precise locations for some

of the closed-loop system poles.

State-Feedback Output Tracking Via a Novel Optimal-Sliding Mode Control
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3.1.1. H2 LMI characterization

TheH2 control synthesis problem, by assuming the control law as uðtÞ ¼ FxðtÞ, can be addressed

through the following optimization problem [12]:

Minimize δ subject to (MH2)

�ðGþ GTÞ ⋆ ⋆ ⋆

AGþ B2Y þ Xi �Xi ⋆ ⋆

C2GþD2Y 0 �δI ⋆

G 0 0 �Xi

2

6

6

6

4

3

7

7

7

5

< 0, (11)

�Z ⋆

B1 �Xi

� �

< 0, (12)

traceðZÞ < 1, (13)

with respect to decision variables Xi, i ¼ 1, ⋯; N , Z, Y, and G, where Xi and Z are s.p.d

matrices. N hereafter denotes the number of constraints and thus the independent Lyapunov

variables. As Gþ GT > 0, G will be invertible and the state feedback is obtained as F ¼ YG�1.

3.1.2. H∞ LMI characterization

Given scalar 0 < ν≪ 1, theH
∞
problem, by assuming the control law as uðtÞ ¼ FxðtÞ, can be set

as the following minimization problem [13].

Minimize γ subject to (MHI)

Xi � ðGþ GTÞ ⋆ ⋆ ⋆

Gþ νðAGþ B2YÞ �Xi ⋆ ⋆

C∞GþD∞Y 0 �ν�1I ⋆

0 B1 0 �γν�1I

2

6

6

6

6

4

3

7

7

7

7

5

< 0, (14)

with respect to decision variables Xi > 0, i ¼ 1, ⋯; N , Y, G, and γ > 0. Again, the state feed-

back is obtained as F ¼ YG�1.

Remark 2. It is worth mentioning that the advantage of both LMIs (11) and (14) lies in the fact that the

product terms between the matrix A and the Lyapunov matrices Xi disappear which is particularly

useful for a wide range of applications such as mixed H2=H∞-feedback gain design and cases where

the system matrices belong to a given polytopic region. Besides, as seen from Eqs. (11) and (14), the

controller is not dependant on the Lyapunov matrix, but rather the new introduced matrix variable G.

3.1.3. Mixed H2=H∞
state feedback using improved LMI characterizations

An interesting application of the mentioned so-called extended LMI characterizations for H2

and H
∞
is the mixed H2=H∞

state-feedback problem. The aim is to design-feedback gains such

that they

Recent Developments in Sliding Mode Control Theory and Applications6



• ensure the H2 performance which means that for a prescribed closed-loop H2 perfor-

mance δ > 0, we have ‖Twz2‖
2
2 < δ;

• minimize the H
∞
performance, subject to the above constraint.

This problem can be formulated through an LMI program in decision variables Xi > 0,

i ¼ 1, ⋯; N , Z > 0, Y, G, and γ > 0:

minimize γ
subject to Eqs: ð11Þ, ð12Þ, ð13Þ, and ð14Þ,

(MHH)

where δ > 0 and 0 < ν≪ 1 are the given scalars. Notice that another alternative for addressing

the mixed H2=H∞
state-feedback problem is the so-called quadratic approach (see, e.g., [14]),

which is a well-known scheme to address the nonlinearity involved in the matrix inequalities

by using a common Lyapunov matrix for all the involved objectives. However, this scheme

introduces a significant conservatism to the problem in most of the practical cases. The other

alternatives, such as (MHH), which are more computationally expensive, have been basically

considered in the literature in order to reduce the conservatism of the quadratic approach.

Remark 3. Another alternative for the mixed control problem is to design a feedback gain that

minimizes the H2 norm of one channel while satisfying an H∞-norm constraint on the same or another

channel; see, for example, [15]. Hence, in this case, the mixed H2=H∞ problem, given γ > 0 and

0 < ν≪ 1, can be set as follows:

minimize δ
subject to ð11Þ, ð12Þ, ð13Þ and ð14Þ,

(MHHN)

where Xi > 0, i ¼ 1, ⋯; N , Z > 0, Y, G, and δ > 0 are decision variables.

3.2. Partial eigenstructure assignment problem

Locating exactly m poles at a specific location can fortunately be performed through the LMI

characterization presented in the previous section. Our specific partial assignment of the set of

eigenvalues

fλ;⋯; λ
zfflfflfflffl}|fflfflfflffl{
m times

g, (15)

by state feedback can be implemented in two steps:

1. compute the base
Mλ

Nλ

� �

of null space of ½A� λI B2� with conformable partitioning;

2. with arbitrary ηi ∈ℝ
m, i ¼ 1, ⋯;m, the state feedback will be obtained as F ¼ YG�1 with

Y ¼ NΣN; G ¼ MΣM; (16)

in which

State-Feedback Output Tracking Via a Novel Optimal-Sliding Mode Control
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N :¼ ½Nλ; ⋯; Nλ

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
m times

; I; ⋯; I
zfflfflffl}|fflfflffl{

ðn�mÞ times

�,

M :¼ ½Mλ; ⋯;Mλ

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{
m times

; I;⋯; I
zfflfflffl}|fflfflffl{

ðn�mÞ times

�,

ΣN :¼ diagðη1;⋯; ηm; κ1; ⋯; κðn�mÞÞ,

ΣM :¼ diagðη1; ⋯; ηm; ι1; ⋯; ιðn�mÞÞ

(17)

with κi ∈ℝ
n and ιi ∈ℝ

n. Note that only vectors ηk are related to the assignment of the m

eigenvalues to λ. In other words, other vectors (κk and ιk) are not exploited in the pole-

placement purposes and thereby can be employed to meet other Lyapunov-type constraints.

Now, provided by the LMI characterization, for example, (MHH), the first step of our H2=H∞-

based SMC design can be set as an LMI program in the variables Xi > 0, i ¼ 1, ⋯; N , ΣM, ΣN ,

and γ > 0, by recasting (MHH) as:

minimize γ
subject to ð11Þ, ð12Þ, ð13Þ, ð14Þ, and ð16Þ:

(MHH2)

However, we have not yet shown that the set of closed-loop eigenvalues encompasses Eq. (15).

This is the subject of the following lemma.

Lemma 2. Set (15) is a subset of the closed-loop system eigenvalues, acquired by applying the state

feedback F ¼ YG�1 with Y and G presented in Eq. (16), to the system in Eq. (3) in the absence of

uncertainty, that is, f ¼ 0.

Proof. Using Eq. (16), we can write

ðAþ B2FÞMληi

¼ Aþ B2ðNΣNÞðMΣMÞ�1
h i

Mληi

¼ Aþ B2ðNΣNÞðMΣMÞ�1
h i

ðMΣMÞei

¼ AðMΣMÞ þ B2ðNΣNÞ½ �ei

¼ AMληi þ B2Nληi

¼ λMληi i ¼ 1, ⋯;m:

Note that ek here denotes the canonical basis of ℝ
n. □

4. Deriving the switching-function matrix

This subsection proposes two approaches to obtain the sliding matrix S associated with the

state feedback F, derived in the previous subsection based on the partial eigenstructure assign-

ment scheme.

Recent Developments in Sliding Mode Control Theory and Applications8



4.1. Approach 1

The first approach is represented in the following theorem.

Theorem 1. Let ðA;B2Þ be a controllable matrix pair. Then

i. ∀ λ∈ℝ�, there always exists a gain matrix F so that m of the eigenvalues of Aþ B2F are

equivalent to λ, and Aþ B2F has m-independent eigenvectors associated with λ.

ii. Define S ¼ ½v1;⋯;vm�
T , where vi is a left eigenvector of Aþ B2F associated with the eigenvalue λ,

then, SðAλ � B2FÞ ¼ 0 and SB2 is invertible.

Proof. (i) As ðA;B2Þ is controllable, we can claim that ðλI � A;B2Þ is also controllable for any

λ∈ℝ�. Then, it is easy to see that we can always find F such that the null space of Aλ � B2F has

dimension m, which implies that Aþ B2F has m-independent eigenvectors associated with λ.

(ii) Define S ¼ ½v1;⋯;vm�
T , it is easy to show that SðAλ � B2FÞ ¼ 0. Now, assume

SB2 :¼
vT1
⋮

vTm

2

4

3

5B2 ¼ Ω;

where Ω∈ℝ
m ·m. If Ω is not full rank, then there exists a nonsingular matrix Λ such that the

first row of ΛΩ is zero. This is equivalent to

Λ

vT1
⋮

vTm

2

4

3

5B2 :¼
~vT1
⋮

~vTm

2

4

3

5B2 ¼ ΛΩ;

that is, there exists a vector ~v1 such that ~vT1B2 ¼ 0. On the other hand, we know ~vT1 ½Aλ � B2F�

¼ 0, and so

rank
�

½λI � ðAþ B2FÞ B2�
�

< n:

This is clearly in contradiction with the controllability of ðA;B2Þ. In other words, if we can find

a left eigenvector of Aþ B2F associated with λ that is orthogonal to B2, ðA;B2Þ must be

uncontrollable, which is obviously a contradiction.

In brief, by virtue of Theorem 1, the switching-function matrix S, associated with the state

feedback F, obtained through solving the LMI problem in (MHH2), can be selected as the set of

m linearly independent left eigenvectors of Aþ B2F associated with the (arbitrarily selected)

repeated eigenvalue λ∈ℝ�.

4.2. Approach 2

An alternative approach to obtain the sliding matrix is to address the equality

ðSB2Þ
�1SAλ ¼ F; (18)

State-Feedback Output Tracking Via a Novel Optimal-Sliding Mode Control
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utilizing an LMI optimization method as follows. As the matrix S must ensure the invertibility

of SB2, let us suppose S ¼ BT
2P, with P an s.p.d matrix which will be obtained hereafter. The

condition in Eq. (18) can be dealt with a simple relaxation method as

minimize α subject to ‖BT
2PðAλ � B2FÞ‖ < α;

where α > 0 is a scalar variable and F is a given state-feedback matrix, obtained in the previous

subsection, ensuring m of the closed-loop eigenvalues are equal to λ. Simply it can be shown

that the above problem is equivalent to the following LMI minimization problem:

minimize α subject to
�αI ⋆

BT
2PðAλ � B2FÞ �αI

� �

< 0: (19)

Hence, the H2=H∞
-based SMC problem is now to find the global solution of the above mini-

mization problem, and then the sliding matrix is obtained as S ¼ BT
2P. In the case of feasibility,

this problem will enforce α so that it is an extremely small number associated with the

precision of the computational unit.

Notice that this approach is numerically very efficient and attractive compared to the first

approach.

5. The summary of H2=H∞-based SMC design method

Now, we summarize the proposed H2=H∞
-based SMC in the following theorem.

Theorem 2. Assume that the optimization problem in (MHH2) has a solution F for some δ > 0 and

γ > 0. Then, the H2=H∞
performance constraints ‖Twz2‖

2
2 < δ and ‖Twz∞‖

2
∞
< γ are ensured, and

after the reaching time ts, the resulting reduced n�m-order-sliding mode dynamics, obtained by

applying the following control law:

uðtÞ ¼ FxðtÞ þ ϑðtÞ, (20)

where ϑðtÞ is introduced in Eq. (7), to system (3), is asymptotically stable.

Proof. Consider a change of coordinates x↦Trx. In this new coordinate system, the new matrix

pair ðA;B2Þ is of the form

A ¼
A11 A12

A21 A22

� �

; B2 ¼
0
Bp

� �

(21)

where the square matrix Bp ∈ℝ
m ·m has full rank and more importantly is nonsingular; see [1].

Suppose also that F is the state feedback in the new coordinate that ensures the closed-loop

stability, assigns m poles of the closed-loop system at λ, and satisfies the H2=H∞
performance

constraints ‖Twz2‖
2
2 < δ and ‖Twz∞‖

2
∞
< γ. Now, let the switching-function matrix in the orig-

inal coordinates be parameterized such that [1]

Recent Developments in Sliding Mode Control Theory and Applications10



S ¼ S2½ �M Im �Tr; (22)

where S2 ∈ℝ
m ·m. Notice that theoretically the choice of S2 may not influence the sliding

motion [1]. According to the discussion given in the previous section, it can be readily shown

that there exists a matrixM such that F ¼ ðSB2Þ
�1SðA� λInÞ, where S ¼ S2½ �M Im � denotes

the switching-function matrix in the new coordinate. Let ðx1;x2Þ be the partition of the system

states associated with the certain system coordinates in Eq. (21), then it can be shown that

while the system states are confined to the sliding manifold, that is, σ ¼ 0, the reduced-order-

sliding mode dynamics are governed by the stable reduced-order system matrix A11 þ A12M.

Moreover, the dynamics of σ can be derived by taking the time derivative of Eq. (5), substitut-

ing in the state equation (3), and using controllers (8) and (7), that is,

_σðtÞ ¼ λσðtÞ � ρðtÞ
σðtÞ

‖σðtÞ‖
þ SB2f ðtÞ: (23)

Finally, it follows from ‖SB2f ðtÞ‖ ≤ρðtÞ that the reachability condition σT _σ
‖σ‖ < 0 holds. □

6. Design of SMC with additional regional pole-placement constraints

Note that the proposed method here offers the advantage of introducing additional convex

constraints on the closed-loop dynamics. By locating the closed-loop system poles in a

preselected region, an adequate transient response for system trajectories can be guaranteed

[14]. Therefore, the objective is to augment the optimization problems previously described by

pole-clustering constraints. Note also that as it is already ensured that m of the closed-loop

eigenvalues are exactly assigned to a given negative real value (λ), the remaining eigenvalues

in fact belong to the spectrum of the reduced n�m-order-sliding motion. As a result, a

satisfactory transient response for the sliding motion can be achieved by clustering the poles

governing the sliding motion.

Let us have a brief introduction to the LMI region. Simply, an LMI region is a subset D of the

complex plane as

D :¼fz∈ }E502 : f
D
ðzÞ≜Ξþ zΠþ zΠT

< 0g (24)

in which Ξ ¼ Ξ
T ∈ℝ

ξ ·ξ and Π∈ℝ
ξ ·ξ are real matrices. f

D
ðzÞ is also called the characteristic

equation of the region D.

Definition 1 [16]. A real matrixA is said to beD-stable if all its eigenvalues lie within the LMI regionD.

Lemma 3 [16]. A real matrix A is said to be D-stable if a symmetric matrix XD > 0 exists so that

Ξ⊗XD þΠ⊗ ðXDAÞ þΠ
T ⊗ ðATXDÞ < 0, (25)

where ⊗ denotes the Kronecker product.
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However, the synthesis problem obtained by imposing the pole-clustering constraints

presented in, for example, [14] or [16] to the synthesis problem in (MHH2) would not result in

a convex problem. Alternatively, the regional pole-clustering constraints can be reformulated

so that the product term between the Lyapunov matrix Xi and the systemmatrix A is removed.

An instrumental theorem is represented first and the main theorem will be presented later in

Theorem 4.

Theorem 3. Let A be a real matrix. The following statements are equivalent, with s.p.d X, G and given

real matrices 0 < Ξ∈ℝ
ξ· ξ and Π∈ℝ

ξ· ξ.

1. A is D-stable, where D is given in Eq. (24).

2. ∃ X such that

Ξ⊗XþΠ⊗ ðXAÞ þΠ
T ⊗ ðXAÞT ⋆

0 �X

� �

< 0:

3. ∃ X > 0 and G such that

�ðG þ G
TÞ ⋆ ⋆ ⋆

ðΠ⊗AÞG þ Iξ ⊗X �Iξ ⊗X ⋆ ⋆

G 0 �Iξ ⊗X ⋆

G 0 0 �Ξ
�1 ⊗X

2

6

6

6

4

3

7

7

7

5

< 0: (26)

Proof. Refer to the Appendix. □

While Eq. (26) can be seen as a necessary and sufficient condition for D-stability, it is not very

useful in terms of control synthesis purposes. Further, since Ξ ¼ 0, the result of Theorem 3

cannot cover the standard continuous-time systems stability. However, if we let G ¼ Iξ ⊗G

in Eq. (26), a sufficient condition is achieved which is beneficial for the control synthesis

purposes.

Theorem 4. Let A, 0 ≤Ξ∈ℝ
ξ· ξ

, and Π∈ℝ
ξ ·ξ be real matrices. A is D-stable if

�Iξ ⊗ ðGþ GTÞ ⋆ ⋆ ⋆

Π⊗ ðAGÞ þ Iξ ⊗X �Iξ ⊗X ⋆ ⋆

Iξ ⊗G 0 �Iξ ⊗X ⋆

Ξ
1
2 ⊗G 0 0 �Iξ ⊗X

2

6

6

6

6

4

3

7

7

7

7

5

< 0, (27)

where G is a general matrix and X is an s.p.d matrix.

Proof. The proof can be performed similar to the proof of Theorem 3 by letting G ¼ Iξ ⊗G. □

Clearly, the above theorem does not require Ξ > 0, but Ξ ≥ 0. This is indeed a generalization of

the extended Lyapunov theorem presented in Theorem 3.1 of [12], and the usual stability

region can be obtained by letting Ξ ¼ 0 and Π ¼ 1 in Eq. (27):
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�ðGþ GTÞ ⋆ ⋆

AGþ X �X ⋆

G 0 �X

2

4

3

5 < 0: (28)

Moreover, the equivalence of Eq. (28) to the standard Lyapunov stability inequality for contin-

uous-time linear systems is presented in [12].

Specifically, let us confine the closed-loop poles to the region }E512ðα; r;θÞ (see [14]) which

can ensure a minimum decay rate α, a minimum damping ratio ζ ¼ cos θ, and a maximum

undamped natural frequency ωd ¼ rsinθ. The LMI region for an αstability, that is, ReðzÞ < �α,

can be obtained through Eq. (27), with Ξ ¼ 2α, Π ¼ 1, AAþ B2F, and XXi. Moreover, by

letting Ξ ¼ 0 and Π ¼
sinθ cosθ

� cosθ sinθ

� �

, the LMI region for a conic sector }E512ð0, 0;θÞ is

achieved. Eventually, a disk centered at the origin with radius r corresponds to

Ξ ¼
�r 0
0 �r

� �

; Π ¼
0 1
0 0

� �

: (29)

However, for this special pole-clustering constraint, asΞ is not a semi-positive definite matrix, the

LMI region cannot be obtained throughEq. (27).We can alternatively state the following theorem.

Theorem 5. Let A be a real matrix. The following conditions are equivalent:

1. The eigenvalues of A lie in a disk centered at the origin with radius r.

2. There exists a symmetric matrix X > 0 such that

1

r
AXAT � rX < 0: (30)

3. There exists a symmetric matrix X > 0 such that

�rX ⋆

XAT �rX

� �

< 0: (31)

4. There exist a symmetric matrix X > 0, and a matrix G such that

�rX ⋆

GT
A

T �ðGþ GTÞ þ
1

r
X

" #

< 0: (32)

Proof. Refer to the Appendix. □

Notice that the above theorem with r ¼ 1 reduces to the standard Lyapunov stability inequal-

ity for discrete-time linear systems and its extended (robust) version; for example, see [17].

Now, the extended LMI region for a disk centered at the origin with radius r is as follows:

�rXi ⋆

ðAGþ B2YÞ
T �ðGþ GTÞ þ

1

r
Xi

" #

< 0, (33)

which is obtained by replacing A:¼Aþ B2F, X:¼Xi in Eq. (32) and introducing Y ¼ FG.
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Remark 4. Exploiting a common G may also lead to conservatism compared with the methods, for

example, in [18]. However, the methods in the aforementioned references are not beneficial for the control

synthesis aims, unless gain-scheduled controllers [19] are considered. Moreover, by employing two instru-

mental variables, a different sufficient condition for robust D stability has been developed in [20] which is

not applicable to the continuous-time control synthesis purposes. Nevertheless, the approach here can

achieve less conservative results through employing non-common Lyapunov variables for every involved

specification.

7. Numerical examples

This section evaluates the effectiveness of the proposed theory using a numerical example.

Consider a two-input, two-output, fourth-order plant describing the motion of a Boeing B-747

aircraft obtained by linearization around an operating condition of 20,000 ft. altitude with a

speed of Mach 0.8 [21]. The system matrices are as follows:

~A ¼

�0:1196 0:0004 �1:0001 0:0383

�4:1195 �0:9743 0:2919 �0:0004

1:6204 �0:0161 �0:2320 �0:0001

0:0007 1:0054 0:0003 0:0003

2

6

6

6

4

3

7

7

7

5

;

~B ¼

�0:0004 0:0126

0:3103 0:1832

0:0124 �0:9219

�0:0001 �0:0002

2

6

6

6

4

3

7

7

7

5

;

~C ¼
1 0 0 0

0 0 0 1

� �

;

and the system state, output, and input vectors are

~xðtÞ ¼ βðtÞ pðtÞ rðtÞ φðtÞ½ �T ;

~yðtÞ ¼ βðtÞ φðtÞ½ �T ;

uðtÞ ¼ ½ δaðtÞ δrðtÞ �
T
:

where βðtÞ, pðtÞ, rðtÞ, φðtÞ, δaðtÞ, and δrðtÞ denote the sideslip angle, the roll rate, the yaw rate,

the roll angle, the aileron deflection, and the rudder deflection, respectively.

We also let

C2 ¼
diagð0:1; 0:1; 10; 10; 1; 1Þ

02 · 6

" #

;

D2 ¼
06 · 2

diagð1, 1Þ

" #

;

B1 ¼ I6:

Note that the last two nonzero terms of C2 are associated with the integral action and are less

heavily weighted. In addition, the third and fourth terms of C2 have strongly been weighted in

comparison with the fifth and sixth terms to provide an adequate quick closed-loop response
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in terms of the angular acceleration in roll and yaw. We also aim to assign the closed-loop poles

in the half-plane x < �α < �0:1.

We solve the minimization problem in (MH2), with λ ¼ �3, and the state-feedback gain is

obtained as

F ¼
0:7166 68:7237 16:0446 �19:6616 �4:0591 �62:2050
34:5978 24:6097 �23:0976 0:7777 7:4387 �5:7251

� �

: (34)

Employing the first proposed approach in Section 4, the associated sliding function matrix for

the augmented system is

S ¼
�0:7351 �0:6091 0:2907 0:0151 �0:0621 �0:0066
�0:4278 0:6381 0:2355 �0:1309 �0:0638 �0:5772

� �

: (35)

The sliding motion is governed by the set of poles �2:3205� 3:0365i; � 1:9203� 1:2377if g,

and the associated true value of H2 cost from w to z is 28:0959. Assuming the matched

Figure 1. System states.
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uncertainty term in Eq. (1) as f ðtÞ ¼
0:2 sin ðtÞβðtÞ
0:3 sin ðtÞφðtÞ

� �

, using the proposed SMC with the

obtained linear gain F in Eq. (34) and the associated switching-function matrix F in Eq. (35),

and letting the switching gain ρ ¼ 1, and considering a step of 5° for β during 30–40 s as well as

a step of 2° for ϕ during 5–15 s, Figures 1–3 show the tracking responses of the system. Note

that the discontinuity in the nonlinear control term ϑðtÞ in Eq. (7) is smoothed by using a

sigmoidal approximation [11] as

ϑεðtÞ ¼ �ðSB2Þ
�1ρðtÞ

σðtÞ

εþ ‖σðtÞ‖
(36)

with the scalar ε ¼ 0:01 and ρðtÞ ¼ 1, where this can remove the discontinuity at σ ¼ 0 and

introduce the possibility to accommodate the actuator rate limits.

Figure 2. Control efforts.
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8. Conclusions

The focus of this chapter was on the development of novel framework for designing a sliding

surface for a given system while enforcing a number of Lyapunov-type constraints such as the

H2=H∞
and/or regional pole clustering. We specifically considered the problem of output

tracking using a suboptimal state-feedback SMC. In doing so, in the first stage, through a

convex optimization approach, a state-feedback gain is designed while assigning a certain

number (m) of the closed-loop system eigenvalues to a predetermined value, as well as satis-

fyingH2=H∞
-norm constraints. The advantages of the proposed scheme are threefold: (i) it can

set the stage for designing SMC while the level of control efforts is taken into account; (ii) it

makes it possible to integrate a number of Lyapunov-type constraints, for example, regional

pole-placement constraints, into the SMC design problem; and (iii) the controller can be

computed in a numerically very efficient method. The achieved results confirmed the effec-

tiveness of the proposed approach.

Figure 3. Switching function.
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A. Proof of Theorem 3

Notice that the equivalence between Eqs. (1) and (2) can be obtained from Lemma 3. We will

show the equivalence between Eqs. (2) and (3) here. The use of Lemma 1 with Ψ ¼ Ξ⊗X,

U ¼ G and S ¼ Π⊗ ðXAÞ, with X ¼ X
�1, yields

P� ðG þ G
T
Þ þ Ξ⊗X ⋆

Π⊗ ðXAÞ þ G �P

" #

< 0,

or equivalently,

P� ðG þ G
T

Þ þ Ξ⊗X ⋆

Π⊗Aþ ðIξ ⊗XÞG �ðIξ ⊗XÞPðIξ ⊗XÞ

" #

< 0, (37)

By performing the congruence transformation
G 0
0 I

� �

, with G ¼ G
�1
, and using the Schur

complement, Eq. (37) becomes

�ðG þ G
TÞ ⋆ ⋆ ⋆

ðΠ⊗AÞG þ Iξ ⊗X �ðIξ ⊗XÞPðIξ ⊗XÞ ⋆ ⋆

G 0 �P
�1

⋆

G 0 0 �Ξ
�1 ⊗X

2

6

6

6

4

3

7

7

7

5

< 0:

The above inequality finally linearizes to Eq. (26) with the choice P ¼ Iξ ⊗X
�1.

B. Proof of Theorem 5

The equivalence between Eqs. (1) and (3) is shown in, for example, [14]. Moreover, the equiv-

alence between Eqs. (2) and (3) is simply obtained through applying the Schur complement

with respect to the block (2; 2) in Eq. (31). The proof can be followed by noticing that if one

applies the Schur complement with respect to the block (1; 1) in Eq. (32), Eq. (30) is recovered

by choosing G ¼ G
T ¼ 1

r
X > 0, hence Eq. (2) implies Eq. (4). Also, by left and right multiplying

Eq. (32) by ½ I A � and ½ I A �T , respectively, one can achieve Eq. (30). Hence, Eq. (4) implies

Eq. (2), and the proof is completed.
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