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Abstract

Regular consumption of fruits and vegetables can help reduce the risk for cardiovascular 
disease (CVD) and its associated mortality. A diet rich in fruits and vegetables is thought 
to have cardioprotective effects, but the specific components of these foods that provide 
this protection are unclear. Antioxidants such as vitamin C, carotenoids, and polyphenols 
in fruits and vegetables likely contribute to the reduction in risk of CVD by minimizing 
cholesterol oxidation in blood vessel walls. Meanwhile, cardioprotective effects afforded 
by the carotenoids lycopene, α-carotene, β-carotene, β-cryptoxanthin, lutein, and zeaxan-
thin have been reported in many studies. Carotenoids are naturally occurring fat-soluble 
pigments that are present at high levels in tomatoes and carrots. Carotenoids play an 
important role in staving off atherosclerosis via antioxidant activities that reduce lipid 
peroxidation in low-density lipoproteins. Lycopene reduces endothelin-1 gene expres-
sion by suppressing generation of reactive oxygen species and inducing heme oxygen-
ase-1 expression in human endothelial cells. Thus, carotenoids may mitigate endothelial 
dysfunction by promoting direct antioxidative effects and inducing expression of several 
genes. Structural and functional differences among carotenoids may explain their unique 
biologic activities. In this review, the roles of carotenoids in relation to their influence on 
vascular endothelial functions and cardioprotective effects are discussed.
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1. Introduction

Cardiovascular disease (CVD) is a common disease that has high mortality. Many epidemiologi-
cal studies indicate that a diet rich in fruits and vegetables can have preventive effects for the 
development of CVD [1, 2]. As such, sufficient consumption of fruits and vegetables is recom-
mended to ensure that vitamins, fiber, potassium, folate, and phenolic molecules are present 
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in proper amounts to yield health benefits [3]. Several of these nutritive components have anti-
oxidant activity and can modify lipoprotein profiles as well as increase insulin sensitivity, and 
lower blood pressure [4, 5]. Although carotenoids in particular are thought to provide health 

benefits, several studies suggested that these preventative effects may not be due to β-carotene 
and vitamin E present in fruits and vegetables [6]. In fact, some reports demonstrated that other 
carotenoids such as lycopene in tomatoes have preventive effects for CVD [7, 8].

Dietary carotenoids primarily come from fruits and vegetables, as well as plant seeds, roots, 
leaves, and flowers. Among 12 types of dietary carotenoids, particularly α-carotene, β-carotene, 
lycopene, lutein, β-cryptoxanthin, and zeaxanthin, can be found in human blood and tissue 
samples [9, 10], and these molecules have similar chemical constitutions (Figure 1) and health 

benefits [11] (Table 3). α-Carotene, β-carotene, γ-carotene, lycopene, and β-cryptoxanthin are 
all precursors of vitamin A. These carotenoids also have other beneficial effects beyond their 
antioxidant activity [12, 13].

Vascular endothelial cell disorders are a hallmark CVD. Several epidemiologic studies indicate 

that carotenoids can have a beneficial effect on vascular endothelial cell dysfunction. For exam-
ple, in experiments using cultured vascular endothelial cells, carotenoids regulated nitric oxide 
(NO) expression and endothelin-1 (ET-1) production [14]. Moreover, lycopene inhibits expres-
sion of lipopolysaccharide (LPS)-enhanced monocyte chemoattractant protein-1 (MCP-1), inter-
leukin-6 (IL-6), and vascular cell adhesion molecule-1 (VCAM-1) in human endothelial cells [14]. 

Figure 1. Chemical structures of several carotenoids.

Carotenoids106



In contrast, lycopene reduced expression of TNF-α–induced intercellular adhesion molecule-1 
(ICAM-1) and adhesion of monocyte endothelial cells [15]. In streptozotocin (STZ)-induced dia-
betic rats, lycopene inhibited endothelial dysfunction [16]. However, the in vitro effects of dietary 
carotenoids do not always translate to an in vivo setting. In the present review, we discuss the 
influence of carotenoids on vascular endothelial functions. Furthermore, we summarize evi-
dence that carotenoids may have a preventive benefit toward CVD.

2. Source and bioactivity of natural carotenoids

Carotenoids are found as α-carotene, β-carotene, lycopene, lutein, β-cryptoxanthin, and zea-
xanthin. Carotenoids are tetraterpenoids and are synthesized in plants such as vegetables and 

fruits as well as by other photosynthetic organisms and some nonphotosynthetic bacteria, 
yeasts, and molds [17]. Carotenoids confer the orange, yellow, and red color of many fruits 
and vegetables. Carotenoids can be classified as carotenes and xanthophylls according to the 
chemical structure. Xanthophylls contain oxygen, whereas carotenes are purely hydrocarbons 
and lack oxygen. The structures of common carotenoids are shown in Figure 1. β-Carotene is 
the most commonly found carotenoid in raw vegetables, canned fruits, and cooked vegetables 
[13]. Lycopene is present in tomato-based foods, including tomato paste, catsup, and other 
processed tomato products. Zeaxanthin and lutein are found in cooked kale and spinach and 
in a number of processed spinach products. Carotenoids can also be found in insects, fish, and 
crustaceans. The main sources and contents of dietary carotenoids are listed in Tables 1 and 2 

[13, 18]. Carotenoids can be classified into pro-vitamin A and nonpro-vitamin A groups [19]. 

Daily vitamin A intake is dependent on the pro-vitamin A content of foods. In developing 
countries, approximately 70% of vitamin A intake is derived from carotenoids found in veg-
etables and fruits [17]. Pro-vitamin A is converted into vitamin A in the body via mechanisms 
that are not fully characterized, such that for purposes of bioequivalence, vitamin A levels are 
quantified according to vitamin A intake. Moreover, conversion efficiencies from carotenoid 
to vitamin A may influence the biological activity of carotenoids [20].

Carotenoid Source

β-Carotene Carrots, apricots, mangoes, red pepper, kale, spinach, 
broccoli

α-Carotene Carrots, collard greens, pumpkin, corn, yellow pepper

β-Cryptoxanthin Avocado, oranges, papaya, passion fruit, pepper, 
persimmon

Lutein plus zeaxanthin Kale, spinach broccoli, peas, brussels sprouts, collard 
greens, lettuce, corn, egg yolk

Lycopene Tomato and tomato products, watermelon, pink 
grapefruit, papaya, guava, rose hip

Voutilainen et al. [17].

Table 1. Sources of dietary carotenoids.
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Carotenoids Food Content (mg/100 g wet wt)a

β-Carotene Carrots, raw 18.3

Mangos, canned 13.1

Sweet potato, cooked 9.5

Carrots, cooked 8.0

Pumpkin, canned 6.9

Kale, cooked 6.2

Spinach, cooked 5.2

Winter butternut squash 4.6

Swiss chard, raw 3.9

Apricots, raw 2.6

Pepper, red, raw 2.4

Pepper, red, cooked 2.2

Cantaloupe, raw 1.6

Lettuce, romaine, raw 1.3

Tomato paste 1.2

Lycopene Tomato paste 29,3

Catsup 17.0

Tomato puree 16.7

Pasta sauce 16.0

Tomato sauce 15.9

Tomato soup 10.9

Tomato, canned, whole 9.7

Tomato juice 9.3

Watermelon, raw 4.9

Tomato, cooked 4.4

Tomato, raw 3.0
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3. Epidemiological studies of carotenoids

Many epidemiologic studies showed that carotenoids have beneficial effects toward CVD 
(Table 3). A cohort study that included 91,379 men, 129,701 women, and 5007 coronary heart 
disease events showed that fruits and vegetables intake was associated with decreased levels 

Carotenoids Food Content (mg/100 g wet wt)a

Lutein and zeaxanthin Kale, cooked 15.8

Spinach, raw 11.9

Spinach, cooked 7.0

Lettuce, romaine, raw 2.6

Broccoli, raw 2.4

Broccoli, cooked 2.2

Summer squash, zucchini 2.1

Corn, sweet, cooked 1.8

Peas, green, canned 1.4

Brussels sprouts, cooked 1.3

Corn, sweet, canned 0.9

Beans, green, cooked 0.7

Beans, green, canned 0.7

Beans, green, raw 0.6

Okra, cooked 0.4

Cabbage, white, raw 0.3

Egg yolk, medium 0.3

Celery, raw 0.2

Orange, raw 0.2

Tomato paste 0.2

aEdible portion.

Krinsky and Johnson [13].

Table 2. Carotenoid contents in foods.
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of coronary heart disease [2]. Meanwhile, another large cohort study indicated that fruits 
and vegetables intake can reverse coronary heart disease [21]. Many epidemiological studies 

indicated that higher serum carotenoid levels have beneficial effects on CVD biomarkers. 
For example, lycopene intake was associated with decreased levels of CVD in a study of 
314 CVD patients, 171 CHD patients, and 99 stroke patients [22]. Hazard ratios (HRs) for 

CVD onset were inversely correlated with lycopene intake. Another study that examined 

the intake of dietary carotene by 1312 men and 1544 women showed that dietary lutein and 
zeaxanthin consumption was clearly related to CVD onset, risk ratios, and biomarker levels 
such as HDL cholesterol [23]. A significant inverse relationship between LDL cholesterol and 

Intake from 

dietary

Study  

name

Nationality  

of subjects

Follow-up, 

Time

The number 

of subjects

Sex Outcome (main results) Reference 

(author, issue 

year)

Carotenoids 

with 

provitamin A 

activity

Finnish 
Mobile 

Clinic 

Study

Finnish Prospective, 
14 y

5133 F, M Coronary mortality 

(nonsignificant 
inverse association 

between dietary 

intake of carotenoids 

with provitamin A 

activity and the risk of 

coronary mortality in 

women)

Knekt et al., 
1994

Carotenoids 

with 

provitamin A 

activity

ARIC 

study

American Cross-
sectional

12,773 F, M Prevalence of carotid 
plaques (those in 
the highest quintile 
of carotenoid 

consumption had a 

lower prevalence of 

plaques)

Kritchevsky 

et al., 1998

β-Carotene The 
Rotterdan 
study

Dutch Prospective, 
4 y

4802 F, M Myocardial infarction 

(significantly 
decreased risk of 

myocardial infarction 

in highest -carotene 
intake quartile)

Klipstein-
Grobusch et 

al., 1999

β-Carotene, 
lutein plus 

zeaxanthin, 
and lycopene

ATBC 
study

Finnish Prospective, 
6.1 y

26,593 M Stroke (dietary intake 

of β-carotene was 
inversely associated 

with the risk of 

cerebral infarction)

Hirvonen et 

al., 2000

α- and 
β-Carotene, 
lutein αplus 
zeaxanthin, 
lycopene, and 
cryptoxanthin

Nurses 

Health 

Study

American Prospective, 
12 y

73,286 F Coronary artery 

disease (inverse 

significant associations 
between the highest 

quintiles of intake 
of α-carotene and 
β-carotene and risk 
of coronary artery 

disease)

Osganian et 

al., 2003

Voutilainen et al. [17].

Table 3. Epidemiological studies of the effect on cardiovascular disease and atherosclerosis with carotenoids.

Carotenoids110



β-carotene, lutein, and zeaxanthin consumption as well as levels of dietary β-carotene and 
homocysteine was observed, whereas serum β-carotene affected the relationship between 
dietary β-carotene intake and C-reactive protein (CRP) levels. Given that hyperlipidemia, 
serum CRP, and homocysteine are CVD onset risk factors, serum carotenoids may be mark-
ers of dietary carotenoid uptake and CVD risk biomarkers. Indeed, a report by Sesso et al. 
[7] found that higher plasma lycopene levels were associated with decreased risk of CVD 

in a survey of 39,876 elderly women. In addition, a prospective study indicated that plasma 
α-carotene, β-carotene, and lycopene levels were associated with the risk of ischemic stroke 
[24]. A population-based follow-up study in Japan that examined the relationship between 
CVD and carotene concentration in 3061 subjects showed that higher serum total carotene 
levels, including α- and β-carotene and lycopene levels were linked with a reduced risk of 
CVD mortality [8]. Furthermore, report the inverse significant associations between the high-
est quintiles of the intake of α-carotene and β-carotene and risk of coronary artery disease 
[25]. In addition, dietary intake of β-carotene was inversely associated with the risk of cere-
bral infarction [26].

Marine animals produce the carotenoid astaxanthin that is known to have strong antioxida-
tive activity. A study of 24 volunteers that consumed increasing doses of astaxanthin over the 

course of 14 days showed inhibition of LDL oxidation relative to control subjects that did not 
consume astaxanthin [27].

In contrast, other reports indicated that fruits and vegetables consumption is not associ-
ated with a reduced risk of coronary heart disease [28]. In a study of overweight adults 

at high risk for CVD, no dose-dependent reduction in CVD risk factors was seen with 
increased fruits and vegetables intake [29]. These results indicate that there may be some 
restrictions in the degree of protection afforded by carotenoids [30]. Moreover, a study 
of healthy adult subjects showed no effects of lutein, lycopene, or β-carotene on biologi-
cal markers of oxidative stress, including LDL oxidation [31]. In a prospective study, the 
relationship between plasma lycopene concentration and CVD risk in 499 men showed 

that higher plasma lutein, zeaxanthin, and retinol levels were associated with a moderate 
increase in CVD risk, whereas β-cryptoxanthin, α-carotene, and β-carotene were not asso-
ciated with increased risk of CVD [32]. Likewise, a prospective study involving a popula-
tion of male physicians in the United States showed that high plasma levels of retinol and 

carotenoids had no protective effect toward myocardial infarction [33]. Moreover, four 
extensive, randomized studies revealed no decrease in CVD events by β-carotene treat-
ment [34, 35]. These conflicting results again suggest that the reduction in the risk of CVD 
associated with fruits and vegetables intake is so far largely confined to observational 
epidemiology [30].

4. Protective effects of carotenoid-enriched foods

4.1. Tomato carotenoids

Tomato intake has been hypothesized to prevent endothelial dysfunction. However, one 
study involving 19 postmenopausal women who ingested tomato puree had increased 
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plasma  lycopene levels, but no changes in artery dilation, which suggested that lycopene may 
not have direct effects on endothelial function [36]. On the other hand, another report dem-
onstrated that tomato extract enhanced nitric oxide (NO) production and decreased endo-
thelin release. These effects of tomato extract were related to suppression of inflammatory 
NF-κB signaling and prevention of adhesion molecule expression in endothelial cells [37], 
whereas tomato paste supplementation modified endothelial dysfunction and affected oxida-
tion markers in the plasma of healthy human volunteers enrolled in a recent study [38]. Thus, 
these studies indicated that tomato paste intake can induce beneficial outcomes on endothe-
lial function. The antioxidant properties of lycopene and β-carotene in tomato products may 
indeed regulate endothelial functions and protect against CVD. In a study that examined pigs 

with high cholesterol levels, consumption of a tomato-derived lycopene supplement main-
tained endothelial function of coronary arteries and regulated expression of apolipoprotein 

A-I and apolipoprotein J [39]. Lycopene supplementation also prevented vasoactive drug-
induced coronary vasodilation and reduced lipid peroxidation, while enhancing  high-density 
lipoprotein (HDL) levels and endothelial nitric oxide synthase (eNOS) expression. These 
results demonstrate that lycopene supplementation likely can protect against LDL-enhanced 
coronary endothelial dysfunction by augmenting endothelial nitric oxide (NO) expression 

and HDL levels as well as mediating leukocyte adhesion to endothelial cells in response to 
inflammation.

4.2. Carrot carotenoids

Carotenoids contained in carrots have beneficial health effects [40]. For example, drinking car-
rot juice induces antioxidant activity and reduces lipid peroxidation and can decrease levels 
of CVD risk markers in adults. In addition, carrot juice intake reduces systolic blood pressure 
[41]. Carrot juice consumption also improved glucose tolerance and hepatic structure and 
function, which might be associated with the effect of anthocyanins seen in metabolic syn-
drome [40, 42].

5. Preventive effects of carotenoids on cardiovascular disease associated 
with endothelial cell and macrophage dysfunction

Tomato paste supplementation regulated endothelial cell functions and prevented oxidative 
conditions in 19 healthy subjects [38]. Enhanced reactive oxygen species (ROS) generation is 

related to a functional inactivation of NO in endothelial cells and can induce CVD. β-Carotene 
and lycopene-mediated prevention of TNF-α expression was associated with reduced nitro-
oxidative stress and inflammatory response in endothelial cells [43]. Meanwhile, in human 
endothelial cells, lycopene prevents endothelin-1 expression by inhibiting ROS generation 
and inducing heme oxygenase-1 expression (HO-1) [44], while also inhibiting tumor necro-
sis factor (TNF)-α–induced NF-κB activation, ICAM-1 expression, and monocyte endothelial 
adhesion [15]. In an in vivo study, lycopene inhibited endothelial dysfunction in STZ-enhanced 
diabetic rats by lowering oxidative stress, which could have implications for the development 
of treatments to prevent diabetic vascular complications [16]. In addition, astaxanthin inhibits 
inflammation-induced inducible NO and ROS generation by suppressing NF-κB pathway 
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activity in macrophages [45]. Thus, carotenoids could be effective for treating diseases associ-
ated with oxidative stress, such as CVD [46].

In vitro studies indicated that endothelial dysfunction induces atherogenic risk [47]. As 

shown in Table 4, carotenoids have a beneficial effect on endothelial cell function. In a 
study of healthy men, lycopene supplementation was suggested to inhibit oxidative stress-
mediated decreases in endothelium function [48]. For example, lycopene prevents LPS-
induced MCP-1, IL-6, and VCAM-1 expression in human endothelial cells [14]. Similarly, 
lycopene inhibits activity of an LPS-enhanced proinflammatory cytokine cascade in 
human endothelial cells through a mechanism that may involve increased expression of 

Krüppel-like factor 2 (KLF2) and inhibition of toll-like receptor (TLR) 4 function as well as 
downstream extracellular signal-regulated kinase (ERK) and NF-κB signaling in human 
endothelial cells [14].

As mentioned above, ET-1 is a strong vasopressor produced by endothelial cells. ET-1 levels 
may be affected by lycopene and in turn reduce the risk of CVD by modulating the activity 
of antiinflammatory pathways. Indeed, one report indicated that lycopene prevents cyclic 
strain-induced endothelin-1 expression by suppressing ROS production in human endothe-
lial cells [44]. Furthermore, β-carotene and lycopene reduced TNF-α–enhanced inflamma-
tory responses by reducing nitro-oxidative stress. These functions decreased interactions 
of endothelial cells with monocytes [43]. Another report demonstrated that β-carotene and 
lycopene treatment reduced TNF-α–induced oxidative stress and inflammatory responses to 
affect interactions between monocytes and human endothelial cells [43]. Furthermore, lyco-
pene reduces C-reactive protein levels in CVD [49]. Meanwhile, paraoxonase-1 (PON1) pre-
vents the oxidation of lipoproteins induced by oxidative stress and may induce metabolism of 

lipid peroxides [50]. We demonstrated that β-carotene decreases IL-1β–induced downregula-
tion in PON1 expression by activating the CaMKKII signaling pathway in human endothe-
lial cells that may in turn produce antioxidant activity [51]. Similarly, astaxanthin reduces 
ROS induced-associated dysfunction in human endothelial cells exposed to glucose [52]. 

Astaxanthin inhibits streptozotocin-induced endothelial dysfunction in diabetes in male rats 
[53]. Astaxanthin also has antioxidant activity in human endothelial cells that is related to 

induction of p22phox expression and reduced peroxisome proliferator activated receptor-γ 
coactivator (PGC-1α) expression [54]. Together these activities of carotenoids may be respon-
sible for their protective effect on CVD risk.

In cultured mouse macrophages, lutein-induced matrix metalloproteinase (MMP)-9 expres-
sion and phagocytosis promoted by intracellular ROS and activation of ERK1/2, p38 MAPK, 
and RAR β [55]. Furthermore, carotenoids induce increases in intracellular glutathione levels 
by elevating the activity of glutamate–cysteine ligase, the rate limiting enzyme in GSH syn-
thesis [56]. In addition, preventive effects of β-carotene are associated with the β-carotene 
cleavage enzyme β-carotene 15,15′-monooxygenase (BCMO1) [57]. In the human macrophage 

cell line THP-1, β-carotene inhibited 7-ketocholesterol (7KC)-induced apoptosis by reducing 
expression levels of p53, p21, and Bax and inducing expression of AKT, Bcl-2, and Bcl-xL. 
Concomitantly, 7KC induced ROS generation with enhanced expression of NAD(P)H oxidase 
(NOX4). However, β-carotene blocked 7KC-induced ROS generation by inhibiting NOX4 [58]. 

Together these results indicate a possible antiarteriosclerotic action of β-carotene mediated 
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Carotenoids Preventive effects Mechanism of effects Experiment procedure Reference (author, 

issue year)

β-Carotene Reverses the IL-1β-
induced decrease 

in paraoxonase-1 
expression

Induction of the 

CaMKKII pathway

In vitro Yamagata et al., 2012

Prevent the TNFα-
induced decrease 

nitro-oxidative stress 
and interaction with 

monocytes

Prevention 
of induced, 
inflammation, 
decrease of ROS 

generation, increased 
NO/cGMP levels 
and reduces NF-κB–
dependent adhesion 

molecule expression

In vitro Di et al., 2012

Lycopene Inhibited 

endothelin-1 
expression and 

induces heme 

oxygenase-1

Block of ROS 

generation through 

NAD(P)H oxidase 
activity

In vitro Sung et al., 2015

Improved 

endothelium-
dependent 

vasodilatation

Low C-reactive 
protein levels in CVD 

and health volunteer

In vivo Gajendragadkar et 
al., 2014

Increase endothelial 

function

Reduce oxidative 

stress, low C-reactive 
protein levels and 

decreased ICAM-1. 
VCAM-1

In vivo Kim et al., 2011

Reduce 

proinflammatory 
cytokine cascade

Inhibit TLR4 and 
NF-kappaB signaling 
pathway

In vitro Wang et al., 2013

Astaxanthin Protect against 
glucose fluctuation.

Reduced ROS 

generation

In vitro Abdelzaher et al., 
2016

Ameliorative effect 
on endothelial 

dysfunction in 

streptozotocin-
induced diabetes 

rats. Reduced serum 

oxLDL and aortic 
MDA. Reduced 

endothelium-
dependent 

vasodilator with 

ACh.

Inhibition of the 

ox-LDL/LOX-1-eNOS 
pathway

In vivo Zhao et al., 2011

ACh: acetylcholine; cGMP: cyclic GMP; CVD: cardiovascular disease; IL-1: interleukin-1; ICAM-1: intercellular adhesion 
molecule-1; LOX-1: lectin-like oxidized low density lipoprotein (LDL) receptor-1; MDA: malondialdehyde; NO: nitric 
oxide; oxLDL: oxidized low-density lipoprotein; TLR4: Toll-like receptor 4; TNFα: tumor necrosis factor-alpha; VCAM-
1: vascular cell adhesion molecule-1.

Table 4. Preventive effect of carotenoids on vascular endothelial cells and macrophages.
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through 7KC in human macrophages. β-Carotene also prevents expression of inflammatory 
genes such as inducible NO synthase (iNOS), cyclooxygenase-2 (COX2), TNF-α, and IL-1 in 
LPS-enhanced macrophages by inhibiting redox-related NF-κB activation [59].

6. Conclusions

This review examined the protective effects of carotenoids on CVD and the beneficial health 
effects of dietary carotenoids. Many studies indicated that carotenoids exhibit bioactivity in 
vascular endothelial cells. Carotenoids have antioxidant activity and appear to support and 

maintain normal vascular endothelial cell function. Future research may reveal new beneficial 
effects of carotenoids and help elucidate their preventive mechanisms in CVD.

Abbreviation

CVD cardiovascular disease

ET-1 endothelin-1

eNOS endothelial nitric oxide synthase

ERK extracellular signal-regulated kinases

HDL high-density lipoprotein

HO-1 heme oxygenase-1

ICAM-1 intercellular adhesion molecule-1

IL-6 interleukin-6

iNOS inducible NO synthase

7KC 7-ketocholesterol

KLF2 Krüppel-like factor 2

LDL low-density lipoprotein

LPS lipopolysaccharide

MCP-1 monocyte chemoattractant protein-1

MMP matrix metalloproteinase

NO nitric oxide

ROS reactive oxygen species

PON1 paraoxonase-1

PGC-1α peroxisome proliferator activated receptor-γ coactivator

TLR toll-like receptor

VCAM-1 vascular cell adhesion molecule-1
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