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Abstract

Osteosarcoma is the most common primary malignant tumour of bone. Currently, 
despite treatment with multi-agent chemotherapy and limb salvage surgery, the five-
year survival rate for osteosarcoma remains at 70%. The pathogenesis of osteosarcoma is 
complex and involves alterations in cellular apoptosis, adhesion, migration, invasion and 
molecular signalling. Research most recently has focused on the molecular basis of the 
disease with the goal of identifying novel therapeutic targets. To this end, mesenchymal 
stem cells (MSCs) have been identified to play a role in sarcomagenesis. MSC transfor-
mation may give rise to tumours, whereas interactions of MSCs with osteosarcoma cells 
in the tumour microenvironment may cause increased cell proliferation. This is in stark 
contrast to the role of MSCs as a promising source for tissue repair and regeneration. In 
order to utilize MSCs for biological reconstruction in the setting of osteosarcoma, further 
research is necessary to delineate the role of MSCs in osteosarcoma transformation and 
progression.

Keywords: osteosarcoma, pathogenesis, mediators, mesenchymal stem cell, MSC

1. Introduction

Osteosarcoma is the most common primary malignancy that arises from bone. While rela-

tively rare, with an annual incidence of 1–3 cases per million [1], it is fatal if left untreated. 

Osteosarcoma has a bimodal distribution affecting patients in the 2nd and 3rd decade of life 
and those after the 6th decade of life [2]. It is the sixth most common paediatric cancer and is 

the second-highest cause of cancer-related death in this age group [3, 4].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Current treatment protocols for osteosarcoma combine neoadjuvant chemotherapy, surgery 

and adjuvant chemotherapy. The five-year survival rate for patients diagnosed with osteosar-

coma remains at 60–75% [5]. The medical and surgical treatments of osteosarcoma can cause 

significant morbidity for the patient. Chemotherapy agents are systemically toxic and sur-

gery, in the form of amputation or limb salvage, require a prolonged period of rehabilitation. 

Despite the advent of multi-agent chemotherapeutic regimens, the prognosis for osteosar-

coma has not significantly improved; hence, there is a real need to optimize current strategies 
and to develop novel approaches for treatment.

Our understanding of osteosarcoma has traditionally been based upon anatomical and his-

tological principles. Primary osteosarcoma arises in the metaphysis of long bones, most com-

monly, within the medullary cavity. The most common sites for osteosarcoma are the distal 

femur, proximal tibia and proximal humerus. The occurrence of osteosarcoma in sites other 

than long bones increases with age. The tumour typically breaks through the cortex of the 

bone into surrounding soft tissues, around which a pseudocapsule forms [6].

Histologically, osteosarcoma is a malignant mesenchymal cell tumour, characterized by pleo-

morphic spindle-shaped cells, capable of producing an osteoid matrix. Tumour cells metas-

tasize primarily via the haematogenous route. There are various subtypes of osteosarcoma, 

including the intramedullary ‘classic’ osteosarcoma already described, periosteal osteosar-

coma, parosteal osteosarcoma, small cell osteosarcoma and telangiectatic osteosarcoma.

Current standards for staging and surgical resection of osteosarcoma rely on this anatomical 

knowledge [1]. However, recent advances in molecular biology have provided insight into 

the molecular pathogenesis of the disease. Through the identification of specific mediators 
of osteosarcoma progression and tumour pathways, novel approaches for targeting osteosar-

coma are being developed.

This chapter will outline our current understanding of the molecular pathogenesis of osteo-

sarcoma with some reference to the development of novel treatment agents. The environmen-

tal, genetic and molecular alterations that underlie osteosarcomagenesis will be discussed 

with further emphasis on the role of mesenchymal stem cells (MSCs). MSCs have been identi-

fied as playing a role in not only sarcomagenesis but also the progression of disease. This role 
of MSCs in osteosarcoma contrasts with their ability to differentiate into the various cell types 
of connective tissue for tissue repair. This chapter discusses MSC origin, differentiation and 
transformation in sarcomagenesis. The interactions between MSCs and osteosarcoma cells 

are outlined. A number of research models that utilize MSCs in order to replicate the human 

condition will be discussed along with the potential use of MSCs in biologic reconstruction.

2. Pathogenesis of osteosarcoma

The pathogenesis of osteosarcoma is a complex process, which is not completely understood 

and involves tumorigenesis from mesenchymal cells, alterations in cellular apoptosis, adhe-

sion, migration and invasion, as well as tumour-induced osteolysis and angiogenesis. Various 

genetic and molecular alterations underlie these processes. It is hoped that by targeting 
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the deranged molecular signalling of these pathways that novel treatment agents could be 

developed that enhance the efficacy of conventional chemotherapeutics and possibly reduce 
patient morbidity.

2.1. Environmental factors

Physical, biological and chemical agents have been implicated in osteosarcoma pathogenesis. 

There is a well-documented risk of osteosarcoma following exposure to ultraviolet and ion-

izing radiation, which occurs in 2-3% of cases. The first identified case of radiation exposure 
association with osteosarcoma was found in female watch-makers working with radium [7]. 

Nevertheless, only 2% of osteosarcoma cases are associated with radiation exposure [8] and 

it is not thought to contribute significantly to paediatric disease. Samartiz et al., have identi-
fied that radiation-related-sarcoma formation can even occur in those with low-level radia-

tion exposure. Of children who received radiotherapy for treatment of a solid tumour, 5.4% 

develop a secondary neoplasm and only 25% of these are sarcomas [9]. A latent period of 

10–20 years between radiation exposure and osteosarcoma formation has been observed [10]. 

Methylcholanthrene and chromium salts [11], beryllium oxide [12], zinc beryllium silicate 

[13], asbestos and aniline dyes [14] are among the chemical agents associated with osteosar-

coma formation.

2.2. Familial and chromosomal abnormalities

Amplifications of chromosomes 6p21, 8q24 and 12q14, and loss of heterozygosity of 10q21.1, 
are among the most common genomic alterations in osteosarcoma [15]. Numerical chromo-

somal abnormalities associated with osteosarcoma include loss of chromosomes 9, 10, 13 and 

17, as well as gain of chromosome 1 [4]. Osteosarcoma has been reported in patients with 

Werner syndrome, Rothmund-Thompson syndrome, Bloom syndrome, Li-Fraumeni syn-

drome, and hereditary retinoblastoma [14]. In particular, Werner, Rothmund-Thompson and 

Bloom [16] syndromes are characterized by genetic defects in the RecQ helicase family. DNA-

helicases separate double stranded DNA prior to replication [17, 18].

Pagetic osteosarcoma occurs in approximately 1% of patients with Paget’s disease [19]. These 

tumours are characteristically high grade pleiomorphic intramedullary tumours. Loss of 

heterozygosity of chromosome 18q is a recognized genetic anomaly contributing to tumori-

genesis: the specific region located between loci D18S60 and D18S42 contains the tumour 
suppressor locus [20]. This region also encodes for receptor activator of nuclear factor kappa 

B (RANK), a peptide which is a mediator of osteoclastic activity [21].

2.3. Tumour suppressor gene dysfunction

The p53 mutation is the most common genetic aberrancy in malignancy, and is a causative 

factor in the transformation and proliferation of osteosarcoma cells [22]. Here, it is found to be 

mutated in 22% of cases [4]. The presence of p53 mutation in osteosarcoma was initially iden-

tified in the autosomal dominant Li-Fraumeni syndrome, which is a syndrome characterised 
by a predisposition to forming multiple malignancies, such as osteosarcoma, rhabdomyosar-

coma and breast cancer.
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Normally, p53 is a vital protein in cell cycle arrest, cellular senescence and DNA damage 

response and repair [23]. It is regulated by mouse double minute 2 homolog (MDM2), a pro-

tein that inhibits p53 activation via multiple methods including the ubiquitin degradation 

pathway and competitively binding to the amino terminus of p53 (instead of transcriptional 

co-activators) [24]. Transcriptional activation of p21 (cyclin-dependent kinase inhibitor) 
mediates p53 activity, where its expression results in cellular arrest in either the G1 or G2 
phase. This can be either temporary, until the source of the cellular stress has been removed 

or subsided, or can be irreversible, which is known as cellular senescence. Cellular senes-

cence is stimulated by the presence of oncogene activation or presence of DNA damage. Its 

ability to arrest the cell cycle in the G1/G2 phase is dependent on its response to stressful 
stimuli [25].

Mutation in the retinoblastoma gene (Rb1) is the most common mutation found in osteosar-

comas whereby greater than 70% of cases are associated with an alteration in Rb gene. The 

association between hereditary retinoblastoma and osteosarcoma has been localised to this 

mutation, where it acts as a dysfunctional tumour suppressor. Normally, Rb1 is found on 

chromosome 13, which encodes for a nuclear protein allowing sequestration of transcription 

factors and acts as a tumour suppressor. This protein is vital in regulation of cell cycle pro-

gression from the G1 to S phase of the cell cycle. Hypophosphorylation of Rb protein allows 

it to bind to E2F transcription factor which inhibits cellular progression from G1 into the S 
phase. Once pRb is phosphorylated, it releases E2F, allowing continuation of the cell cycle. 
Additional biological characteristics include regulating DNA replication, apoptosis, cellular 

differentiation, as well as DNA damage response and repair [26–28].

2.4. Transcription and growth factors

Osteosarcoma cells produce a number of transcription and growth factors that contribute 

towards continued tumour cell growth and proliferation. During transcription single-stranded 

messenger RNA (mRNA) is formed from double-stranded DNA. Transcription factors bind to 

promoter sequences for specific genes to initiate the process. Transcription is usually a tightly 
regulated process and deregulation can lead tumour formation. Growth factors may act via 

both autocrine and paracrine mechanisms and overexpression or constitutive activation may 

lead to accelerated osteosarcoma cell proliferation.

The activator protein 1 complex (AP-1) is a regulator of transcription that controls cell pro-

liferation, differentiation and bone metabolism. AP-1 is comprised of Fos and Jun proteins, 
products of the c-fos and c-jun proto-oncogenes, respectively. Upregulation of Fos and Jun is 
seen in high-grade osteosarcomas [29, 30] and is also associated with a propensity to develop 

metastatic lesions [31].

Myc is a transcription factor that acts in the nucleus to stimulate cell growth and division. 

Myc amplification has been implicated in osteosarcoma pathogenesis and resistance to che-

motherapeutics. Overexpression of Myc in bone marrow stromal cells leads to osteosarcoma 

development and loss of adipogenesis [32]. This factor is amplified in U2OS osteosarcoma cell 
line variants with the highest resistance to doxorubicin and gain of Myc was found in SaOS-2 
methotrexate-resistant variants [33].
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In addition to Myc, transforming growth factor beta 1 (TGF-β1) has been shown to be over-

expressed in high grade osteosarcomas [34]. Smad activation was implicated downstream of 

TGF-β with an inability to phosphorylate the Rb protein.

Insulin-like growth factor (IGF)-I and IGF-II are overexpressed by osteosarcomas. Activation 

of the IGF-1R receptor leads to the activation of phosphoinositide 3-kinase (PI3K) and mito-

gen-activated protein kinase (MAPK) pathways. This leads to accelerated cell proliferation 

and inhibition of apoptosis [35].

Connective tissue growth factor (CTGF) is a potent stimulator for the proliferation of osteosar-

coma cells, leading to increased expression of type I collagen, alkaline phosphatase, osteopon-

tin and osteocalcin, markers for bone cell differentiation and maturation [36]. CCN3, a related 

protein, is overexpressed in osteosarcoma and is associated with a worse prognosis [37].

The wingless-type (Wnt) canonical pathway, is a specific cascade that occurs within the Wnt 
family of glycoproteins and has been identified in the molecular basis of osteosarcoma forma-

tion. The Wnt family is essential in cellular differentiation and cell fate determination, and in 
the context of osteosarcomas, directing mesenchymal stem cells down the osteogenic lineage. 

Through this pathway, bone morphogenic protein 2 (BMP-2) is the key factor in osteogenesis. 
Another factor has been identified to inhibit the Wnt cascade, and histologically has been 
identified at the peripheries of osteosarcomas, Dickkopf 1 (DKK1). A secreted antagonist of 
Wnt pathway is low density lipoprotein receptor related protein 5 (LRP-5) which has been cor-

related with metastatic disease in osteosarcoma, independent of the histological type. When 

LRP-5 is expressed, the Wnt pathway is activated resulting in the up-regulation of a number 

of genetic factors including matrix metalloproteinases (MMP) which have been known to be 

involved in metastatic activity of cancers. Hoang et al. have analysed osteosarcoma patients 

expressing LRP-5, who were metastases free at time of diagnosis to have a lower probability 

of an event-free survival [38].

Stromal cell derived factor-1 (SDF-1), also known as C-X-C motif chemokine 12 (CXCL-12), 
[39] is a ligand for CXCR-4 and a part of the cxc chemokine family, where CXCR-4 has been 

implicated in various cancer types. SDF-1/CXCL-12 is a chemokine that has a paracrine effect 
within the interstitial space stimulation migration of pluripotent cells as well as tumour cells. 

The interaction between CXCR-4 and SDF-1/CXCL-12 has an important role in cancer pro-

gression as it promotes osteosarcoma cell migration and angiogenesis [40]. Within osteosar-

coma the level of CXCR-4 mRNA is low however the SDF-1/CXCL-12/CXCR4 combination 
is required in osteosarcoma cell proliferation. Tumour promotion occurs by SDF-1/CXCL-12 
in a paracrine manner, stimulating cellular growth and survival. Besides tumour promotion 

CXCR-4 is involved in metastatic spread of tumour cells into areas where SDF-1/CXCL-12 is 
expressed. This factor is important in angiogenesis as it promotes endothelial cells into the 

tumour microenvironment [39].

2.5. Osteosarcoma invasion

Degradation of the extracellular matrix by osteosarcoma cells allows for invasion of sur-

rounding tissues by the primary tumour mass. Matrix metalloproteinases (MMPs) and the 

urokinase plasminogen activator (uPA) system are the effectors of this matrix breakdown.
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The MMPs include collagenases, gelatinases and stromelysins. Collagenases break down col-

lagen types I, II and III. Gelatinases break down collagen type IV, while stromelysins break 

down collagen types III, IV and V as well proteoglycans [41].

The urokinase plasminogen activator (uPA) system has been studied extensively with relation 

to osteosarcoma invasion. When uPA binds to its receptor uPAR it becomes active. Activated 

uPA then cleaves plasminogen to form plasmin. Plasmin is both responsible for direct break-

down of the extracellular matrix but also for further activation of pro-MMPs [42, 43].

uPA levels possess prognostic significance in osteosarcoma. An inverse relationship exists 
between survival time and uPA levels in osteosarcoma [44]. The downregulation of uPAR in a 

clinically relevant murine model of osteosarcoma resulted in limited primary tumour growth 

and inhibited metastatic spread [45].

2.6. Osteoclasts and osteosarcoma-induced osteolysis

Substantial osteolysis may result from osteosarcoma growth. This osteolysis at the tumour 

site is the result of interactions between osteosarcoma cells, osteoclasts, osteoblasts and the 

bone matrix. Growth factors such as transforming growth factor beta (TGF-β) are released 
from degraded bone matrix and stimulate the release of tumoral cytokines that induce osteo-

clastic resorption of bone. Among the osteoclast-stimulating cytokines are parathyroid hor-

mone-related protein (PTHrP), interleukin-6 (IL-6) and interleukin-11 (IL-11) [46, 47]. Further 

growth factors are then released from the bone matrix, leading to a cycle of osteolysis, osteo-

clast activation and osteosarcoma invasion.

The critical involvement of osteoblasts in the osteolytic process is a surprising finding. Among 
the other factors that osteosarcoma cells release are the osteoblast-stimulating factors endo-

thelin-1 (ET-1), vascular endothelial growth factor (VEGF), and platelet-derived growth fac-

tor (PDGF) [48, 49]. Osteoblast stimulation by these factors leads to increased expression of 

receptor activator of nuclear factor κB ligand (RANKL). RANKL is a key regulator of osteo-

clast differentiation and activity. Osteosarcoma cells have been noted to produce RANKL 
independently also [50].

2.7. Osteosarcoma angiogenesis

Tumour neovascularization is required for continued osteosarcoma growth and progression. 

Osteosarcoma cells obtain the necessary oxygen and nutrients for cellular proliferation from 

the neovasculature and gain access to these vessels in order to metastasize.

The process of angiogenesis is regulated by a balance between pro-angiogenic and anti-angio-

genic regulators. Loss of tumour suppressor gene function and oncogene activation pushes 

this balance toward neoangiogenesis. The hypoxic and acidotic environment that surrounds 

the primary tumour also promotes vascular proliferation. Such conditions lead to de-ubiquiti-

nation of the von Hippel Lindau protein. Von Hippel Lindau protein releases hypoxia-induc-

ible factor-1α (HIF-1α). HIF-1α upregulates vascular endothelial growth factor (VEGF) [51]. 

VEGF is pro-angiogenic through stimulation of the processes of endothelial cell proliferation, 
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migration and maturation. An immature, irregular and leaky vasculature is thus formed in 

and around the tumour.

Anti-angiogenic factors are downregulated in osteosarcoma. These include thrombospondin 

2, transforming growth factor beta (TGF-β) [52], troponin I, reversion-inducing cysteine rich 

protein with Kazal motifs (RECK) [53] and pigment epithelial derived factor (PEDF) [54]. 

Downregulation of such molecules may lead to increased invasion through predominately 

avascular zones, such as the growth plate [55, 56].

Osteosarcoma is a particularly vascular tumour. However, the true significance of vascular den-

sity is yet to be fully elucidated. While vascular tumours may be more likely to lead to increased 

rated of metastasis, increased osteosarcoma microvascular density may offer a survival advantage 
attributed to improved tumour penetration by intravenously delivered chemotherapeutics [57].

3. Mesenchymal stem cell origin and differentiation

The defining features that characterise stem cells as a group are the ability to self-renew and 
the ability to differentiate into distinctive cell line types. Stem cells, broadly speaking, may fall 
into one of four main categories:

1. Embryonic stem cells

2. Pluripotent stem cells

3. Cancer stem cells

4. Tissue specific stem cells

Various tissue specific stem cells have been identified and mesenchymal stem cells (MSCs) 
are but one of these. Other tissue specific stem cells include cord blood stem cells, neural stem 
cells, gut stem cells, amniotic fluid stem cells and others. MSCs are multipotent cells that are 
able to differentiate into bone, cartilage, fat and muscle. Due to this ability they represent a 
promising source for tissue repair and regeneration. Research has focused on the cellular and 

molecular pathways that direct differentiation towards a particular cell type and aberrant dif-
ferentiation of MSCs may contribute to sarcomagenesis. Prior to understanding the interac-

tions between MSCs and osteosarcoma cells, an understanding of the biological factors that 

characterize MSCs is essential.

The initial work of identifying and characterising MSCs can be largely credited to the work of 

Friedenstein, Cohnheim and Caplan [58–61]. Cohnheim hypothesised that certain fibroblastic 
cells originating from bone marrow were a key factor in wound healing. In the 1970s and 

1980s, Friedenstein isolated a population of plastic adherent stromal cells from bone marrow, 

which had the capacity to differentiate into certain colony forming units (CFU). These CFUs 
possessed the capacity to give rise to osteoblasts, chondrocytes, adipocytes, muscle and hae-

matopoietic tissue. Beyond this, Kopen et al. [62] have demonstrated that not only are MSCs 
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able to differentiate into mesoderm-derived cells but they are also able to undergo transdif-
ferentiation, forming endoderm-derived cells.

Since these early studies, MSCs have been identified and isolated from tissues other than 
bone marrow, including adipose tissue, muscle, peripheral blood, placenta, umbilical cord 

and amniotic fluid. Irrespective of the tissue of origin of MSCs are able to adhere to plastic 
and differentiate along mesenchymal cell lines. The expression of specific surface antigens 
has also been used to identify MSCs. The International Society for Cellular Therapy use the 

following characteristics to identify and standardize isolated human MSCs [63]:

1. Plastic adherence – in vitro under standard culture conditions (1–5 days);

2. Tri-lineage differentiation into cells of mesodermal lineage (osteoblasts, chondroblasts and 
adipocytes);

3. Surface antigens:

a. Expression of CD105, CD73, CD 90

b. Absence of CD45, CD 34, CD 14, CD 11b, CD79b, CD 19, HLA-DR (haematopoietic markers)

Most relevant in the setting of translational research, however, is that significant variation 
exists in the expression at surface antigens across species. MSCs of murine origin may be 

identified by the expression of CD106 and Sca-1, and the absence of CD31, CD45 and CD11b. 
Studies have demonstrated significant variability in surface antigen expression which changes 
once MSCs undergo expansion and ex-plantation [64].

3.1. Sources of MSCs

MSCs are found in nearly all tissues, including adult bone marrow, peripheral blood and adi-

pose tissues. MSCs are derived from pericytes (cells surrounding blood vessels) and exist in 

a perivascular niche. This explains the presence of adult MSCs in a number of different tissue 
types [65], including:

 - Bone marrow

 - Synovium and synovial fluid

 - Periosteum

 - Peripheral blood

 - Adipocytes

 - Liver

 - Brain

 - Kidney

Osteosarcoma - Biology, Behavior and Mechanisms58



 - Lung

 - Spleen

 - Blood vessels

While MSCs may be obtained from a variety of different tissue types, the concentration of 
MSCs in these tissues varies widely. Pittenger et al. [66] isolated MSCs from bone marrow, 

adipocyte and peripheral blood. 0.001-0.01% of bone marrow cells were MSCs in comparison 

to ~5000 cells of 1g of adipose were MSCs. Furthermore, in addition to the variable concentra-

tion of the stem cells sourced from different tissues, it has been demonstrated that there is 
altered capacity to form osteocytes in vivo dependent on the tissue of origin of MSCs. Cosimo 

De Bari showed that periosteal derived MSCs have a greater potential to form osteocytes than 

those derived from synovium [67].

Mesenchymal stem cells can also be obtained from birth associated tissues [65], including:

 - Placenta

 - Human amnion membrane

 - Umbilical cord

 - Cord blood

 - Chorionic villi and chorion membrane

 - Wharton’s jelly

The major advantages of MSCs derived from birth associated tissue, over those obtained from 

bone marrow, are the availability of the tissue, as well as the greater proliferative and differ-

entiation capacity of these cells. The rate of expansion varies between adult and birth associ-

ated tissue derived MSCs. The mean doubling time for umbilical cord MSCs is approximately 

24 hours whilst it is 40 hours for bone marrow MSCs. Additionally, umbilical cord MSCs 
proliferate with multi-layering, while bone marrow MSCs demonstrate contact inhibition. 

Bone marrow MSCs are multipotent, while birth associated tissue MSCs are pluripotent and 

are able to differentiate into all three germinal layers.

3.2. Multi-lineage potential and transdifferentiation of MSCs

Friedenstiein et al. initially demonstrated that bone marrow derived MSCs differentiated 
exclusively into cells of mesodermal lineage, namely osteocytes, adipocytes and chondrocytes 

[59]. More recently, however, MSCs have been shown to also possess the ability to differenti-
ate along endodermal and neuroectodermal lines. In vitro studies have shown formation of 

neural tissue from bone marrow derived MSCs. This has propagated multiple studies deter-

mining the factors that stimulate MSCs to differentiate into cell lineages.

Pittenger et al. [66] highlighted that in vitro mesenchymal stem cells can maintain a stable and 

undifferentiated state, however when exposed to certain cues or cultured in certain media 
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they are able to differentiate into diverse cell types. MSCs that have undergone 20 cumulative 
population doublings maintain this multipotent ability.

The osteogenic potential of MSCs has been observed in vitro, however this ability in vivo is 

still incompletely defined. Osteoblasts may stimulate the expansion of MSCs and regulate 
differentiation down the osteogenic pathway, however this may be secondary to the role of 
osteocytes in stimulating differentiation toward osteogenesis.

Huang et al. demonstrated the process of osteogenic differentiation in vitro, through multiple 
stages [68, 69]:

1. Day 1–4

a. Peak number of cells

2. Day 5–14

a. Early cell differentiation

b. Deposition of type 1 collagen early in this phase

c. Expression of alkaline phosphatase (ALP), however the level of ALP de-

creases at the end of the second phase

3. Day 14–28

a. Expression of fibroblast growth factor 2 (FGF-2) and bone morphogenetic 
protein 2 (BMP-2)

b. Expression of osteocalcin and osteopontin

c. Calcium and phosphate deposition

The early response growth factors were distinguished from the growth factors present in late 

cycle. The early response factors include transforming growth factor beta, insulin-like growth fac-

tor and vascular endothelial growth factor. The later phase growth factors include platelet derived 

growth factor, bone morphogenetic protein 2 (BMP-2) and fibroblast growth factor 2 (FGF-2)

Transforming growth factor beta (TGF-beta) administration stimulates osteoblast activity as 

well as cell proliferation, alkaline phosphatase activity and calcium deposition. BMP-2 is a 
notable cytokine which is osteoinductive, and has been shown to commit cells into either a 

chondrogenic or osteogenic lineage depending on its culture medium. When these two fac-

tors co-exist in an environment, there is approximately five-fold greater osteogenic potential.

Other groups of factors are important for adipogenic and chondrogenic differentiation. Factors 
favouring adipogenic differentiation include 1-methyl-3-isobutylxanthine, dexamethasone, 
insulin and indomethacin, whereby the adipocytes expressed lipoprotein lipase, fatty acid-
binding protein (Ap2) and peroxisome proliferation-activated receptor gamma 2 (PPAR-2) 
[66, 68]. Factors for chondrogenic potential include glutamine, linoleic acid, dexamethasone, 
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ascorbic acid, proline and sodium pyruvate. Dexamethasone is required as it promotes TGF-

beta1 upregulation of type II collagen. The potent factors which were found to be important 

in chondrocyte formation are BMP-2 and BMP-7, with TGF-beta being a weaker factor. The 
effect of BMP-2 is dose-dependent, whereby it stimulates the production of mRNA for type 
II collagen and aggrecan [70, 71].

There are two main pathways important in differentiation. One discussed previously is 
through TGF-beta, involved in the formation of chondrocytes. This occurs through multiple 

intra-cellular cascades (mitogen activated protein, JNK, p38). The other pathway is the Wnt 
canonical pathway, where soluble glycoproteins stimulate and regulate cellular differentia-

tion and expansion. Like the TGF-beta pathway, the binding of Wnt to receptors on cells trig-

ger an intracellular cascade, however, this pathway has an osteogenic potential.

4. Transformation of mesenchymal stem cells

Transformation is the sequential accumulation of genetic changes in a cell that may lead to 

altered behaviour and function of the subsequent cell lineage. Transformation causes cells to 

both acquire new and lose certain characteristics of the original cell type. This may be reflected 
as changes in the morphology of the cells, altered expression of surface antigens, changes in 

the growth characteristics, as well as increased tumorigenicity. Differentiation of MSCs at a 
variety of stages may underlie sarcomagenesis. Sarcomas may arise from cells already com-

mitted to a particular differentiation pathway, or alternatively, from multipotent cells that are 
pushed towards a particular sarcoma subtype. Alterations in oncogenes, tumour suppressor 

genes, growth factors and transcription factors may underlie the transformation of MSCs.

Studies that have utilised MSCs of both murine and human origins have supported the con-

cept of transformation of MSCs for tumorigenesis. The findings of human studies have been 
conflicting, however, and warrant further evaluation. Transformed murine MSCs demon-

strate altered morphology and growth characteristics. Transformed murine MSCs exhibit a 

compact morphology, demonstrate anchorage-independent growth, lack contact inhibition 

and form multiple layers in culture. This is in contrast to the spindle-shaped single layer 

growth characteristics of MSCs [72–75]. The proliferation rates of transformed murine MSCs 

have been shown to be increased and genetic and molecular signalling alterations underlie 

these changes [72, 76, 77]. Increased chromosome number beyond the usual 40 acrocentric 

chromosomes have been demonstrated in transformed murine MSCs by multiple authors [72, 

73, 78]. Additionally, Matushansky et al. [79] showed that inactivation of the Wnt pathway in 

transformed MSCs gave rise to a cell population with a similar appearance to that of malig-

nant fibrous histiocytoma.

Human models require MSCs that are able to undergo ex vivo expansion prior to its clinical 

application and through this process some cells undergo spontaneous transformation. This 

is particularly concerning when considering the potential therapeutic use of MSCs for tis-

sue repair and regeneration. There are also pharmacological agents that mobilise MSCs into 

the bloodstream. However, there has been some variability in studies using human MSCs. 

Some studies have shown spontaneous transformation of human MSCs in culture [80, 81] 
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while other research groups have demonstrated that human MSCs are not able to spontane-

ously transform into malignant cells and with prolonged in vitro culturing become senescent 

[82–85]. These conflicting studies have been further confounded by Torsvik et al. [86] and de 

la Fuente et al. [87] that demonstrated previously considered transformed MSCs were tainted 

by contamination. Pan et al. [88] have subsequently shown MSCs to undergo transformation 

and have eliminated the possibility of contamination. In this study, 46 cultures of MSCs were 

studied and 4 of these cultures showed characteristics of transformation, including morpho-

logical changes and increased proliferation rates. Increased tumorigenicity was demonstrated 

when these cells were introduced into immunodeficient mice.

In addition to the cellular, molecular and genetic changes underlying osteosarcoma patho-

genesis, the transformation of MSCs have also been implicated in the tumorigenesis of 

osteosarcoma. Wang et al. [89] were among the first to hypothesise that a subpopulation of 
cancer stem cells existed in human osteosarcoma. In order to demonstrate such a subpopu-

lation of tumorigenic cells, Wang et al. characterised cells with high aldehyde dehydroge-

nase (ALDH) in 4 human osteosarcoma cell lines. Of these, the OS99-1 cell line, which was 

derived from an aggressive primary human osteosarcoma, had significantly higher ALDH 
activity. When OS99-1 cells were introduced into a murine xenograft model, 3% of tumour 

cells demonstrated high ALDH activity and these cells demonstrated the characteristics 

of MSCs, namely self-renewal, tri-lineage differentiation and the expression of typical cell 
surface antigens.

Since then, Adhikari et al. [90] have further characterised a subpopulation of cancer stem cells 

in osteosarcoma using cell surface antigens. This study took the concept of tumour-initiat-

ing cells further by identifying a possible role of cancer stem cells in highly metastatic and 

resistant osteosarcoma. Mouse and human osteosarcoma stem cells were identified using the 
MSC markers CD117 and Stro-1. Expression of these markers were largely in spheres and 

doxorubicin-resistant cells. Cells that were positive for both CD117 and Stro-1 were serially 

transplantable and gave rise to more aggressive metastatic disease when applied to an ortho-

topic murine model. CD117 and Stro-1 positive tumours in the model were highly invasive 

and demonstrated drug resistance.

Alterations in oncogenes, tumour suppressor genes, growth factors and transcription fac-

tors may underlie the transformation of MSCs for osteosarcoma tumorigenesis. In one study, 

Mohseny et al. [74] examined the pre-malignant stages of osteosarcoma using murine mes-

enchymal cells. A functional and phenotypical analysis of MSCs, transformed MSCs and 

osteosarcoma cells was performed in parallel using. Aneuploidization, translocations, homo-

zygous loss of the cyclin-dependent kinase inhibitor (cdkn2) region, and alterations in sar-

coma amplified sequence (SAS), retinoblastoma 1 (Rb1), mouse double minute 2 homolog 
(Mdm2), c-myc, p53 and p16 have all been implicated in the transformation of MSCs for 
osteosarcoma formation [74, 91].

Tao et al. [92] identified the transformation of immature osteoblasts as a potential source 
for osteosarcoma transformation. Using a murine model of osteosarcoma with conditional 

overexpression of intracellular domain of Notch1 (NICD), expression of NICD in osteoblast 

stem cells caused the formation of bone tumours including osteosarcoma. These tumours 
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demonstrated histopathological, metastatic and genetic features of human osteosarcoma. 

Additionally, when overexpression of NICD and loss of p53 were combined in the murine 

model, osteosarcoma development and progression was accelerated.

5. Interactions between mesenchymal stem cells and osteosarcoma cells

The interaction between MSCs and tumour cells is an evolving area of current research. MSCs 

have been shown to be capable of migrating to not only sites of inflammation and injury but 
also to tumours and sites of metastasis. Once at these tumour sites, cellular interactions may 

cause progression of both primary and metastatic lesions. While these interactions between 

MSCs and osteosarcoma cells in the tumour microenvironment have been demonstrated, 

some studies show that MSCs may cause increased proliferation of tumour cells while others 

show reduced proliferation and pro-differentiation. Khakoo et al. [93] showed that systemi-

cally injected MSCs inhibit the growth of Kaposi sarcoma using a xenotransplant model.

Yu et al. [40] characterised the interaction between MSCs and osteosarcoma cells in vitro and 

showed that bone marrow derived MSCs had the potential to promote osteosarcoma cell pro-

liferation and invasion. In this study bone marrow MSCs were cultured with osteosarcoma 

cells. Osteosarcoma cells were also cultured with conditioned media from MSCs. Cellular 

proliferation was measured by cell counting kit 8 (CCK-8) assay and a matrigel assay was 

used to evaluate tumour cell invasion. Tumour cell proliferation and invasion were promoted 

under these conditions with the implication of stromal derived factor-1 (SDF-1). SDF-1 is a 

cytokine that controls tumour neoangiogenesis, apoptosis, migration and invasion through 

binding to the CXCR4 receptor.

Tsukamoto et al. [94] showed that MSCs may provide a favourable environment for osteosar-

coma growth and metastasis in a rat osteosarcoma model. In this study, rat COS1NR osteosar-

coma cells were injected along with rat bone marrow derived MSCs. Injections were performed 

subcutaneously and intravenously. Osteosarcoma tumour formation and growth was increased 

significantly prior to 5 weeks using the subcutaneous injection model. When injected intrave-

nously there was increased pulmonary lesion formation in the group that received co-injections 

of COS1NR and MSCs. The expression of genes by MSCs involved in cellular adhesion and extra-

cellular matrix receptors were suggested as possible explanations for this tumour behaviour.

6. Mesenchymal stem cell utilization for biological reconstruction

MSCs are being portrayed in the literature as the key to biological reconstruction, however, 

studies are few and results are varied. There are significant challenges to be overcome if we 
are to utilise MSCs in biological reconstruction after tumour resection. Much of the concern 

relates to the yet to be fully characterised ability of MSCs to transform into sarcomas and 

the interactions between MSCs and tumours that cause increased tumorigenesis and disease 

progression. In order to apply MSCs to clinical reconstruction the cells require prior in vitro 
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expansion. As has been discussed above, there are concerns of chromosomal instability and 

malignant transformation during this process of expansion.

A number of attempts at utilizing MSCs in the reconstruction process after tumour resection 
have been made. Perrot et al. [95] raised concern of osteosarcoma recurrence after autologous 

fat grafting, reporting a case of late recurrent osteosarcoma 13 years after the use of a lipofill-
ing procedure. Following this they utilised a pre-clinical murine model of osteosarcoma to 

show that injection of fat grafts and MSCs promoted tumour growth.

Since then, Centeno et al. [96, 97] has published two papers with results for 339 patients that 

were treated following orthopaedic procedures with in vitro expanded, autologous bone mar-

row derived MSC implantation. Follow up by general observation and MRI tracking beyond 

3 years post-operatively did not demonstrate tumour formation at the sites of injection. 

2 patients were diagnosed with cancer during the follow up period, however these cases were 
assessed not to be related to the MSC therapy and the rate of neoplasm development was 

comparable to that of the general population. While the results presented by Centano et al. 

[96, 97] appear reassuring with regards to the safety of MSCs for reconstruction, further stud-

ies, particularly in the setting of reconstruction after treatment for malignancy are required. 
There are hundreds of clinical trials currently underway evaluating the therapeutic safety and 

efficacy of MSC based treatments.

7. Conclusions

While the advent of multi-agent chemotherapeutic regimes dramatically improved the prog-

nosis for patients with osteosarcoma, novel treatment agents are required in order to reduce 

morbidity and improve function following surgical reconstruction. The pathogenesis of osteo-

sarcoma is complex and current research is focusing on defining the deranged cell behaviours 
and molecular signalling pathways that underpin tumorigenesis and disease progression. 

Mesenchymal stem cells have attracted great interest over recent years due to their ability to 
expand into mesodermal tissues including bone, cartilage, fat and muscle; however, pre-clinical 
studies have highlighted possible roles in the processes of sarcomogenesis through transforma-

tion and interactions with the tumour cells themselves. Further studies defining the role of MSCs 
in osteosarcoma pathogenesis are required prior to studies of therapeutic safety and efficacy.
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