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Abstract

An impedance matching analysis of two plasmonic nanocircuits connected to cylindrical 
nanoantennas is presented. In the first case, a bifilar optical transmission line (OTL) with 
finite length is connected between two nanodipoles, where one is illuminated by an opti-
cally focused Gaussian beam (receiving dipole) and the other radiates energy received 
from the OTL (emitting dipole). In the second case, the OTL is fed by a voltage source 
on one side and connected to a dipole‐loop composed antenna on the other side. These 
circuits are analysed electromagnetically by the linear method of moments (MoM) with 
equivalent surface impedance of conductors. Some results are compared using the finite 
element method. The results show the impedance matching characteristics of the circuits 
as a function of their geometries and the broadband response of the second circuit due 
the broadband dipole‐loop antenna.

Keywords: plasmonic circuits, cylindrical nanoantennas, impedance matching, 
broadband nanoantennas, method of moments (MoM)

1. Introduction

Nanophotonics is the study of optical systems in the nanometre scale [1]. A sub‐area of nano-

photonics is the nanoplasmonics, which analyses the interaction of optical fields with metal 
nanostructures [2]. With the development of nanoplasmonics, the concept of nanoantennas or 
optical antennas has emerged naturally as metal nanostructures that receive, transmit, local-
ize and enhances optical fields [3–6]. This definition is similar to conventional RF‐microwave 
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antennas, but the difference between these two regimes is that nanoantennas are not perfect 
conductors and we need to consider the finite conductivity of the metal. This characteristic 
leads to nanoantenna’s size smaller than the wavelength of the incident wave. In other words, 
nanoantennas are electrically small resonant structures that can manipulate optical fields in 
small regions beyond the diffraction limit of light. This property of wavelength scaling for 
optical antennas is discussed in [7–9].

The research studies in nanoantenna field have increased mainly due to the development in 
modern nanofabrication techniques, such as the colloidal lithography, that is a bottom‐up 
process, and the top‐down processes like focused‐ion beam (FIB) and electron‐beam lithog-

raphy (EBL) [10]. Some review papers on nanoantennas about theory, modelling, fabrication 
process and applications have been published [11–16].

The development in nanoantenna theory has also been increased due the important applica-

tions in different fields [17–28]. For example, the ability of metal nanoparticles to confine and 
enhance optical fields in nanometre regions is used in high‐resolution microscopy, where flu-

orescence emission from a single molecule can be strongly enhanced [17–22]. Also, this radia-

tion of a single emitter can be highly directed by nanoantenna arrays [23]. Other important 
applications are in nanobioimaging to analyse biological process [24], plasmonic photovoltaic 
cells [25], treatment of cancer in medicine [26], use of wireless at a nanoscale [27], plasmonic 
laser and optical data storage [28], and sub‐wavelength integrated optical circuit [29]. In this 

work, we focus on the last application.

Examples of nanoantennas connected to plasmonic waveguide are presented in [29–31]. In 

this work, we make an alternative analysis and extend the results by using a different optical 
antenna with broadband characteristics. In particular, we consider two plasmonic nanocir-

cuits connected to cylindrical nanoantennas. In the first circuit, a finite optical transmission 
line (OTL) is connected between two nanodipoles, where they are referred as receiving and 
emitting dipoles. In this circuit, the first dipole receives the energy from an optically focused 
Gaussian beam and delivers it to OTL, which connects to the second dipole to radiation. In 
the second circuit, the OTL is fed by a voltage source on one side and connected to a dipole‐
loop composed antenna on the other side. The analyses of these circuits are made by the 
linear method of moments (MoM) [32] with equivalent surface impedance of conductors [33]. 

We compare some results with the finite element method (FEM) [34]. The results show the 
impedance matching characteristics of the circuits as a function of their geometries, and the 
frequency response of the second circuit connected to the broadband dipole‐loop antenna.

2. Theoretical model

In this section we present the geometries of the two nanocircuits, the linear method of 
moments (MoM) model used in the theoretical analysis, the Lorentz‐Drude permittivity 
model and the equivalent surface impedance of the conductors, and the Gaussian beam used 
to feed the one circuit.
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2.1. Nanocircuit geometries

The geometries of the analysed nanocircuits are presented in Figures 1 and 2. In the first case 
as given in Figure 1, the geometry is composed by an OTL, of length L and radius aL, and two 
nanodipoles. The receiving dipole 1 is illuminated by a Gaussian beam polarized along its 
axis, and the emitting dipole 2 radiates the energy received from the OTL. The arm length and 
radius of the dipoles 1 and 2 are h

1
 and a

h1
, and h

2
 and a

h2
, respectively.

In the second case as given in Figure 2, the circuit is composed by an OTL and one dipole‐
loop combined antenna. This circuit is fed on the left side by a voltage source of width d. The 
dipole is connected to OTL and the rectangular loop is above the circuit, where the OTL and 
dipole are on the plane z = 0 and the loop is on the plane z = d

e
. The geometric parameters of 

the dipole‐loop antenna (Figure 2) are h
d
, a

d
, W

e
, H

e
, a

e
, d

W
 and d

H
, where the last two define 

the position of the loop with respect to the dipole.

Figure 1. Left side: nanocircuit composed by OTL and two nanodipoles, where dipole 1 is illuminated by Gaussian beam 
and dipole 2 radiates energy of OTL. Right side: equivalent linear MoM model.

Figure 2. Left side: nanocircuit composed by OTL and one dipole‐loop combined nanoantenna, where OTL is fed by a 
voltage source. Right side: equivalent linear MoM model.
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In both circuits, the distance between the conductor’s axis of OTL is d, in this case the dis-

tance between their surfaces is D = d – 2aL. In these figures are also presented (right side) the 
equivalent linear MoM model used in the numerical analysis, which will be described in the 
next sections.

2.2. Method of moment model

There are different formulations of the linear approximation of MoM in the literature [32, 
35–37]. Here we use the model given in Ref. [33], where the linear currents are expanded with 
sinusoidal basis functions. A brief description of this method is presented below, where we 
consider the scattering problem of Figure 1 to explain the method.

In the scattering problem of Figure 1, the background medium is free‐space and the conduc-

tors are in gold. The electrical permittivity of the gold conductors are represented by the 
Lorentz‐Drude model ε

1
 = ε

0
ε

r1
 [1], where

   ε  
r1

   =  ε  ∞   −   
 ω  

p1
  2  
 ______ 

 ω   2  − jΓω   +   
 ω  

p2
  2  
 _________ 

 ω  
0
  2  −  ω   2  + jγω    (1)

ε∞ = 8, ω
p1

 = 13.8 × 1015 s-1, Γ = 1.075 × 1014 s-1, ω
0
 = 2πc/λ

0
, λ

0
 = 450 nm, ω

p2
 = 45 × 1014 s-1, and 

γ = 9 × 1014 s-1. The losses of the metal are described by surface impedance Z
s
. This surface 

impedance can be obtained approximately by considering cylindrical waveguide with mode 
TM

01
 [33]:

   Z  
s
   =   

T  J  
0
  (Ta )
 ___________  

2πajω  ε  
1
    J  

1
  (Ta )    (2)

where  T =  k  
0
    √ 

___
  ε  

r1
      and   k  

0
   = ω  √ 

____
  μ  

0
    ε  

0
     , J

0
 and J

1
 are the Bessel functions of first kind of order zero and 

one, respectively, ω is the operating angular frequency, k
0
 is the propagation constant in air, μ

0
 

is the magnetic permeability of air and ε
0
 is the electrical permittivity of air.

The integral equation of the scattering problem is obtained by the boundary condition of 
tangential electric field at the surface’s conductors  (   E ¯¯    

s
   +    E ¯¯    

i
   ) ⋅    a ¯¯    l   =  Z  

s
   I , where     a ¯¯    l    is a unitary vector 

tangential to the surface of the metal,     E ¯¯    
s
    is the scattered electric field due to the induced linear 

current I on the conductor,     E ¯¯    
i
    the incident electric field of the Gaussian beam source, or of the 

voltage source in the case of Figure 2, and I is the induced longitudinal current in a given 
point of the nanocircuit. The scattered field is given by:

    E ¯¯    
s
  (  r ¯¯   ) =   1 ____ 

jω  ε  
0
  
    [   k  

0
  2    ∫ 

1

       I ̄  g(R ) d  l   ′  +   ∫ 
1

       dI _ 
d  l   ′    ∇ g(R ) d  l   ′  ]     (3)

where  g(R ) =  e   ‐j k  
0
  R  / 4πR  is the free‐space Green’s function, and  R =   |    r ̄   −    r ̄     ′  |     is the distance between 

source and observation points.

The numerical solution of the problem formulated by the boundary condition and Eqs. (1)–(3) 
is performed by linear MoM as follows. First, we discretize the linear circuit as shown in the 
right side of Figure 1, where NL, N

h1
 and N

h2
 are the number of straight segments in L, h

1
 and 

h
2
, respectively. In the Figure 1, we have NL = 7, N

h1
 = N

h2
 = 3. The discretization is uniform 

in L, h
1
 and h

2
, but the discretization length can be different, i.e. ΔLL = L/NL, Δh

1
 = h

1
/N

h1
 and  
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Δh
2
 = h

2
/N

h2
. With this discretization, the total number of straight segments of the nanocircuit 

is N
t
 = 2N

h2
+2NL+2N

h1
. For the method stability, we use the convergence conditions Δh

2
 > 2a

h2
, 

Δh
1
 > 2a

h1
, and ΔLL > 2aL. Then the current in each segment is approximated by sinusoidal basis 

functions [33]. The expansion constants I
n
 are shown in Figure 1 where each constant defines 

one triangular sinusoidal current. To determine these constants, we use N = N
t
 -2 rectangular 

pulse test functions with unitary amplitude and perform the conventional testing procedure. 
The following linear system of equations is obtained

   V  
m
   =  Z  

s
    I  

m
    Δ  

m
   −  ∑ 

n=1
  

N

     Z  
mn

    I  
n
    (4)

where m = 1, 2, 3, …, N, Z
mn

 is the mutual impedance between sinusoidal current elements m 

and n, Δ
m
 = [ΔL

m
+ΔL

m+1
]/2 [32], and V

m
 is the voltage induced in the segment m due the source 

field     E ¯¯    
i
   . The solution of Eq. (4) produces the current along the nanocircuit. With these results, 

it is possible to calculate near‐ and far‐field distributions and other parameters.

2.3. Gaussian beam source

In the case of nanocircuit 1 (Figure 1), the incident field is a Gaussian beam. This kind of wave 
is obtained by solving the scalar Helmholtz wave equation with the paraxial approximation 
[37]. The magnetic vector potential of a Gaussian beam polarized on the x‐axis and travelling 
in the +z direction is given by

   A ¯¯   =  u  
0
    √ 

__

   2 __ π       1 __ w   exp   (    
−  ρ   2 

 _ 
 w   2 

   )   exp   [  − j  (    
 k  

0
    ρ   2 
 _ 

2R
   −φ )    ]    e   −j k  

0
  z     a ¯¯    

x
    (5)

where u
0
 = (2Pμ

0
/k

0
ω)1/2, P is the power of the beam, w is the beam radius (Figure 3), R is the 

curvature radius of the phase front and φ is the phase of the beam. The three principal param-

eters that define the beam are the power P, the radius of the beam waist w
0
 (Figure 3) and the 

operating wavelength λ. With the vector potential given in Eq. (5), the x-component of electric 

field Ex of the Gaussian beam can be obtained from the Maxwell equations [37].

The excitation beam used in Figure 1 is focused on the receiving dipole 1 with polarization 
along the dipole axis (x‐axis), the direction of propagation is +z, the beam axis is along the 
z‐axis, and the minimum waist (w

0
) is localized at z = 0, which is the plane of the nanocircuit. 

In all the analyses presented in this work for the nanocircuit 1 (Figure 1), we consider a fixed 
Gaussian beam with power, P = 10-12 W, wavelength, λ = 830 nm and beam waist, w

0
 = 340 

nm. We use these values for comparisons with the results given in Ref. [29], but the analysis 
presented here can be applied for beams with other parameters. The field distribution of this 
beam is shown in Figure 3, where the electric field amplitude abs(Ex) is presented on the xz 

and xy planes and the phase distribution angle of Ex is presented on the xz plane. The phase 
at xy plane is constant.

3. Analysis of first nanocircuit

In this section, we analyse the first nanocircuit of Figure 1. In this case, we fix the Gaussian 
beam source given in Figure 3 at λ = 830 nm, and analyse the impedance matching character-

istic in function of the geometrical parameters of the OTL and nanodipoles.
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3.1. Numerical example

Based on the theoretical model presented above, we developed a MoM code in Matlab 
to analyse the nanocircuit shown in Figure 1. In this sub‐section, we present an example 
of simulation of the nanocircuit shown in Figure 1 fed by the Gaussian beam depicted in 
Figure 3. Figure 4 shows the geometry and discretization parameters used in this simula-

tion and the result of the current distribution along the circuit. The near‐field distribution 
for this example is given in Figure 5. Note that we use the total length of dipole as H

1
 = 2h

1
+d 

and H
2
 = 2h

2
+d.

We observe in these results the stationary behaviour in the OTL, which is due to the mismatching 
in the impedances of nanodipole 2 and OTL. To make a quantitative measure of the impedance 
matching degree, we calculate approximately the voltage stationary wave ratio (VSWR) near 
nanodipole 2 as VSWR = Imax/Imin

, where Imax and I
min

 are, respectively, the maximum and mini-
mum current magnitude nearest to dipole 2. With this parameter, we calculate the voltage reflec-

tion coefficient as |Γ
V
| = (VSWR‐1)/(VSWR+1). In this numerical example we obtained |Γ

V
| = 0.4.

Figure 3. Field distribution of Gaussian beam with P = 10-12 W, λ = 830 nm and beam waist w
0
 = 340 nm at xz and xy 

planes.
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3.2. Impedance matching analysis

This section presents a parametric analysis of the impedance matching of the nanocircuit for 
different values of h

2
, a

h2
, aL and D. In this analysis, we fixed the dimensions of the receiving 

dipole h
1
 = 173 nm, a

h1
 = 10 nm and the length of the OTL L = 1200 nm. Figure 6 presents the 

voltage reflection coefficient |Γ
V
| versus the total length of the emitting dipole H

2
 = 2h

2
 +d for 

different values of D = 10, 15 and 20 nm for the four cases (aL = 10 nm, a
h2

 = 10 nm), (aL = 10 nm, 
a

h2
 = 15 nm), (aL = 15 nm, a

h2
 = 15 nm), and (aL = 15 nm, a

h2
 = 20nm).

Analysing these curves we come to some conclusions. We note that the nanocircuits possess 
in general a smaller degree of input impedance matching (higher |Γ

V
|) when the gap of the 

OTL D is increased. The exceptions are the cases of Figures 6a and b in the range H
2
 < 400 nm, 

where we have a better matching for higher D.

Figure 4. Up: geometry and discretization of nanocircuit with H
1
 = 386 nm, H

2
 = 488 nm, L = 1200 nm, a

h1
 = 10 nm,  

aL = a
h2

= 15 nm, D = 10 nm, N
h1

 = 8, N
h2

 = 7, NL = 40, ΔLL = 30 nm, Δh
1
 = 21.6 nm, Δh

2
 = 32 nm and N = 108. Down: amplitude 

of linear current distribution along nanocircuit. The voltage reflection coefficient of this circuit is |Γ
V
| = 0.4.
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Figure 6. Voltage reflection versus H
2
 = 2h

2
+d for different values of D = 10, 15 and 20 nm. (a) aL = 10 nm and a

h2
 = 10 nm, 

(b) aL = 10 nm and a
h2

 = 15 nm, (c) aL = 15 nm and a
h2

 = 15 nm, and (d) aL = 15 nm and a
h2

 = 20 nm.

Figure 5. Normalized distribution of the electric field amplitude at plane z = 30 nm: (a) incident field of the Gaussian 
beam abs(Ex

i), (b) scattered field abs(Ex
s), and (c) total field abs(Ex).
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We also observe that in general the impedance matching is better when a
h2

 > aL. This means 
that the values of |Γ

V
| in Figure 6d are smaller than those of Figure 6c, and the values of |Γ

V
| 

in Figure 6b are smaller than those of Figure 6a. The latter comparison is only true in the 
range of H

2
 < 400 nm.

All these results show that we have many situations of good matching for different values 
of D, aL, a

h2
 and H

2
. Min(|Γ

V
|) occurs for larger H

2
, for examples in the cases D = 10 nm and 

H
2
 = 640 nm in Figure 6a, where |Γ

V
| ≈ 0.26, and D = 10 nm and H

2
 = 610 nm in Figure 6b, 

where |Γ
V
| ≈ 0.35. Other good results are for smaller H

2
, for example the case of D = 20 nm  

and H
2
 = 300 nm in Figure 6b, where |Γ

V
| ≈ 0.31.

One way to choose the best geometric parameters of the circuit is to consider the case with 
better impedance matching and efficiency simultaneously. The efficiency of the circuit 
depends mainly on the attenuation of the current along the OTL, i.e. depends on the loss 
constant α of the OTL. This parameter is constant for the principal mode that propagates 
on the OTL, and can be obtained approximately by the average inclination of the current 
versus distance along the OTL. In equation form we have α = ∆I/∆L, where ∆I is the variation 
of the average amplitude of the current in decibels (dB) along a given distance ∆L (nm) in 
the OTL. With this definition the unit of this parameter is dB/nm. In the numerical example 
presented in Figure 4 we have α ≈ 0.007393 dB/nm. This result is very close to α = 0.007296 

dB/nm obtained in Ref. [29] where the OTL is similar to our case shown in Figure 4 (aL = 15 

nm and D = 10 nm).

To understand better the behaviour of the impedance matching and efficiency characteristic 
of the results presented in Figure 6, we plot in Figures 7 and 8 the current distributions for dif-
ferent geometric parameters. Figure 7 shows the currents for two cases with same aL = 10 nm 

but different voltage reflection coefficients of |Γ
V
| = 0.31 and 0.67. In these results we observe 

a higher stationary wave for the case |Γ
V
| = 0.67 than for the case |Γ

V
| = 0.31. This shows 

that our approximate method to calculate |Γ
V
| provides a good measure of the degree of 

impedance matching. We also observe that the two cases present the same attenuation along 
the circuit (i.e. in both cases one has approximately the same loss constant α = 0.0111 dB/nm) 
because the OTL are constructed with the same radius of wires, aL = 10 nm.

Figure 8 presents the current distribution for two cases with good impedance matching  
|Γ

V
| = 0.26 and 0.36, but with different loss constant of α = 0.0119 and 0.0084 dB/nm, 

respectively. This difference is mainly due to the difference of the radius aL of the OTL. 
For lower values of aL the attenuation is higher in OTL and this result is similar to that 
observed in RF‐microwave regimes. This can be explained by the surface impedance 
model of Eq. (2), where smaller radius produces higher Z

s
 and, consequently, higher loss 

in the conductors.

Another analysis of this circuit was done varying the dimensions of the receiving dipole 1 
and fixing the dimensions of dipole 2 [32]. We observed that the dimensions of dipole 1 can 
modify the impedance matching and efficiency characteristics of circuit. The results show 
that good impedance matching does not necessarily mean a good efficiency in the receiving 
dipole, i.e. higher input current amplitude in dipole 1. For example, Figure 9 presents the 

total electric field distribution at plane z = 30 nm of two opposite situations. We can see in this 
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figure the differences in the field intensity, showing higher values of the emitting dipole in 
the case when the dipole 1 operates in the first resonance (Figure 9a), i.e. this case presents 
better efficiency. However, the case of Figure 9b presents better impedance matching than the 
case of Figure 9a.

Figure 8. Current distributions of two nanocircuits with good voltage reflection coefficient (|Γ
V
| = 0.26 and 0.36) 

possessing different values of aL.

Figure 7. Current distributions of two circuits with the same values of aL = 10 nm possessing different voltage reflection 
coefficient (|Γ

V
| = 0.31 and 0.67).
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4. Analysis of second nanocircuit

This section presents the analysis of second nanocircuit of Figure 2, where a voltage source 
fed an OTL on the left side and the other side is connected to a dipole‐loop combined antenna. 
Due the broadband characteristic of this circuit, the analysis presents the spectral response 
of the circuit in the range of 100–400 THz for different values of the geometrical parameters 
(Figure 2). First, we analyse the isolated broadband dipole‐loop antenna, and then we con-

sider the OTL connected to this antenna.

4.1. Analysis of isolated dipole‐loop

In this section, we analyse the isolated dipole‐loop antenna and its spectral response. Note 
that this case without the OTL is obtained when L = 0 in the nanocircuit given in Figure 2. To 
demonstrate the broadband characteristic of this nanoantenna, we first make a comparison 
with the conventional isolated nanodipole as a specific example. The geometrical parameters 
used in this example are: h

d
 = 200 nm, a

d
 = 20 nm, dL = 20 nm, d

W
 = 50 nm, d

H
 = 20 nm, a

e
 = 20 

nm, W
e
 = 2a

e
 + 2a

d
 + 2d

W
, H

e
 = 2h

d
 + dL + 2a

e
 + 2d

H
 (Figure 2), N

h
 = 5, N

He
 = 13, N

We
 = 4, N

t
 = 46. 

Observe that the arm length of nanodipole is h
d
 + a

d
 = 220 nm (Figure 2).

The first result obtained is the input impedance (Z
in

 = R
in

 + jX
in

) presented in Figure 10 for 

the case of isolated nanodipole (left) and dipole‐loop antenna (right). This result is compared 
with the simulation by Comsol software, which is based on FEM. We observe that the two 
methods produce values with good agreement for the used frequency range. For the isolated 
dipole case, the first resonant frequency for the MoM is 191.9 THz and for the Comsol it is 
187.7 THz, and the second resonant frequency for the MoM is 263.8 THz and for the Comsol 
it is 267.7 THz. In the case of dipole‐loop antenna, it can be seen that the electromagnetic cou-

pling between the dipole antenna and the loop antenna modifies the input impedance of the 
nanoantenna in comparison with the isolated dipole. It is further noted that the resonances 

Figure 9. Total (scattered and incident) electric near‐field distribution at plane z = 30 nm (a) receiving dipole at first 
resonance with H

1
 = 176.6 nm and a

h1
 = 20 nm (|Γ

V
| = 0.42). (b) Receiving dipole at second resonance with H

1
 = 637.7 nm 

and a
h1

 = 20 nm (|Γ
V
| = 0.21). In these simulations, we fixed the following parameters of OTL and emitting dipole: aL =15 

nm, a
h2

 = 20 nm, L = 1200 nm, and NL = 40.
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are moved to the lower frequencies. The first resonant frequency (Fλ/2
) for the MoM is 185.1 

THz and for the Comsol is 174.4 THz and the second resonant frequency (Fλ) for the MoM is 
256.4 THz and for the Comsol is 254.7 THz.

Figure 11 shows the results of calculation of the radiation efficiency and the reflection coeffi-

cient obtained by MoM and Comsol for the isolated nanodipole (left) and dipole‐loop antenna. 
The reflection coefficient is given by Γ = |(Z

in
–Z

0
)/(Z

in
+Z

0
)|, where Z

in
 is input  impedance 

of the nanoantenna and Z
0
 is the characteristic impedance of a given transmission line. The 

bandwidth is calculated by B = 200[(F
s
–F

i
)/(F

s
+F

i
)], where F

s
 is the upper frequency and F

i
 is 

the lower frequency at the level ‐10 dB of the reflection coefficient.

For the isolated nanodipole (Figure 11, left), the maximum radiation efficiency calculated 
by the MoM and the Comsol are ‐1.06 and ‐1.32 dB, respectively, occurring around the sec-

ond resonant frequency. However, the best input impedance matching point occurs around 

Figure 11. Radiation efficiency (e
r
) and reflection coefficient (Γ) for nanodipole (left, Z

0
 = 60 Ω) and dipole‐loop antenna 

(right, Z
0
 = 90 Ω) as function of frequency, calculated by MoM and Comsol.

Figure 10. Input impedance of the isolated nanodipole (left) and dipole‐loop antenna (right). The dimensions are: h
d
 = 

200 nm, a
d
 = 20 nm, dL = 20 nm, d

W
 = 50 nm, d

H
 = 20 nm, a

e
 = 20 nm.
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the first resonant frequency, using Z
0
 = 60 Ω. Therefore, the maximum efficiency and good 

impedance matching are found at different frequencies. This occurs because the characteristic 
impedance of an OTL is not necessarily matched to the input impedance of nanodipole with 
maximum efficiency [29]. The calculation of the reflection coefficient has been accomplished 
considering the connection of a line with Z

0
 = 60 Ω, and for this impedance the final value 

obtained by the MoM was B = 10.1% and by Comsol B = 11.2%. The results of Γ show that the 
isolated dipole has a narrow bandwidth.

For the dipole‐loop antenna (Figure 11, right), we can see that insertion of the loop besides 
modifying the input impedance also changes the reflection coefficient causing an increase of 
the bandwidth of the nanoantenna to 37.1% by MoM and 35.1% by Comsol. The increased 
bandwidth occurs because in the compound antenna occur an overlapping of different reso-

nances of loop and dipole, which produces a greater bandwidth. We can also observe that the 
resonance of the loop (near F ≅ 145 THz) and the resonance of the dipole (near F ≅ 184 THz). 
In the frequency range between 150 and 280 THz, the radiation efficiency remains almost 
constant reaching the maximum value of ‐1.276 dB by the Comsol simulation and ‐1.35 dB 
for the MoM simulation. Thus we have a broadband antenna with high efficiency and with a 
possibility to achieve good impedance matching with an OTL of 90 Ω.

Figure 12 shows the 3D far‐field gain radiation pattern for the isolated dipole and the dipole‐
loop nanoantenna. The frequencies to which these diagrams were calculated correspond the 
bandwidth central frequencies (F

c
 = (F

s
 + F

i
)/2) of Figure 11. The shape of these diagrams 

is approximately the same as of a small RF‐microwave dipole. The maximum gain of the 
 isolated dipole equals 1 for F

c
 = 170.85 THz and the maximum gain of the composed antenna 

is equal to 1.4 for F
c
 = 194.97 THz.

Table 1 shows a parametric analysis of bandwidth of the composed nanoantenna for d
W

 = 40, 50, 60 
and 70 nm, and d

H
 = 10 and 20 nm, respectively, varying only the parameters d

W
 and d

H
, and fixed 

parameters h
d
 = 200 nm, a

d
 = 20 nm, dL = 20 nm and a

e
 = 20 nm. In this table are given the values 

Figure 12. 3D far‐field gain radiation pattern of the isolated dipole and composed antenna for the central frequencies 
194.97 and 170.85 THz, respectively.
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of the OTL impedance which maximize the bandwidth for each simulated. We can see from this 
parametric analysis that it is possible to optimize the bandwidth by adjusting the dimensions of 
the loop element. The best case obtained was for d

H
 = 10 nm and d

W
 = 70 nm, where B = 42%.

4.2. Analysis of dipole‐loop connected to OTL

In this section, we present the analysis of nanocircuit 2 of Figure 2. First, we present the varia-

tion of near‐ and far‐field distribution in function of frequency, then the voltage reflection 
coefficient versus frequency is presented and finally a parametric analysis is presented.

4.2.1. Near‐ and far‐field results

In this section, we present the variation of near and far‐field distribution for a given example 
of nanocircuit as a function of frequency.

Figure 13 shows the current distribution along the nanocircuit for the frequencies of 100, 
200 and 300 THz, for the following parameters: h

d
 = 200 nm, L = 1200 nm, a

d
 = aL = a

e
 = 20 nm, 

 dL = 60 nm, d = dL – 2aL, d
e
 = 50 nm, d

W
 = 50 nm, d

H
 = 20 nm, N

h
 = 5, N

We
 = 4, N

He
 = 13, NL = 29 and 

N
t
 = 104. In the figure, the circle points identify the currents of each section of the nanocircuit. 

The points to the left of 1 and between 4 and 5 are the currents in the nanodipole, the ones 
between 1 and 2 and 3 and 4 are the currents of the OTL, those between 2 and 3 represent the 
current of the source, and finally those between 5 and 6, 6 and 7, 7 and 8 and to the right of 
8 are the currents of the loop. We can see that while the frequency increases the attenuation 
of the current in the OTL increases, showing that at optical frequencies the conduction losses 
are higher. The stationary pattern presented in the figure shows the mismatch of the imped-

ance of the optical transmission line and the nanodipole. The same oscillatory behaviour is 
observed in Figure 14, where the distribution of the normalized electric field near a parallel 
plane to the nanocircuit (for the same frequencies as in Figure 13) is shown. These fields were 
calculated for the plane z = 80 nm. It is evident that the energy transferred from the source to 
the nanodipole is reduced with the increasing frequency.

Figure 15 shows the 3D far‐field gain radiation diagram for this nanocircuit for F = 100, 200 
and 300 THz. The shape of these diagrams can be explained when we pose that the nanocircuit 
in Figure 2 acts as an array of two antennas spaced by the length L of the OTL, wherein the first 

d
W

30 nm 40 nm 50 nm 60 nm 70 nm

d
H

10 nm B = 35.4% B = 36.8% B = 38.3% B = 40% B = 42%

Z
0
 = 85 Ω Z

0
 = 105 Ω Z

0
 = 100 Ω Z

0
 = 115 Ω Z

0
 = 120 Ω

20 nm B = 33.2% B = 34.1% B = 35.1% B = 17.7% B = 17.5%

Z
0
 = 80 Ω Z

0
 = 85 Ω Z

0
 = 90 Ω Z

0
 = 80 Ω Z

0
 = 95 Ω

Table 1. Results of parametric analysis of the composed nanoantenna.

Nanoplasmonics - Fundamentals and Applications280



Figure 13. Normalized current distribution along the nanocircuit for F = 100, 200 and 300 THz, with the parameters: h
d
 

= 200 nm, L = 1200 nm, a
d
 = aL = a

e
 = 20 nm, dL = 60 nm, d

e
 = 50 nm, d

W
 = 50 nm, d

H
 = 20 nm, N

hd
 = 5, N

We
 = 4, N

He
 = 13, NL = 

29 and N
t
 =104.

Figure 14. The electric field distribution in the plane z = 80 nm, F = 100 THz (top left), 200 THz (top right) and 300 THz 
(bottom), the parameters are: h

d
 = 200 nm, L = 1200 nm, a

d
 = aL = a

e
 = 20 nm, dL = 60 nm, d

e
 = 50 nm, d

W
 = 50 nm, d

H
 = 20 nm, 

N
hd

 = 5, N
We

 = 4, N
He

 = 13, NL = 29 and N
t
 =104.
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one is the dipole‐loop antenna (right side of the circuit) and the second one is an equivalent 
dipole formed by the voltage source (left side of the circuit), that also radiates. Thus, the result-
ing radiation pattern of this arrangement is the product of the radiation pattern of one element 
and the array factor, leading to the shape drawn in Figure 15. Furthermore, it can be noted that 
when frequency is increased the resulting pattern has more side lobes. Another observation 
in these diagrams is that the radiation intensity is higher in the –z direction, because the loop 
element above the dipole acts as a reflector of waves in the downward direction.

4.2.2. Voltage reflection coefficient

To analyse the impedance matching of the OTL with the antenna, it is necessary to calculate 
the voltage reflection coefficient as was done previously in Section 3.1. The results of calcula-

tions for the nanocircuit presented in Figures 13 and 14 are shown in Figure 16 for |Γ
V
| as 

a function of frequency for the nanocircuit with the loop and without it. In the figure, the 
minimum points |Γ

V
| are highlighted. They are ‐7.6 and ‐13.5 dB, at F = 157.3 and 383.4 THz, 

respectively, for the case of the nanocircuit with the loop. This figure shows that the voltage 
reflection coefficient decreases with the addition of the loop into the optical nanocircuit near 
these frequencies (157.3 and 383.4 THz). Besides, this figure explains the stationary behaviour 
of the current and field shown in Figures 13 and 14.

For the frequencies corresponding to these minimum voltage reflection coefficients for the 
case of the nanocircuit with loop shown in Figure 16, the current distribution in Figure 17 and 

normalized electrical field distribution in the plane z = 80 nm in Figure 18 are given.

It can be observed in Figures 17 and 18 that with increasing of frequency the attenuation of the 
current and the electric field in the OTL increases due to conduction losses. It may be noted 
that for the frequency of 383.4 THz there is a significant drop at the standing wave rate in rela-

tion to the frequency of 157.3 THz, which presents a decrease in reflection losses on the line. 
On the other side, for the frequency 157.3 THz one has a higher level of current in OTL (higher 
transmission efficiency) than for the frequency 383.4 THz (Figure 17). This means, again, that 
a better impedance matching does not imply a higher transmission efficiency along the OTL.

Figure 15. 3D far‐field gain radiation pattern of the circuit for F = 100, 200 and 300 THz.
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Figure 16. Voltage reflection coefficient as a function of frequency, the parameters are h
d
 = 200 nm, L = 1200 nm, a

d
 = aL = 

a
e
 = 20 nm, dL = 60 nm, d

e
 = 50 nm, d

W
 = 50 nm, d

H
 = 20 nm, N

hd
 = 5, N

We
 = 4, N

He
 = 13, NL = 29 and N

t
 = 104.

Figure 17. Current distribution for F = 157.3 and 383.4 THz, with |Γ
V
| = ‐7.6 and ‐13.5 dB, respectively.

Figure 18. Electric field distribution in plane z = 80 nm for frequencies F = 157.3 (left) and 383.4 (right) THz, for cases with 
the reflection coefficient |Γ

V
| = ‐7.6 and ‐13.53 dB, respectively.
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Figure 19 shows the 3D far‐field gain radiation pattern for the nanocircuit for F = 157.3 and 

383.4 THz. We observe again that the circuit in Figure 2 works like an array of two dipoles 
spaced by the length L of the OTL. Also, the gain level of case 157.3 THz is higher than that for 
383.4 THz, which is in accordance with the current levels of Figure 17.

4.2.3. Parametric analysis

Finally, a parametric analysis of the voltage reflection coefficient is shown in Figure 20. For 
the simulations we fix the following parameters: the distance between the surfaces of the OTL 
(D = 20 nm), the length of the electric dipole (h

d
 = 200 nm), the radii (aL = 20 nm, a

d
 = 20 nm 

and a
e
 = 20 nm) and the length of the OTL (L = 1200 nm), and vary the parameters d

W
 (d

W
 = 30, 

40 and 50 nm) and d
H
 (d

H
 = 10 and 20 nm), that consequently change the width (W

e
 + 2a

e
) and 

the length (H
e
 + 2a

e
) of the loop. In Figure 20, we show the results for the voltage reflection  

coefficient without the loop for comparison.

Figure 19. 3D far‐field gain radiation pattern of the circuit for F = 157.3 and 383.4 THz.

Figure 20. Voltage reflection coefficient (|Γ
V
|) with the loop near the dipole for different values of d

W
 (30, 40 and 50 nm) 

with d
H
 = 10 (left) and 20 (right) nm and also |Γ

V
| without the loop.

Nanoplasmonics - Fundamentals and Applications284



Analysing these figures one comes to the following conclusions. In all simulated geometries of 
the circuit with the loop, there is an improvement in comparison with the circuit without the 
loop regarding impedance matching at some points as can be seen in the figures. The second 
conclusion is that, for smaller values of d

W
, the curves of the voltage reflection coefficient (|Γ

V
|) 

are shifted to the higher frequencies. This occurs because the impedance matching depends on 
the positions of the resonances of the nanoantenna, that are shifted to higher frequencies for 
smaller lengths of d

W
. In general, the best impedance matching is obtained for smaller values 

of d
W

. This behaviour can be explained by reduction of the reflection coefficient (|Γ
V
|) of the 

nanoantenna when d
W

 decreases. But then, an increase on d
H
 results in increased values of |Γ

V
|. 

This occurs because the reflection coefficient of nanoantenna increases with the increase on d
H
.

5. Conclusions

An impedance matching analysis of two plasmonic nanocircuits with nanoantennas was pre-

sented. The first circuit is composed by an OTL connected between two nanodipoles, where one 
nanodipole is illuminated by a Gaussian beam. In the second circuit, a voltage source fed an OTL 
that is connected to a dipole‐loop broadband nanoantenna. The linear MoM with finite surface 
impedance was used for numerical calculations, and some results were compared with FEM.

In the analysis of first circuit, we concluded that good impedance matching and transmission 
efficiency depends not only on the OTL and the emitting dipole, but also on the receiving 
dipole. In other words, the electromagnetic behaviour depends on the whole circuit. Also, we 
verified that good impedance matching does not imply on good transmission efficiency. An 
example of these opposite situations is presented in Figure 9.

In the second analysis, it was showed that a dipole‐loop combined nanoantenna connected to 
an OTL can increase the operating bandwidth and improve the degree of impedance match-

ing, when compared to the conventional isolated nanodipole. We obtained a best fractional 
bandwidth of 42%, for the dipole‐loop nanoantenna, and a minimum voltage reflection coef-
ficient of –25dB for this second nanocircuit.
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