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Abstract

In this article, we introduced the background knowledge of lung cancer management and 
considered repurposing old drugs to overcome therapy bottleneck. We chose metformin 
to prove both its antihyperglycemia and antitumor formation effects. Based on the met-
formin-related AMPK-dependent pathway, we tried to explore the AMPK-independent 
pathway in inhibition of lung tumorigenesis by metformin. Using preclinical data mining 
from clinical settings with a literature review, we attempted to clarify the role of metfor-
min in lung cancer management. Additional objective and strong evidence are needed 
using randomized control studies to verify the benefit of metformin in clinical practice. 
Furthermore, we proposed two lung cancer animal models and showed the establish-
ment processes thoroughly. We hope that these two lung cancer animal models provide 
a useful platform for furthering old drug repurposing as well as new drug investigations 
in the future.

Keywords: lung cancer, metformin, animal model, AMPK pathway, orthotopic injection

1. Introduction

1.1. Background

Lung cancer is known as a major cause of cancer-related mortality worldwide. Newly discov-

ered drugs focus on the issue of improving survival and need vast time and investment. In Ref. 
[1], it was estimated that it took 13 years and cost of 1.8 billion dollars for one newly developed 
drug. Additionally, just only one of the 5000 promising antitumor agents had the potential 
to pass the U.S. Food and Drug Administration (FDA) regulation and obtain final approval. 
With respect to currently used drugs, it is convenient to quickly access the “repurposing” or 
“repositioning” effect of converting them into anticancer management. In recent years, more 
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and more studies have involved the antidiabetes drug metformin. Initially, Evans et al. [2] 

observed that patients with type 2 diabetes mellitus (DM) under metformin treatment had a 
reduction of cancer incidence. It caused a 23% reduction of risk of any cancer for the metfor-

min group. Though it was an observational study, more and more research and experimental 
designs followed the path. Bo et al. [3] showed that the cancer incidence of type 2 DM patients 
with metformin was lower than that compared with other oral antidiabetic (OAD) agents. For 
pancreatic and colon cancer patients, Currie et al. [4] found that the metformin users among 

the type 2 DM group had lower cancer incidence. For breast cancer patients, some studies 
found that metformin was beneficial for neoadjuvant chemotherapy groups [5,6]. Regarding 
animal models, Algire et al. [7] proved the efficacy of metformin in lung cancer. From the pre-

liminary result of above studies, we could understand the  utilization of metformin in different 
types of cancers, including lung cancer.

1.2. Diabetes mellitus and metformin

Diabetes mellitus is a common metabolic disease, and the associated prevalence is approxi-
mately 7–10% [8]. Patients with DM have higher risk of cardiovascular disease, nephropathy 
(renal function impairment), retinopathy and polyneuropathy (numbness of distal part of four 
limbs). It is known that hyperglycemia is crucial for the development of many cancers, includ-

ing breast, liver, colorectal, kidney and lung cancer. Among the diverse ODA agents for type 2 
DM, metformin was the common first-line choice worldwide. It is estimated that approximately 
120 million patients initially took metformin for controlling blood sugar. Moreover, the safety of 
metformin is confirmed due to a lower incidence of lactic acidosis compared with other OAD.

Metformin (N′,N′-dimethylbiguanide) belongs to the biguanide class. It possesses hypoglyce-

mic effect by inhibition of gluconeogenesis. Further it could lower insulin resistance, which is 
very important for cancer growth. From earlier studies, scientists found metformin could acti-
vate the adenosine monophosphate-activated protein kinase (AMPK) pathway to negatively 
regulate the mammalian target of rapamycin (mTOR) pathway with the aid of liver kinase 
B1 (LKB1) [9,10]. The mTOR pathway helps proliferation for cell viability [11]. Therefore, 
metformin could demonstrate an antiproliferative effect in cells, even for cancer cells. Based 
on this implication, metformin showed the potential for an antitumor effect. In addition to 
the AMPK-dependent pathway, some studies supposed metformin could exert an AMPK-

independent pathway in dealing with tumorigenesis [1]. Later, we will focus on the issue of 
the antitumor effects of metformin in lung cancer.

2. Mechanism of metformin on antitumorigenesis

2.1. The antitumor effect of metformin

2.1.1. Metformin corrects hyperglycemia

Metformin can accumulate within the matrix of mitochondria, and it could exert the inhi-

bition of the complex I of the mitochondrial electron transport chain. Further, reduction of 
nicotinamide adenine dinucleotide hydride (NADH) oxidation can also cause the reduction 
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of synthesis of adenosine triphosphate (ATP). After the activation of AMP-activated pro-

tein kinase (AMPK), it enhances catabolic activity instead of the anabolic process. It initiates 
transcriptional signal transduction, inhibition of gluconeogenesis, and induction of glucose 

uptake into muscle cells via glucose transporters (GLUT2) [12]. Moreover, metformin can 
indirectly cause the induction of insulin receptor expression to facilitate insulin sensitivity 

and reduce insulin resistance, which is associated with tumor growth [13].

2.1.2. Metformin upregulates AMPK

Metformin can activate AMPK to initiate the downstream signal transduction to affect the 
transcription of tumor suppressor liver kinase B1 (LKB1) [14]. Once AMPK is activated, it neg-

atively regulates the mTOR pathway by phosphorylation and activation of tuberous sclerosis 
complex 2 (TSC2) and inhibition of downstream small GTPase (RHEB). The mTOR pathway 
is crucial for tumor cell survival because mTOR plays a vital role in cell growth, prolifera-

tion and protein synthesis. Moreover, the mTOR pathway could be activated via mitogenic 
responsive phosphoinositide 3-kinase/protein kinase B/AKT (PI3K/PKB/AKT) pathway. 
When metformin-related AMPK dependent pathway is affected, the inhibition of mTOR sig-

nal transduction and reduction of cancer cell proliferation are achieved [15].

2.1.3. AMPK and p53 pathways

It is known that p53 can activate numerous genes to negatively regulate the AKT and mTORC1 
pathways, resulting in cancer cell quiescence, senescence and further apoptosis. Thus, once 
AMPK phosphorylates p53, it could lead to p53-mediated cell cycle arrest in p53-expressing 
cells and cell apoptosis for cells with mutated p53 [11].

2.1.4. Inflammatory pathway and metformin

For tumorigenesis, chronic inflammation is attributed to tumor growth and development. 
Once the inflammatory process is stimulated, it causes DNA adduct formation and increases 
the amount of inflammation biomarkers (such as cytokine/chemokines, immune-related effec-

tors, acute phase proteins, reactive oxygen and nitrogen species, prostaglandins, cyclooxy-

genase-related factors and transcription factors and growth factors) [16]. Like tumor necrosis 
factor-alpha (TNF-α), nuclear factor-kappa B (NF-kB) and signal transducer and activator of 
transcription 3 (STAT3) are important components of the inflammation reaction. Arai et al. elu-

cidated that metformin reduces the process and production of TNF-α in human monocytes [17].

Reactive oxygen species (ROS) play a vital role in the formation of advanced glycation end 
products to enrich oxidative stress. Metformin can reduce the production of endogenous reac-

tive oxygen species via inhibition of mitochondrial complex I [18].

2.1.5. Cell cycle pathway and metformin

Sahra et al. found that metformin has an antiproliferation effect, which is mediated by G1 
cell cycle arrest. In a study with prostate cancer cells, metformin-induced cell cycle arrests by 
inhibiting the expression of cyclin D1 and retinoblastoma-protein (pRb) [19].
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2.1.6. Angiogenesis and metformin

For tumor cells growth, vast amounts of nutrition and oxygen are needed. As the tumor 
enlarges and begins to invade and cause distant metastasis, angiogenesis is the cornerstone. 
Tumor cells easily develop pro-angiogenic agents once exposed to a hypoxic environment [8]. 
The vascular endothelial growth factor (VEGF) formation is the key step. The VEGF group is 
consisted of four members (VEGF-A, B, C and D), and VEGF-A is the most potent. VEGF-A 
has four isoforms: VEGF-A

121
, VEGF-A165, VEGF-A189 and VEGF-A206. VEGF-A165 functions in 

both the angiogenic process and cell growth. Moreover, the angiogenesis process needs a 
cofactor (neuropilin; NRP-1) to facilitate the VEGF ligand interaction with the VEGF receptor 
(VEGF-R2) [16,20]. In our previous lung cancer cell line (A549) experiments, the expression of 
NRP-1 decreased after the addition of metformin.

2.1.7. Models of metformin using different cell lines

In the beginning, anticancer studies were started from cell lines and animal models (commonly 
using a xenograft model). There are a vast number of antitumor studies with metformin on 
ovarian cancer, gastric cancer, pancreatic cancer and breast cancer. Some emphasize cell cycle-
related proteins (CD1, CDK4 and CDK6) and some focus on microRNA (miR) regulation and 
signal transduction [21–24]. Moreover, cancer stem cells (CSC) were also found to be involved 
in the antitumor effect of metformin in both cell lines and xenograft models. The dosage and 
administration route of metformin were diverse. We provided a brief summary of previous 
findings of the antitumor effects of metformin on different cell lines in Table 1 [21, 22, 24, 25].

Cancer cell 

type

Ovarian cancer Gastric cancer Breast cancer, 

prostate cancer, 

lung cancer

Pancreatic cancer

Lab material 1. Cell line

2. Xenograft model

3. Live tumor analysis

1. Cell line

2. Xenograft

3. miRNA

1. Cell line

2. Xenograft

1. Human pancreatic 
cancer cells

Mechanism 1. Inhibit tumor 

proliferation (IHC: 
Ki-67↓, Cyclin D1↓)

2. pACC↑: downstream 

target of AMPK 

(pmTOR↓)

1. Cell cycle–

related protein 

(CD1↓,CDK4↓, 

CDK6 ↓)
2. Block G0-G1 phase
3. Cell proliferation 

assay

1. Cancer stem cells 

(CD44↑, CD24↓)
1. microRNA analysis
2. RT-PCR

Results 1. Inhibits angiogenesis 

(IHC stain for VEGF, 
CD-31)

2. Microvessel density: 

CD-31
3. Inhibits metastasis of 

ovarian cancer

4. Enhances cytotoxicity 
of chemotherapy 

reagents (Cisplatin: 
colony formation assay)

1. Reduced Cyclin D1 
expression

1. Metformin reduces 

the dosage of 

chemotherapy 

(Doxorubicin)
2. Lung cancer cell 

line ( A549)

1. Metformin 

up-regulates the 

expression of miR-
26a, miR-192 and 
let-7c.

2. Cell migration

3. Cell proliferation 

assay

4. Metformin suppresses 

the oncogene: 

HMGA1
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2.2. Literature review of the present studies on the issue of metformin in lung cancer

First, we searched the articles on PubMed that included with metformin and lung can-

cer in the title. From basic, preclinical research (including cell lines and animal studies) to 
observational studies, we attempt to explain the association of the antitumor mechanism by 
metformin.

2.2.1. Preclinical studies

2.2.1.1. Metformin and lung cancer cell lines

Initially, Ashinuma et al. investigated the effect of metformin on the inhibition of clonogenic-

ity, cell growth and proliferation using four different lung cancer cell lines [26].

2.2.1.2. Synergistic effect of metformin with chemotherapy reagents

Chemotherapy is widely used for the treatment of advanced lung cancer (stage IIIB and IV). 
Some studies aim to overcome chemoresistance by the combination of metformin and chemo-

therapy. The report of Tseng et al. [27] showed metformin mediated the downregulation of 

p38 mitogen-activated protein kinase-dependent excision repair cross-complementing 1 and 
decreased DNA repair ability. Additionally, it could further sensitize human lung cancer cells 
to cisplatin and paclitaxel agents [27,28].

2.2.1.3. Synergistic effect of metformin and tyrosine kinase inhibitors (TKIs)

Tyrosine kinase inhibitors (TKIs) such as gefitinib (Iressa), erlotinib (Tarceva) and afatinib 
(Giotrif) are now validated as the first-line therapy for advanced lung adenocarcinoma bear-

ing mutant epidermal growth factor receptor (EGFR). Studies designed to evaluate the pos-

sible synergistic effect of metformin and TKIs were launched. Morgillo et al. [29] showed that 

metformin with gefitinib had more obvious antiproliferative and proapoptotic effects in both 
cell line and animal models (xenograft).

Cancer cell 

type

Ovarian cancer Gastric cancer Breast cancer, 

prostate cancer, 

lung cancer

Pancreatic cancer

Route Oral feeding metformin in 
drinking water 200 ml

i.p. injection 
(intraperitoneal)

Oral intake in 
drinking water.

1. i.p. (Xenograft)
2. Cell line

Dosage Reagan-Shaw formula
1. Human: 480 mg/60 kg
2. Mouse: 100 mg/kg

1. 1 mmol/L, 

5 mmol/L 

10 mmol/L 

1 or 2 mg/day, i.p., 
5 times/week for 
4 weeks

200 μg/mL (15 mg/kg) 1. 1. i.p: 250 mg/kg 
(100 μL/mouse)

2. 2. Cell line: 
(0~10 mmol/L)

Reference [24] [22] [21] [25]

Table 1. The associated antitumor mechanism of metformin on different cancer cells.
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2.2.1.4. Synergistic effect of metformin and TKI in EGFR-TKI–resistant lung cancer cell line

First-line TKIs in lung adenocarcinoma encountered the issue of drug resistance due to the devel-
opment of EGFR-resistant strains (such as T790M). To overcome this problem, Li et al. [30] proved 

that metformin could reverse epithelial-to-mesenchymal transition (EMT) and interleukin-6 (IL-
6) signaling activation in EGFR-TKI–resistant lung cancer cells. Then, they proved metformin 
could increase sensitivity for EGFR-resistant strains to TIKs (gefitinib and erlotinib) therapy.

2.2.1.5. Effect of metformin in radiation therapy for lung cancer

Radiation therapy is one therapy modality for lung cancer patients. However, the possible 
effects when adding metformin to radiation therapy are unknown. Storozhuk et al. showed 
that metformin may enhance the radiation response of nonsmall cell lung cancer through the 

ataxia-telangiectasia mutated protein kinase (ATM) and AMPK pathway [31].

2.2.2. Observational studies

2.2.2.1. Population-based studies in Taiwan

In Taiwan, the National Health Insurance Registered Database (NHIRD) is popular for further 
assessment and discovery of medical issues. Experts attempt to find the association between 
metformin and lung cancer risk among type 2 DM patients. Lai et al. performed an epide-

miological study and found that in patients treated with metformin, compared with the non-

metformin (other OAD) group in type 2 DM patients, the reduction of lung cancer risk was 
approximately 39–45% [32].

2.2.2.2. Population-based studies outside Taiwan

From a retrospective study performed by Tan et al., they defined diabetic nonsmall cell lung 
cancer (NSCLC) patients receiving chemotherapy as the first-line treatment. Patients were 
divided into three groups: (A) Chemotherapy + metformin; (B) Chemotherapy + insulin, and 
(C) Chemotherapy + other OAD. They found that group A had superior median overall sur-

vival (OS) compared with the other two groups (20 months vs. 13.1 months vs. 13.0 months, 
respectively, P = 0.007) [33]. Like the NHIRD in Taiwan, the USA has a similar system called 
the SEER (surveillance, epidemiology and end results) database. Lin et al. collected 750 dia-

betic patients diagnosed with stage IV NSCLC and showed that the metformin group was 
associated with a benefit in survival. The hazard ratio (HR) was 0.80 and 95%, and the confi-

dence interval (CI) is 0.71–0.89, respectively [33,34]. A study by Zhu et al. [35] showed met-

formin was significantly associated with a 16% reduction of lung cancer risk in type 2 DM 
patients. The relative risk (RR) is 0.84 and 95% CI (confidence interval was 0.73–0.97, P < 0.05).

3. Animal models applied to lung cancer studies

Animal models are indispensable for transforming in vitro studies into an in vivo setting. 
Subcutaneous xenograft models are commonly used as lung cancer animal models. In this 
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model, lung cancer cell lines are injected subcutaneously to the flank side of nude mice. 
Different designed reagents are administered, and the response after medical therapy is 
observed. The tumor is not directly initiated from the original lung tissue. Thus, it is an indi-
rect way to observe the so-called lung tumor formation.

Here, we introduced two lung cancer animal models developed in our laboratory. Model 1 

was transgenic mice with an overexpression of human vascular endothelial growth factor 

(hVEGF)-A165. The model emphasized angiogenesis in the lung cancer formation process. 
Model 2 was an in vivo image model of orthotopic lung adenocarcinoma formation in mice 

by using dual fluorescence reporting genes (pCAG-iRFP-2A-Venus). We could track the 
lung tumor formation and response to therapy more directly. We provide a summary for 
these two animal models and compare them with the subcutaneous xenograft model as 

shown in Table 2.

3.1. Animal model 1: overexpression of human vascular endothelial growth 

factor (hVEGF)-A
165

-induced lung tumorigenesis in transgenic mice

3.1.1. Background

When a tumor develops, it demands a vast amount of oxygen and nutrition for tumor growth. 
When a tumor is small in size, approximately 105 to 106 tumor cells, it depends on the dif-

fusion effect for nutrition transport. As the tumor enlarges, it must overcome hypoxia and 
develop an angiogenic switch, including proangiogenic and angiogenic factors. Once vas-

culogenesis and angiogenesis are established, the tumor can invade extensively and cause 

distant metastasis [36]. Based on this theory, we demonstrate lung tumor formation via the 
angiogenesis model.

Animal models for lung 

cancer study

Model 1 Model 2 Current model

Mechanism hVEGF-A165 over-
expression transgenic  

mice

Orthotopic lung xenograft 
(transpleural injected) dual 
fluorescence reporter

Subcutaneous xenograft

Species of animal Transgenic mice (FVB) Nude mice (BALB/cAnN.
Cg-Foxnlnu/CrlNARL)

Nude mice

Lung cancer cell line selected Not applied A549 A549

Tumor formation site Lung Lung Trunk or flank area

Tumor formation duration Approximately 12 months Approximately 4–6 weeks Approximately 4–6 weeks

IVIS setting No Yes No

Lung tumor formation Direct Direct Indirect

Reference [37] [40] [21]

Table 2. Comparison of our two types of animal models with the current subcutaneous xenograft model for lung tumor 

formation.
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3.1.2. Materials and methods, see Ref. [37]

1. Create transgenic mice carrying the mccsp-Vegf-A
165

-sv40 transgenic fusion gene 

(Figure 1A)

• A 1975-bp mccsp-Vegf-A165–sv40 transgene was directly microinjected into pronuclear 
stage FVB mouse embryos and then transferred into the fallopian tube of the recipient 
females mice.

• Transgenic mice were mated with littermates or normal FVB mice to produce offspring.

• The resulting 12-month transgenic offspring were the candidates for performing the 
lung cancer model.

2. Gross picture of homozygous transgenic mice compared with wild-type mice (Figure 1B)

• Illustration of the whole picture of lung tissues from transgenic mice (homozygous) and 
wild type mice. We can observe the mass with a bulging appearance of lung tissue, with 
tumor formation in the transgenic mice (Figure 1B, upper panel).

Figure 1. Animal model 1 for overexpressing human vascular endothelial growth factor (hVEGF)-A165-induced lung 

tumorigenesis in transgenic mice. (A) Construction map of hVEGF-A165 overexpression, which is controlled by mouse 

Clara cell-specific protein (mccsp) promoter. The structure of the transgene is approximately 1975-base pairs in length. 
(B) The whole exterior (upper panel) and histopathologic sections of the lung tissues (lower panel) in the transgenic mice 
(right side) and wild-type mice (left side). (C) Western blot analysis of the hVEGF-A165 protein expression level in the 

lung tissue of wild type and transgenic mice (upper panel) and the quantification data.
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3. Histopathologic analysis of the lung tissue in transgenic mice and wild-type mice 

(Figure 1B)

• From the lower part of Figure 1B, we can easily find the lung tumor formation with 
bizarre cell shapes and increased nucleus/cytoplasm (N/C) ratios in the lung tissues of 
transgenic mice. The wild type mice showed no tumor-specific appearance.

4. Validation of hVEGF-A
165

 protein expression of transgenic mice was performed by west-

ern blot analysis

• In the lung tissue of 12-month transgenic mice, the western blot data proved, there 

were more than 5-fold higher levels of VEGF expression compared with wild type mice 
(Figure 1C).

3.2. Animal model 2: dual fluorescence reporting genes expressed by an in vivo 

imaging model of orthotopic lung adenocarcinoma in mice

3.2.1. Background

In cancer research, it is important to perform in vivo animal experiments to further mimic the 

effects on human beings. During the study period, it is necessary to record images simultane-

ously. Real time imaging depends on the in vivo image system (IVIS). The creation of good IVIS 
images is necessary and demands comprehensive consideration. The property of good IVIS 
images requires an optimal imaging window. For the mammalian tissue study, obtaining deep 
optical images requires near-infrared (NIR) fluorescent probes. The NIR optical window is 
around from 650 to 900 nm. Under this optical window, mammalian tissue is considered more 
transparent to light due to the limited combined absorption of water, melanin and hemoglobin. 
Moreover, under this spectral region, it could eliminate autofluorescence and have low light 
scattering [38]. The common used near-infrared fluorescent proteins (iRFP) included iRFP670, 
iRFP682, iRFP702 and iRFP720 [39]. Based on this concept, we designed a near-infrared fluores-

cent mice tumor model to further evaluate the IVIS expression during lung tumor formation.

3.2.2. Material and methods, see Ref. [40]

3.2.2.1. Construction of dual fluorescence-expression vector

• The construction map of the pCAG-iRFP-2A-venus transgene is shown (Figure 2A).

• Transfection of lung adenocarcinoma cell line (A549) with pCAG-iRFP-2A-venus expres-

sion was performed. The iRFP can show red fluorescence. Venus can show green fluores-

cence. And DAPI (4’,6-diamidino-2-phenylindole) emits blue fluorescence in cell nuclei as 
a background control (Figure 2B).

3.2.2.2. Orthotopic lung injection with transfected A549 lung adenocarcinoma cells

• Animal species: Four-week-old male nude mice (BALB/cAnN.Cg-Foxnlnu/CrlNARL) 
was used.

Repurposing Metformin for Lung Cancer Management
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• A total of 2E+6 iRFP-2A-venus A549 cells were directly injected orthotopically into the 
transpleural cavity on the left lung side of nude mice.

• IVIS imaging recorded lung tumor formation (Figure 2C).

3.2.2.3. Histopathologic analysis confirms the tumor formation of orthotopic lung injected nude mice, 
which had iRFP-2A-venus A549 expression

• By examining the tissues with an H&E stain, we observe abundant tumor cells formation 
in the orthotopically injected iRFP-2A-venus A549 cells in mice lung tissue (Figure 2D, 

upper panel).

• Using immunohistochemistry (IHC) and staining with antivenus, lung tumor formation 
was found (Figure 2D, lower panel).

Figure 2. Animal model 2 for dual fluorescence reporting genes expressed by in vivo imaging model of orthotopic 

lung adenocarcinoma in mice. (A) Construction map of dual fluorescence expression vector, pCAG-iRFP-2A-venus 
transgene. (B) Three different fluorescence signals were used in iRFP-2A-Venus A549 cells expressed under a 
fluorescent microscope: DAPI (blue), iRFP (red) and venus (green). Scale bar: 50 μm. (C) The IVIS imaging analysis 
of nude mice that received iRFP-2A-venus A549 cells by orthotopic injection. Color scale: Max: 4.56e+7, Min: 2.02e+7. 
(D) Histopathologic study of nude mice lung tumors after receiving iRFP-2A-venus A549 cells by orthotopic 
injection. L and R represent left and right lungs, respectively. The left side column (a) and (c) represent H&E and 
IHC expression on the longitudinal sections of lung tumors, respectively. The brown color of antivenus expression 
in column (c) and (d) indicates lung tumor formation. The scale bar in columns (b) and (d) is 100 μm.
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4. Conclusion

First, we presented a brief introduction of the antihyperglycemic effect of metformin. More and 
more studies have involved the repurposing of metformin due to its observed antitumor effects. 
Observational studies found lung cancer patients with type 2 DM under metformin treatment 
had better outcomes. Through a literature review, we initially sought to examine the potential 
antitumorigenic effects of metformin in a preclinical setting. Population-based research revealed 
the survival benefit of type 2 DM patients with metformin under cancer management. Based 
on the AMPK-dependent pathway, we attempted to discover an AMPK-independent pathway 
(such as angiogenesis, inflammation, etc.) related to metformin. Later, we illustrated two ani-
mal models of lung cancer utilized in our research group. Model 1 focused on the angiogenesis 

pathway. Overexpression of human VEGF-A165 transgenic mice model provided further clues 

for tumor formation. Model 2 emphasizes the in vivo image of dual fluorescence reporting gene 
expression created by orthotopic lung injection. IVIS-aided analysis helped track the lung ade-

nocarcinoma formation in real time. This method could shorten the waiting time for lung tumor 
formation in animal studies. Furthermore, we aim to integrate these two animal models with 
metformin in a stepwise manner. We look forward to thoroughly elucidating the antitumor 
effects of metformin for lung cancer management based on current animal model platforms.
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