
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 2

Short-Cut Methods for Multicomponent Batch

Distillation

A. Narváez-García, J.C. Zavala-Loría,
A. Ruiz-Marín and Y. Canedo-López

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66830

Abstract

This work present the batch distillation shortcut methods developed from the Fenske-
Underwood-Gilliland (FUG) method of continuous distillation. In addition, a compari-
son between the results of shortcut method developed by Diwekar and Narváez-García 
et al. is done. The results of both methods are compared for validation with the results 
using the rigorous method presented by Domenech and Enjalbert. The results indicate 
no significant differences in both shortcut methods being the maximum deviation found 
between the two shortcut methods is less than 3%. Then, the use of any of both methods 
is in the ease or difficulty of the solution each of the model equations. Both methods 
were implemented using Fortran programming. Multdistbatch© software was used for 
the rigorous method.

Keywords: shortcut method, FUG, batch distillation

1. Introduction

Batch distillation is a process widely used for separation of small quantities of chemical com-

pound of the one mixture as the recovery of small quantities of hazardous materials in waste 
streams, recovery of solvents, as well as, for pharmaceutical and biotechnological products 

with high added value, among others. Therefore, the development of mathematical models 

for the prediction of a process has a high interest in recent times [1–4].

Batch distillation is a flexible process because one equipment can obtain the separation of all 
the components of the mixture, while the continuous process [5] requires a number of col-
umns distillation equal to the number of components minus one (n − 1). Another advantage 
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of batch distillation process is the use of the same equipment for the mixture separation with 
different compositions or different mixtures [6].

On the other hand, the disadvantage of the batch distillation with respect to continuous distil-

lation is that only small amounts of products can be obtained of the mixture. Another disad-

vantage is the production of waste unwanted for each cuts, however, these residual cuts can 

be separated into the same column [7]. 

A batch distillation column can be operated using any of the following policies [1]:

(1) Constant reflux.

(2) Variable reflux.

(3) Optimal reflux.

(4) Reflux profile.

The process behavior can be predicted by developing mathematical models based on mass 

and energy balances. The mathematical models obtained can be classified as [1, 8, 9]:

(1) Simplified (shortcut method).

(2) Semirigorous.

(3) Rigorous.

(4) Order reduction.

Currently the rigorous models have an area of great interest and these require especially 
the use of computers with high accuracy and processing capabilities; however, simplified 
methods can be applied with the use of the equipment such as tablets, smart phones, and/or 
laptops with smaller capacity of data processing, which makes possible the search for predict-

ing the behavior of the process [2, 10]. In addition, the use of this kind of methods is a tool for 

obtaining initial data for the mathematical optimization.

Unlike the rigorous methods that considered the dynamics of the complete column, the short-

cut methods are mathematical models that predict the behavior of the process considering the 

least amount of equations, usually making an overall material balance and partial balances 
considering a component any “i.” The main limiting factor of these shortcut methods is to find 
a functional relationship between the concentrations of the dome and the bottom.

The shortcut methods are justified because these require a minor calculus time and memory 
requirements, as well as, an acceptable accuracy in the results obtained with respect to the rigor-

ous method. These are an appropriate tool to obtain initial values for the mathematical optimiza-

tion of some process, when the complexity of the methods required data very close to the solution.

The shortcut method is also used for the columns design and obtaining of limit conditions as 

minimum reflux ratio, R
min

 and minimum number of stage N
min

. On the other hand, the short-

cut methods are very simple to apply and to program, therefore, are useful in the teaching-

learning process.
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The two most important shortcut methods reported in the literature made use of the Fenske-

Underwood-Gilliland (FUG) method developed for continuous distillation, but considering 

that the feed changes at every instant; that is, the bottom product in the current time is the 
feed for the next time (step).

The first of the shortcut methods was developed by Diwekar [11] and reported in the litera-

ture by Diwekar and Madhavan [12]. This method was developed considering the policies 

of constant and variable reflux. This method used the Hengstebeck-Geddes equation. This 
method also performs the comparison between the values of the minimum reflux ratio of 
Underwood and minimum reflux ratio of Gilliland, which increases the computational time 
because it uses an additional iterative process.

The second method was reported by Sundaram and Evans [13] and only considered the con-

stant reflux policy and the Fenske Equation. The model obtains a solution in two parts; an 
outer loop that solves material balances and internal one that solves the functional relation-

ship between the compositions of the dome and the bottom using the FUG method. The math-

ematical model developed initially considered:

(1) Constant relative volatilities.

(2) Constant molar flow.

(3) Negligible vapor and liquid accumulation in trays and the condenser.

Based on the work of Sundaram and Evans [13], Narváez-García et al. [10] developed a math-

ematical model for batch distillation process using a variable reflux policy.

The present studies show the most important shortcut methods used to predict the behavior 

of the batch distillation process.

2. Important definitions

For the use of the Underwood equations, this work considered separations Class I and Class 
II. In according to Shiras et al. [14] defined Class I and Class II as follows:

Class I: “Separations such that, with infinite plates, all components of the feed are 
present in both the top product and bottom product.”

Class II: “Separations such that, with infinite plates, some of the components are 
completely in the top product or completely in the bottom product.”

Similarly, an important concept in model developments is the key component light (lk) and 

heavy key component (hk) defined as follows:

Light key component (lk): Light component that is present in the residue in impor-

tant amounts.

Heavy key component (hk): Heavy component that is present in the distillate in 
important amounts.
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3. Reflux policies

When a fraction of the product obtained is fed back into the process and this can be done on 

four operations of the process: (1) constant reflux, (2) variable reflux, (3) optimum reflux, and 
(4) profile of reflux. In either case, the reflux ratio (R) is defined as

  R =   L ___ 
  dD ___ 
dt

  
   =   L ____ 

D  (  t )   
   =   L __ 

D
    (1)

where L is the reflux in the dome and D the product flow.

For some type of reflux used, it should be considered if there is accumulation of liquid and 
vapor in each of the trays as well as in the reflux tank. Another aspect that should be consid-

ered is where the initial feed is introduced because when it is performed from the reflux tank, 
the accumulation in each of the stages is equal to feed initial concentration, if conversely, the 
feed is introduced in the reboiler and column is operated without reflux, the concentration of 
each of the trays is equal to the concentration of the vapor phase and will be in equilibrium 
with the feed [15].

Constant reflux: In constant reflux policy, the product concentration varies with time because 
new feed input does not exist, so that the initial mole fractions of the more volatile are depleted 
and the molar fraction of the final distillate is an average.

Variable reflux: The batch distillation process with a variable reflux policy is used when it is 
desired to obtain a constant product concentration. In others words, reflux ratio is modified 
such that at each instant the same concentration of distillate is obtained.

Optimal reflux: For optimum reflux policy, the process used an objective function directly 
related to a control variable, which usually is the reflux ratio. This function is solved by apply-

ing mathematical methods such as dynamic programming, variation calculation, pontryagin 

maximum principle or nonlinear programming (NLP), among others. In general, the process 
is considered as an optimal control problem and the most common cases studied in the lit-

erature are [16]: (a) maximum distillate problem, (b) minimum time problem, (c) maximum 
profit problem, (d) minimum energy problem, and (e) maximum thermodynamic efficiency 
problem.

Reflux profile: For this case, a combination of constant reflux and variable reflux are used for 
obtaining a given concentration of the desired product in a time given. This operation policy 

is a derivation of the optimization process.

4. Materials and methods

In this work is considered a batch distillation column with the following characteristics:

• Adiabatic column.

• Theoretical trays.
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• Partial reboiler.

• Total condenser.

• Constant pressure.

• Constant relative volatility.

• Negligible accumulation (holdup) of liquid and vapor.

• Constant molar flows through the column.

The mathematical model of the column is obtained by performing a total mass balance and 

partial mass balances to component “i.” The Fenske-Underwood-Gilliland method is used to 

find the functional relationship between the compositions of the bottom and the dome of the 
column.

Although it presents the development of the model, considering the policies of operation of 
constant and variable reflux, these are presented in only four cases of study for the shortcut 
method to reflux variable considering the contribution to the state of the art of the authors.

In each case, it is considered that the mixture is fed to the boiling temperature. The error 
tolerance is 10−4, the integration step is Δt = 10−1 h and the time of production is required to 
deplete the lighter component. It has been considered a feed of 200 kmol and a vapor flow of 
110 kmol h−1. For these cases, it is considered that the relative volatility is constant throughout 

the process.

The value of the vapor flow was established so that it allows to deplete the most volatile 
component in a small operation time. For the ternary and quaternary mixtures only first cut 
is considered. For validation, the results of both methods, Diwekar [11] and Narváez-García 

et al. [10], are compared with the results using the rigorous method presented by Domenech 

and Enjalbert [17]. This model is used because it is considered as a low holdup. To solve each 

one of the cases was made a program in Fortran language.

5. Simplified mathematical models

The complete mathematical model of a batch distillation column considering the dynamics of 

the process consists of a system of differential equations and algebra (DAEs) added by equa-

tions that allow the calculation of the thermodynamic properties and hydraulic conditions 

of the column. The solution of the system can be very complex depending on the state equa-

tions used to predict the behavior of the gas phase (Soave, Redlich-Kwong Peng-Robinson, 
etc.) or the solution of the models used to predict the liquid phase behavior (Wilson, NRTL, 
UNIQUAC, UNIFAC, etc.).

According to Diwekar [9], the number of equations in a rigorous mathematical model of a 
batch distillation, which considers a mixture of components nc and N trays is equal to (N + 2) 

(2nc + 1), where N + 2 considers the reboiler and condenser-tank reflux. Further, the number 
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of equations consider the total restrictions in each of the stages (  ∑      x =  ∑      y = 1 ), the expression 
of reflux ratio (R = L / D), and liquid (L) and vapor (V) flows calculations along the column. 
The number of equations increases if the calculation of other variables of interest such as the 
column hydraulic or thermodynamic efficiency is considered.

The solution of this equation system is complex and requires intensive use of computers with 
adequate processing capacity, which affects costs in the area of process simulation. Therefore, 
it is needed to consider some simplifications to the mathematical model to reduce the data 
processing time.

Reductions to the batch distillation mathematical model are possible if it is considered that the 

process is continuous, with a feed that changes in every moment as shown in Figure 1 [1, 10], 

which allows to use equations Fenske [18], Underwood [19], and Gilliland [20] of continuous 

distillation (FUG method).

Gilliland correlation can be replaced by the correlation Eduljee [21] because the mathematical 

expression is simpler for numerical works. The shortcut method considers:

(1) Constant molar flow along the column.

(2) Constant relative volatilities throughout the process.

(3) Negligible fluid and vapor accumulation within the column.

Constant molar flow is based on the assumption that the enthalpy of vaporization is the same 
for all components, which is correct if the mixture consists of very similar compounds.

Figure 1. Scheme of a batch distillation column for the shortcut method.
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The simplification is more restrictive from shortcut method to consider constant relative vola-

tilities throughout the process. This consideration significantly reduces the number of calcula-

tions in the model, especially because the iterative processes of liquid-vapor equilibrium does 
not apply. When the relative volatility cannot be considered as a constant amount along the 

time or the column, polynomial expressions or Winn [22] equation can be used to estimate 
the changes; therefore, Diwekar [11] suggested that the relative volatilities can be used to 

calculate in every moment of the process using an average between the values of the bottom 
and the dome.

Finally, the vapor accumulation in a distillation column can be neglected because it is much 

less than the cumulative amount of liquid, and the accumulation of fluid in the column can 
be neglected, considering that this accumulation is less than the liquid accumulated in the 
reboiler. Under these circumstances, the two most important shortcut methods for batch 

distillation in the literature were reported by Diwekar [11], Sundaram and Evans [13], and 

Narvaez-García et al. [17].

5.1. Shortcut methods derived from FUG method

5.1.1. Shortcut method developed by Diwekar [11]

The first shortcut method for batch distillation presented here was developed by Diwekar 
[11]. This method considers a global balance in the column and their respective partial bal-

ances (component “i”); each of the equations used in the method are presented below:

Global balance:

    dB ___ 
dt

   = − D;     B  
0
   = F  (2)

where D is the distillate obtained by a mass balance in the dome of the column:

  D =   V ____ 
R + 1

    (3)

where R is the reflux ratio:

  R =   L __ 
D

    (4)

Partial balance with respect to a component (i):

    
d [ B  x  

B
  (i)  ]
 ______ 

dt
   = − D  x  

D
  (i)   (5)

  B   
d  x  

B
  (i) 
 ____ 

dt
   +  x  

B
  (i)    dB ___ 

dt
   = − D  x  

D
  (i)   (6)

  B   
d  x  

B
  (i) 
 ____ 

dt
   +  x  

B
  (i)    dB ___ 

dt
   = − D  x  

D
  (i)  =   (    dB _ 

dt
   )    x  

D
  (i)   (7)

and substituting in Eq. (2) is obtained:

  B   
d  x  

B
  (i) 
 ____ 

dt
   − D  x  

B
  (i)  = − D  x  

D
  (i)   (8)
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substituting in Eq. (3) is obtained:

    
d  x  

B
  (i) 
 ____ 

dt
   =   D __ 

B
   [  x  

B
  (i)  −  x  

D
  (i)  ] ;     x  

 B  
0
  
  (i)  =  x  

 F  
0
  
  (i)   (9)

    
d  x  

B
  (i) 
 ____ 

dt
   =   V ______ 

B  (  R + 1 )   
   [  x  

B
  (i)  −  x  

D
  (i)  ] ;     x  

 B  
0
  
  (i)  =  x  

 F  
0
  
  (i)   (10)

A material balance is also performed for the reference component (k) and the ratio between 

the component (i) and the component (k).

    
d  x  

B
  (k) 
 ____ 

dt
   =   D __ 

B
   [  x  

B
  (k)  −  x  

D
  (k)  ] =   V ______ 

B  (  R + 1 )   
   [  x  

B
  (k)  −  x  

D
  (k)  ] ;     x  

 B  
0
  
  (k)  =  x  

 F  
0
  
  (k)   (11)

    
  
d  x  

B
  (i) 
 ____ 

dt
  
 ____ 

  
d  x  

B
  (k) 
 ____ 

dt
  
   =   

  D __ 
B

   [  x  
B
  (i)  −  x  

D
  (i)  ]
 ________ 

  D __ 
B

   [  x  
B
  (k)  −  x  

D
  (k)  ]

  ;     x  
 B  

0
  
  (i)  =  x  

 F  
0
  
  (i) ;  i = 1, 2, … , n; i ≠ k  (12)

    
d  x  

B
  (i) 
 ____ 

d  x  
B
  (k) 
   =   

[  x  
B
  (i)  −  x  

D
  (i)  ]
 _______ 

[  x  
B
  (k)  −  x  

D
  (k)  ]  ;     x  

 B  
0
  
  (i)  =  x  

 F  
0
  
  (i)  ; i = 1, 2, … , n; i ≠ k  (13)

  d  x  
B
  (i)  =   

[  x  
B
  (i)  −  x  

D
  (i)  ]
 _______ 

[  x  
B
  (k)  −  x  

D
  (k)  ]   d  x  

B
  (k) ;     x  

 B  
0
  
  (i)  =  x  

 F  
0
  
  (i)  ; i = 1, 2, … , n; i ≠ k  (14)

Eqs. (2) and (14) can be discretized if considered very small changes, then considering Eq. (2), 
is obtained:

    ΔB ___ Δt
   = − D  (15)

  ΔB = − DΔt  (16)

   B  
new

   =  B  
old

   − DΔt  (17)

Using Eq. (3) is obtained:

   B  
new

   =  B  
old

   −   (    V
 

_ 
R + 1

   )   Δt  (18)

Considering Eq. (14) is obtained:

  Δ  x  
B
  (i)  =   

 [  x  
B
  (i)  −  x  

D
  (i)  ]  

new
  
 _________ 

 [  x  
B
  (k)  −  x  

D
  (k)  ]  

old
  
   Δ  x  

B
  (k)  ;    x  

 B  
0
  
  (i)  =  x  

 F  
0
  
  (i)  ; i = 1, 2, … , n; i ≠ k  (19)

   x  
B,new

  (i)   =  x  
B,old

  (i)   +   
 [  x  

B
  (i)  −  x  

D
  (i)  ]  

old
  
 _________ 

 [  x  
B
  (k)  −  x  

D
  (k)  ]  

old
  
   Δ  x  

B
  (k)  ;    x  

 B  
0
  
  (i)  =  x  

 F  
0
  
  (i) ;  i = 1, 2, … , n; i ≠ k  (20)

The functional relationship between the concentrations of the dome and the bottom for this 
method is obtained using the equation Hengestebeck-Geddes:

   x  
D
  (i)  =   (    

 α  
i
  
 __  α  

k
     )     

 C  
1
  

   [    
 x  

D
  (k) 
 _ 

 x  
B
  (k) 
    x  

B
  (i)  ]   ;  i = 1, 2, … , n; i ≠ k  (21)

being α the relative volatility and C
1
 a constant equal to the minimum number of trays of 

Fenske equation. It is also necessary to use the equations of Underwood and Gilliland or 
Eduljee:

   ∑ 
i=1

  
nc

     
 α  

i
    x  

B
  (i) 
 ____ 

 α  
i
   − θ   = 0  (22)

   R  
min

   = − 1 +  ∑ 
i=1

  
nc

     
 α  

i
    x  

D
  (i) 
 ____ 

 α  
i
   − θ    (23)

  Y = 1 − exp   [    
  (  1 + 54.4X )     (  X − 1 )   

  _____________  
  (  11 + 117.2X )    √ 

_
 X  
   ]     (24)

Distillation - Innovative Applications and Modeling38



The Eduljee correlation is

  Y = 0.75(1 −  X   0.5668  )  (25)

being, in both cases:

  X =   
R −  R  

min
  
 ______ 

R + 1
    (26)

  Y =   
N −  N  

min
  
 _______ 

N + 1
    (27)

In the case of a constant reflux policy, Diwekar [11] uses a function that relates the mini-

mum reflux ratio obtained with Underwood equation (R
minU

) and the minimum reflux ratio 
obtained with Gilliland Equation (R

minG
) can be expressed as

   f  
c
   =   

 R  
minU

  
 _____ 

R
   −   

 R  
minG

  
 _____ 

R
   = 0  (28)

In the variable reflux case, Diwekar [11] uses a function obtained from the equation 
Hengestebeck-Geddes (Eq. (21)), considering the sum of all components, and applying the 
sum in both members of this equation is obtained:

   ∑ 
i=1

  
nc

    x  
D
  (i)  =  ∑ 

i=1
  

nc

     (    
 α  

i
  
 __  α  

k
     )     

 C  
1
  

   [    
 x  

D
  (k) 
 _ 

 x  
B
  (k) 
    x  

B
  (i)  ]    = 1  (29)

    
 x  

B
  (k) 
 ___ 

 x  
D
  (k) 
   =  ∑ 

i=1
  

nc

     (    
 α  

i
  
 __  α  

k
     )     

 C  
1
  

   x  
B
  (i)   (30)

Therefore, the function is

   f  
v
   =   {   ∑ 

i=1
  

nc

     [    (    
 α  

i
  
 _  α  

k
     )     

 C  
1
  

   x  
B
  (i)  ]    }    −   

 x  
B
  (k) 
 ___ 

 x  
D
  (k) 
    (31)

In this method, it is necessary to consider a reference component, hence, using the equation 
Hengstebeck-Geddes (Eq. (21)) and separating the concentration of the reference component (k):

   x  
D
  (k)  =   

 x  
B
  (k) 
 __________  

 ∑ 
i=1

  
nc

     [    (    
 α  

i
  
 _  α  

k
     )     

 C  
1
  

   x  
B
  (i)  ]   

    (32)

With the developed mathematical models, it is necessary to consider finding the solution; 
therefore, the solution algorithm is shown below.

5.1.1.1. Diwekar solution algorithm

The shortcut method developed by Diwekar [11] is setup by the system of Eqs. (1)–(32). To 
solve this system of equations, it is necessary to follow the next steps:

Constant reflux policy.

(1) Steady-state concentrations are calculated considering that C
1
 = N.

(a) The concentration of component reference (k) in the dome (Eq. (32)) is calculated.

(b) Other concentrations are calculated using the Hengestebeck-Geddes equation (Eq. (22)).

(c) Increase the time (∆t).

(d) New concentrations (Eq. (20)) and the remaining amount in the reboiler (Eq. (18)) 
are calculated.
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(2) To propose an initial value of C1, which will be adjusted by an iterative process.

(3) To calculate the reference component concentration in the dome (Eq. (32)).

(4) Other concentrations are calculated using Equation Hengestebeck-Geddes (Eq. (21)).

(5) To solve Underwood equations (22) and (23).

(6) To solve Gilliland equation.

(a) First Eq. (24).

(b) Second Eq. (26).

(c) Finally, Eq. (27).

(7) Verify that the obtained value by Underwood equations is the same to that obtained by 
Equation Gilliland.

(a) To use Eq. (31).

(b) If this is not true it is necessary to change the value of C
1
 with some iterative process 

as the Newton-Raphson method.

(c) The process is repeated from step 2 to achieve convergence.

(d) If this is true go to step 8.

(8) Increase the time (∆t).

(9) Calculate new concentrations (Eq. (20)) and the remaining amount in the reboiler (Eq. (18)).

(10) The process is repeated until the desired time production.

Variable reflux policy.

(1) Steady-state concentrations are calculated considering that C
1
 = N.

(a) Consider constant the concentration of reference component (k) in the dome.

(b) Other concentrations are calculated using the equation Hengestebeck-Geddes equa-

tions (Eq. (21)).

(c) Increase the time (∆t).

(d) New concentrations (Eq. (20)) and the remaining amount in the reboiler (Eq. (18)) 
are calculated.

(2) To propose an initial value of C
1
, which will be adjusted by an iterative process.

(3) Verify that Eq. (31) is zero.

(a) If this is not true it is necessary to change the value of C
1
 with some iterative process 

as the Newton-Raphson method until converge.
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(4) Other concentrations are calculated using Equation Hengestebeck-Geddes (Eq. (21)).

(5) To solve Underwood equations (22) and (23).

(6) To solve Gilliland equation.

(a) First Eq. (27).

(b) Second Eq. (24).

(7) Calculate the value of the reflux ratio R with Eq. (26).

(8) Increase the time (∆t).

(9) Calculate new concentrations (Eq. (20)) and the remaining amount in the reboiler (Eq. (18)).

(10) The process is repeated until the desired time production.

5.1.2. Shortcut method developed by Sundaram and Evans [13] using a constant reflux policy

In the method of Sundaram and Evans [13], the total material balance (Eq. (2)) and partial (Eq. 
(4)) are similar to the method of Diwekar [11], and Eqs. (18) and (20) are the same; however, 
Eq. (20) may be a function of the remaining liquid in the bottom; therefore, Eq. (6) calculates 
the change in the mole fractions in the bottom, then:

  d  x  
B
  (i)  = [  x  

D
  (i)  −  x  

B
  (i)  ]   dB ___ 

B
    (33)

Considering very small changes in the above equation; therefore, it is obtained:

  Δ  x  
B
  (i)  =  [  x  

D
  (i)  −  x  

B
  (i)  ]  

old
     ΔB ___ 
 B  

old
  
    (34)

   x  
B,new

  (i)   =  x  
B,old

  (i)   +  [  x  
D
  (i)  −  x  

B
  (i)  ]  

old
     
( B  

new
   −  B  

old
   )
 ________ 

 B  
old

  
  ;    x  

 B  
0
  
  (i)  =  x  

 F  
0
  
  (i)  ; i = 1, 2, … , n   (35)

Using the reference component (k) in the partial balance, instead of component (i), it is obtained:

  d  x  
B
  (k)  = [  x  

D
  (k)  −  x  

B
  (k)  ]   dB ___ 

B
    (36)

and considering very small changes in Eq. (24) can be obtained:

    
( B  

new
   −  B  

old
   )
 ________ 

 B  
old

  
   =   

Δ  x  
B
  (k) 
 _________ 

 [  x  
D
  (k)  −  x  

B
  (k)  ]  

old
  
    (37)

Substituting Eq. (37) into Eq. (35), Eq. (20) is obtained. Eq. (28) is easily solved; however, Eq. 
(30) and Eq. (35) are much more complex because they require the functional relationship 
between the concentrations of the bottom and the dome.

The functional relationship between the concentrations of the dome and the bottom is calcu-

lated using the Fenske equation considering the minimum number of separation stages (N
min

) 

with the mole fractions of the dome (x
D
) and bottom (x

B
):

   N  
min

   =   
ln   [    

 x  
D
  (i) 
 _ 

 x  
D
  (k) 
     
 x  

B
  (k) 
 _ 

 x  
B
  (i) 
   ]   

 ________ 
ln ( α  

i
   )       (38)
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The Underwood equation for Class I mixtures and the Gilliland or Eduljee equations are used. 
In the original work of Sundaram and Evans [13] the equations for mixtures Class II were not 
considered.

When the mixture is classified as a multicomponent system Class I, the Underwood equation 
that relates the R

min
 it can be expressed as [22]:

   R  
min

   =   
  [    

 x  
D
  (lk) 
 _ 

 x  
B
  (lk) 
   ]    −  α  

lk,lk
    [    

 x  
D
  (hk) 
 _ 

 x  
B
  (hk) 

   ]   

  ____________ 
 α  

lk,hk
   − 1

    (39)

In this method, it is also necessary to consider the composition of a component (k) of reference; 

then, using the Fenske equation, the composition of the reference component is isolated. Therefore, 
it is necessary to considerer the sum of all components. From Eq. (35), the following is obtained:

   x  
D
  (i)  =  x  

B
  (i)   [    

 x  
D
  (k) 
 _ 

 x  
B
  (k) 
   ]    α  

i
         N  

min
    ; i = 1, 2, … , n; i ≠ k  (40)

   ∑ 
i=1

  
nc

    x  
D
  (i)  =  ∑ 

i=1
  

nc

    x  
B
  (i)   [    

 x  
D
  (k) 
 _ 

 x  
B
  (k) 
   ]    α  

i
         N  

min
    = 1  (41)

   x  
D
  (k)  =   

 x  
B
  (k) 
 __________ 

 ∑ 
i=1

  
nc

   ( α  
i
         N  

min
     x  

B
  (i)  )

    (42)

With all the mathematical equations of the shortcut method, the next step is to provide an 
appropriate methodology for the solution.

5.1.2.1. Sundaram and Evans [13] solution algorithm

The mathematical model of Sundaram and Evans is formed by the system of Eqs. (35), (37)–(42). 
To solve this system, follow the next steps:

(1) Steady-state concentrations are calculated considering that N
min

=N.

(a) The concentration of reference component (k) in the dome (Eq. (42)) is calculated.

(b) Other concentrations are calculated using Fenske Eq. (40).

(c) Increase the time (∆t).

(d) New concentrations (Eq. (35)) and the remaining amount in the reboiler (Eq. (37)) 
are calculated.

(2) The R
min

 and N
min

 are calculated.

(a) For R
min

 Eq. (39) is used.

(b) For N
min

 Eq. (38) is used.

(c) Eqs. (38) and (39) are solved using an iterative process.

(3) Calculate the reference component concentration in the dome (Eq. (42)).

(4) The other concentrations are calculated using the Fenske Eq. (40).

(5) Back to step 2 until achieve the desired production time.
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5.1.3. Short method developed by Narváez-García et al. [10] using a variable reflux policy

This proposal is based on the concepts of Sundaram and Evans [13]. It is initiated by calculat-

ing the reflux ratio required to obtain the desired product; therefore, using Eq. (26) and solv-

ing it, the following is obtained:

  R =   
X +  R  

min
  
 ______ 

1 − X
    (43)

Eq. (43) requires the calculation of R
min

, which you can get from one of the equations of 
Underwood (Eq. (23)) as shown below:

   R  
min

   = − 1 +  ∑ 
i=1

  
nc

     
 α  

i
    x  

D
  (i) 
 ____ 

 α  
i
   − θ    (44)

Eq. (23) requires the calculation of θ, so Eq. (22) is used:

   ∑ 
i=1

  
nc

     
 α  

i
    x  

B
  (i) 
 ____ 

 α  
i
   − θ   = 0  (45)

Also, it is necessary to obtain the concentrations in the dome, therefore using the Fenske 
Equation (38) for the component (i):

   x  
D
  (i)  =  x  

B
  (i)   [    

 x  
D
  (k) 
 _ 

 x  
B
  (k) 
   ]    α  

i
         N  

min
    ; i = 1, 2, … , n; i ≠ k  (46)

Applying a sum process considering all the components of the mixture and calculating the 
composition of the reference component (k) and is obtained:

   x  
D
  (k)  =   

 x  
B
  (k) 
 __________ 

 ∑ 
i=1

  
nc

     (   α  
i
         N  

min
     x  

B
  (i)  )   

    (47)

Eqs. (40) and (42) require the calculation of the N
min

. Eq. (23) also requires the calculation of X; 

therefore, using Eqs. (25) and (27), the following is obtained;

  X =   [  1 −   (    4 _ 
3
   )     (    

N −  N  
min

  
 _ 

N + 1
   )    ]     

1.7643

   (48)

Eq. (48) requires the N
min

 value, therefore, it is necessary to obtain N
min

 for the shortcut 

method. In this sense the Fenske equation allows to calculate the minimum number of trays 
when the light key component (lk) and the heavy key component (hk = k) are considered, 

then:

   N  
min

   =   
log   {    [    

 x  
D
  (lk) 
 _ 

 x  
D
  (k) 
   ]     [    

 x  
B
  (k) 
 _ 

 x  
B
  (lk) 
   ]    }   

  ___________ 
log ( α  

lk,k
   )    (49)

where:

   x  
D
  (lk)  =   [    

 x  
D
  (k) 
 _ 

 x  
B
  (k) 
   ]    x  

B
  (lk)   α  

lk,k
   N  

min
     (50)

To change Eq. (49) in function of known values,   x  
D
  (k)   should be replaced by an   x  

D
  (lk)   expression, 

therefore, knowing that   ∑ 
i=1

  
nc

    x  
D
  (i)  = 1 , then:

   ∑ 
i=1

  
nc

    x  
D
  (i)  −  x  

D
  (lk)  = 1 −  x  

D
  (lk)   (51)
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Substituting Eq. (40) into Eq. (51), the following is obtained:

    ∑  
i=1

  
nc
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D
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Substituting Eq. (50) in Eq. (52), the following is obtained:

    ∑  
i=1

  
nc

    {    [    
 x  

D
   (  k )   
 _ 

 x  
B
   (  k )   
   ]    ( α  

i,k
   )    N  

min
     x  

B
   (  i )    }    −   [    

 x  
D
  (k) 
 _ 

 x  
B
  (k) 
   ]    x  

B
  (lk)   α  

LK,k
   N  

min
    = 1 −  x  

D
   (  lk )     (53)

   x  
D
  (k)  =   

[ 1 −  x  
D
  (lk)  ]  x  

B
  (k) 
  _______________  

  ∑  
i=1

  
nc

    α  
i,k

   N  
min

     x  
B
  (i)  −  x  

B
  (lk)   α  

lk,k
   N  

min
   
   =   

[ 1 −  x  
D
  (lk)  ]  x  

B
  (k) 
 ________ 

  ∑  
i=2

  
nc

    α  
i,k

   N  
min

     x  
B
  (i) 
    (54)

and, Eq. (49) becomes:
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Eq. (55) requires an iterative process for the solution of N
min

; therefore, using the Newton-

Raphson method, the following is obtained:
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With the N
min

 value, the reflux ratio and other values relating to the variable N
min

 can be calcu-

lated. The proposed solution to the developed method is addressed in the following section.

It is notable that both the model of Diwekar [11] and this model started from the same mate-

rial balances (global and partial), and in other words, both works are developed following the 

same method; however, the functional relationship between the concentrations of the dome 

and bottom is different equations. Table 1 presents a comparison between the equations of 
the two models.

In fact the equations of Underwood and Gilliland are the same in each model, and the differ-

ence is the way of how the values of the N
min

 are obtained. Narváez-García et al. [10] used the 

Fenske equation, while Diwekar [11] used the equation of Hengestebeck-Geddes.

While calculation times are similar in both models, the Narváez-García et al. model has an 

advantage over the Diwekar model when the separation of mixtures Class I is performed 
due to the use of a simplified Underwood equation (Eq. (39)). This does not happen with the 
model of Diwekar because the original equations of Underwood are always considered.
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5.1.3.1. Solution algorithm (Narváez-García et al. [1])

The mathematical model by Narváez-García et al. [10] is conformed for the system of Eqs. (22) 

and (23) or (39), (35), (37), (43), (48), (49), (54), (55), (57), (58), and (59). The main objective of 

this system of equations is to calculate the value of the reflux ratio and for this Eq. (40) is used.

Eq. (43) requires the value of X and R
min

. The value of X is related to the minimum number 

of trays (N
min

) through Eqs. (48) and (49); therefore, first N
min

 is calculated, starting with an 

assumed value and is iterated until it converges to the correct value of N
min

.

The Newton-Raphson iterative method used Eqs. (57)–(59). These equations are only function 
of the dome and bottom concentrations of as well as of the relative volatilities.

Diwekar [11] Narváez-García et al. [10]
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Table 1. Comparing the Diwekar [11] and Narváez-García et al. [10] shortcut method using variable reflux policy.
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The value obtained of X allows to find the value of R
min

, which is solve using the Underwood 

equation (39). However, to get the value of R
min

 before it is necessary to calculate the mole frac-

tions of the dome (x
D
) using Eqs. (40) and (54). With the values of X and R

min
 will be calculated 

the reflux ratio R (Eq. (43)) and now it is possible to calculate the amount remaining in the 
reboiler using Eq. (37) and the bottom concentration using Eq. (35).

6. Cases of study

The mathematical models of the shortcut method presented in this work have been solved 

considering various mixtures: binary, ternary, and quaternary. Being the variable reflux pol-
icy more complicated than the constant reflux policy, only are presented cases considering the 
variable reflux policy. The input conditions to the process are shown in Table 2.

7. Results and discussion

The results of the cases of the study are shown below. Considering that, the mole fraction of 

the desired component is a constant amount, the profiles of the reflux ratios, the remaining 
amounts in the bottom and its concentrations are obtained. To validate the results of the reflux 
rate obtained by the shortcut methods, a comparison between the profile of the reflux ratio 
obtained and the profile obtained with a rigorous method was performed.

7.1. Case 1

Figures 2, 4, and 5 show the results obtained with the short methods of Diwekar [11] and 

Narváez-García et al. [10]. Figure 3 shows the result comparison between the shortcut method 

and the rigorous method.

The comparison of the results between the two shortcut methods (Figures 2, 4, and 5) allows 

to establish that there are no significant differences. The maximum deviation for reflux was 
1.5%, the amount remaining in the reboiler was 0.55 %, and concentrations in the bottom 
was 2%.

Case Feed molar fraction Relatives volatilities (α) N+ k
  x  
D
  

 (  lk )  
  

1 2 3 4 1 2 3 4

1 0.40 0.20 0.30 0.10 1.67 1.25 1.00 0.83 5 3 0.70

2 0.33 0.33 0.34 – 1.33 1.00 0.67 – 10 2 0.80

3 0.50 0.50 – – 2.40 1.00 – – 9 2 0.95

N+ = Number of trays, k= Reference, Component = 1, 2, 3, 4.

Table 2. Input conditions for cases of study.
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Figure 2. Reflux ratio profiles obtained with the shortcut methods.

Figure 3. Comparison of profiles of reflux ratio using the shortcut method and a rigorous method.
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Figure 4. Remaining amount in the reboiler obtained by shortcut methods.

Figure 5. Concentration profiles in the reboiler obtained by shortcut methods.
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As for the comparison between the shortcut method and the rigorous method (Figure 3), the 

deviations are within an acceptable range of 9.7% maximum considering the reflux ratio is 
calculated.

7.2. Case 2

Figures 6, 8, and 9 show the results obtained with the short methods of Diwekar [11] and 

Narváez-García et al. [10]. Figure 3 shows the results comparison between the shortcut 

method and the rigorous method.

The results between both short methods (Figures 6, 8, and 9) allow to establish that there are 

no significant differences. The maximum deviation for calculated reflux ratio was 2.2%, for 
the amount remaining in the reboiler was 0.29%, and the deviation in the bottom concen-

trations was 0.67%. As for the comparison between the shortcut method and the rigorous 
method (Figure 7), the deviations are within an acceptable range of 9.7% maximum consider-

ing the reflux ratio is calculated.

Figure 6. Reflux ratio profiles obtained by shortcut methods.
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Figure 8. Remaining amount in the reboiler obtained by shortcut methods.

Figure 7. Comparison of profiles of reflux ratio obtained using the shortcut method and a rigorous method.
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7.3. Case 3

Figures 10, 12, and 13 show the results obtained with the short methods of Diwekar [11] 

and Narváez-García et al. [10]. Figure 11 shows the results comparison between the shortcut 

method and the rigorous method.

Figure 9. Concentration profiles in the reboiler obtained by shortcut methods.

Figure 10. Reflux ratio profiles obtained by shortcut methods.
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Figure 12. Remaining amount in the reboiler obtained by shortcut methods.

Figure 11. Comparison of profiles of reflux ratio obtained using the shortcut method and a rigorous method.
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The results between both short methods (Figures 10, 12, and 13) allow to establish that there 

are no significant differences. The maximum deviation for calculated reflux ratio was 2.7%, 
the amount remaining in the reboiler was 0.45%, and the deviation in the bottom concen-

trations was 0.63%. As for the comparison between the shortcut method and the rigorous 
method (Figure 11), the deviations are within an acceptable range of 3.8% maximum consid-

ering the reflux ratio is calculated.

In general, as shown in each of the figures, the maximum deviation found between the two 
shortcut methods considering a policy of variable reflux is less than 3% and, in this sense, the 
use of either of the two depends on the ease of application of the method.

In this case, the method developed by Narváez-García et al. [10] is better because it is adjusted 
to the original equations of the FUG method.

Similarly, to validate the shortcut methods considering a variable reflux policy, we had 
presented a comparison between the profiles of the reflux ratio which shows that you can 
have up to 9.7% difference between the results of the shortcut method and the rigorous 
method, of course, this difference is due to the simplifications of the short method, how-

ever, the difference falls within an acceptable range and this validated the shortcut meth-

ods presented. The maximum difference found between the concentrations of the bottom 
was less than 2%.

In all cases, the behavior of the profiles is adequate for the batch distillation process; in other 
words, greater process time is necessary for a greater reflux and the more volatile component 
is depleted. 

Figure 13. Concentration profiles in the reboiler obtained by shortcut methods.
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8. Conclusions

In this chapter, we have presented the shortcut methods developed by Diwekar [11], Sund-

aram and Evans [13], and Narváez-García et al. [10]. Considering the complexity of the solution 
only, the shortcut method with a variable reflux policy is solved. The results were validated 
using a rigorous method. It is considered that the results of the shortcut methods are very close 

with respect to the rigorous method results.
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