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Abstract

This chapter deals with the fundamental physical aspects of the use of energy in ICT
devices. Here we discuss questions such as “what is the theoretical minimum energy
required to process information?”, “what is the minimum energy required to transmit
information from one point to another?” and “are these limits practically reachable and
under what conditions?” While dealing with these relevant questions, we are mostly
concerned with providing to the reader a clear and intuitive understanding of what is
going on and what the underlying physics aspects are.
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1. Introduction

This chapter deals with the fundamental physical aspects of the use of energy in ICT devices.

Here, we discuss questions like what is the theoretical minimum energy required to process informa-

tion? What is the minimum energy required to transmit information from one point to another? And

are these limits practically reachable and under what conditions?

Most importantly, in dealing with these relevant questions, we will be mostly concerned with

providing to the reader a clear and intuitive understanding of what is going on and what are

the underlying physical aspects, more than showing rigorous mathematical demonstrations. In

fact, these can be found in many university textbooks (some listed at the end of the chapter)

and missing some rigor will hopefully not harm the validity of the reasoning.

Dealing with fundamentals in ICT necessarily implies dealing with physics. In fact any ICT

device, being it a complex microprocessor with billions of transistors interconnected or a

simple binary logic gate is, first of all, a physical system. As such its functioning is subjected

to the laws of physics. Regarding the implications of the use of energy in such devices we are

© 2017 The Author(s). Licensee InTech. Distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution
and reproduction for non-commercial purposes, provided the original is properly cited.



thus referred to the very elegant theory of thermodynamics. In this theory, many scientists

through the years have accumulated all the knowledge developed in dealing with energy and

its transformations. Thanks to the work of scientists like Sadi Carnot, Emile Clapeyron, Rudolf

Clausius and William Thomson (Lord Kelvin), studies on how energy could be used with

profit in machines invented earlier by Thomas Newcomen and James Watt to transform heat

into work, brought us the notion of entropy and the second law of thermodynamics that put

limits on the efficiency of such machines.

Steam engines from the dawn of the industrial revolution are not much different from nowa-

days ICT systems if you look at them by a merely physics point of view. In both classes of

devices, we are dealing with the transformation of energy from heat to work and from work to

heat. Surprisingly, 200 years have passed after the work of Carnot but we are still intrigued by

the problem of defining the efficiency of these transformations even if, at difference with the

past, today the object of our quest has moved from the heat engines of the industrial revolution

to the tiny devices of modern ICT.

It is a common statement that future ICT will be characterized by nanoscale devices that will

process information while dissipating significant amount of energy, i.e. while transforming

work into heat. In this perspective it seems natural to consider an ICT device as a novel info-

thermal machine: it inputs information and energy (in the form of work) and outputs informa-

tion and energy (in the form of heat).

In the following, we will discuss in detail these aspects trying to make clear what are the

underlying fundamental physical laws that govern the use of energy in ICT devices. We will

proceed as follows:

2. What is information processing and how this can be done with machines?

3. Basics on thermodynamics laws.

4. Digital computing and the physics of switches.

5. Energy efficiency, Landauer reset and reversible computing.

6. Energy bounds on communication as information transfer processes.

2. What is information processing and how this can be done with

machines?

In this section, we discuss the fundamentals in information processing. We introduce the

notion of ‘amount of information’ and its digital representation. Most importantly, we discuss

how a physical system can be used to do information processing and how this has to do with

the laws of physics and with energy transformation processes in particular.

Let us start with a fundamental question: what does it mean ‘information processing’? Before

we can answer this question, we need to introduce the notion of ‘information’.

This notion was introduced, in the framework that is of interest here, by Claude Shannon

(1916–2001) in 1948 in his attempt to formulate a ‘mathematical theory of communication’.
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During a communication process, there is a message that needs to be transmitted from one

point to another. In this perspective, the ‘amount of information’ is a quantity that can be

associated with a given message.

To illustrate this concept, let us assume that we want to transmit a text message. Something

like ‘Hello my friend, what’s up?’. This message is composed of a number letters and punctu-

ation symbols. Let us suppose that this message is part of a much longer message so that we

can assign to each symbol a given probability to be part of this message. Typically, if the

message is written in a given language, we can use the frequency of each letter in that language

as the probability. If we call a generic symbol xi (this can be a letter like ‘a’ or ‘A’ or a

punctuation symbol like ‘;’) then we can indicate the probability to find it in our message is p

(xi). At this point, we can define the amount of information that is carried by each symbol xi
(according to Claude Shannon definition) as the number Hi given by:

Hi ¼ − K pðxiÞ log pðxiÞ (1)

where K is simply a constant and ‘log’ represents the logarithmic function. By the moment that

the probability p(xi) is a number between 0 and 1, the log p(xi) is a negative number and thus

the resulting Hi is a positive quantity. Hi is also sometimes called ‘entropy’, in analogy with the

physics quantity as introduced by Gibbs previously (see below).

When we want to transmit a message, it is more practical to transmit only a small number of

different symbols in order to avoid possible confusion between two similar symbols. In fact,

you can easily realize that it is easier to transmit the Latin alphabet, with say 25 symbols, than

the Japanese katakana with 48 different characters. Thinking about it, people realized that the

most confusion-avoiding (noise-resistant) way to do this is to associate each symbol (character)

you want to transmit to a number and then to represent the number in base 2, with only two

different digits, e.g. ‘0’ and ‘1’.

In synthesis, when we transmit a message we transmit a stream of symbols ‘0’ and ‘1’ that can

be associated with numbers that are associated with letters and punctuations. Traditionally,

these symbols ‘0’ and ‘1’ are called bit as a contraction of the words ‘binary digit’.

In most common long messages, the probability to find a ‘0’ or a ‘1’ is the same and is thus p(0)

= p(1) = 0.5. According to this, the amount of information transported by a message composed

of n bits with n0 symbols ‘0’ and n1 symbols ‘1’ (and n = n0 + n1) is:

H ¼ − K n0
1

2
log

1

2
þ n1

1

2
log

1

2

� �

¼ K
1

2
ðn0 þ n1Þ log 2 (2)

If we chose K = 2 and assume that log 2 = 1 (this is true if we admit the base 2 for the

logarithmic function), we have

H ¼ ðn0 þ n1Þ ¼ n (3)

Thus, the amount of information in a message coded in bits is equal to the number of bits in the

message.
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Within this framework, ‘information processing’ is what we do when we manipulate (= do

operations on) the bits of a message. By the moment, bits are numbers, ‘information

processing’ is substantially equivalent to computing.

So we are back to another fundamental question: how do we do computing? This question

may seem a bit naïve by the moment that we are all used to deal with the act of computing

since when we were kids. Clearly computing is associated with dealing with quantities,

represented by numbers: how to count them, how to add, subtract and in general how to

transform numbers. This is absolutely correct. However, here we would like to focus on the

fact that, at its very fundamental roots, the act of computing can be associated with very

simple physical manipulations like moving a ball from one pot to another or changing the

position of a pebble in a row or a column. This was known since the old times: the word

‘calculus’ (form which ‘calculations’) comes from Latin and designated small stones that

Romans used to account for quantities, i.e. to perform computations.

Manipulating physical objects is thus at the base of computing and we have shown that such

manipulation has the power of transforming not only numbers but more generally any kind of

symbol, as it is normally carried out in modern ICTdevices that process information, like when

we read an e-mail or change an image on a screen.

By the moment that information processing/computing can be associated with the change of

bits, in order to perform this activity we need two very important components:

1. a physical system capable of assuming two different physical states

2. a way to induce state changes in this physical system (typically a force).

We are not going to spend time dealing with the quite philosophical definition of physical

system by intending with it any object, device or phenomena that can be studied by physics.

The notion of physical state is slightly more delicate. With it we mean a set of measurable

quantities whose value can be used to distinguish unambiguously two different outcomes, as

an example shown in Figure 1.

Here we have

1. The physical system, made by a pebble and two bowls. The two states are represented by

the measurable quantity ‘position of the pebble’: state ‘0’ = pebble in left bowl; state ‘1’ =

pebble in the right bowl;

2. The way to induce state changes represented by a force that brings around the pebble.

According to this example, we can perform information processing activity simply by chang-

ing the position of the pebble, according to certain rules, with the underlining idea that, while

we do these changes, we are at the same time changing the value of the symbol ‘0’ and ‘1’

associated with the system state. Devices that obey the rules (1) and (2) are called binary

switches.

In modern computers, binary switches are made of transistors. These are electronic devices

(Figure 2, left) that satisfy the two required conditions:
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1. The two states are represented by the measurable quantity ‘electric voltage’ at point VOUT.

As an example state, ‘0’ = VOUT < VT; state ‘1’ = VOUT > VT; with VT a given reference

voltage;

2. The way to induce state changes represented by an electromotive force applied at point

VIN.

By combining binary switches, we can perform all the information processing operations

required. As an example, we mention the NAND gate (a universal logic gate) that can be

realized by interconnecting two transistors (see Figure 2, right).

Now, the question that we want to address is the following: what is the minimum energy

required to process information? In order to answer this question, we have to briefly recall the

basic laws of one of the most elegant physics theories: thermodynamics.

Figure 1. Two bowls and one pebble are sufficient to realize a binary switch.

Figure 2. Left: transistor. Right: a combination of two transistors to realize a NAND gate.
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3. Basics on thermodynamics laws

Thermodynamics is the theory that deals with concepts like energy, work, heat, entropy and
their use in physical systems. In this section, we present in a concise way the fundamental laws
of thermodynamics [1]. It will help us to understand what can we do and what we cannot do
with energy.

The fundamental laws were considered through a period of approximately 100 years during
which wrong assumptions, brilliant experiments and hard work characterized the work of a
bunch of great scientists. Among them we list Thomas Newcomen (1664–1729) who built the
first practical steam engine aimed at pumping water out of coal mines and James Watt (1736–
1819) who soon after realized an improved version of the same machine. The laws of thermo-
dynamics were considered to provide understanding and tools to the engine makers. This
effort was carried out in few decades by some remarkable scientist: Émile Clapeyron (1799–
1864), Sadi Carnot (1796–1832), Rudolf Clausius (1822–1888), and William Thomson (Lord
Kelvin) (1824–1907).

The laws of thermodynamics do not tell us much about what energy is but they are very good
in ruling what can we do and what we cannot do when we change the energy content of a
body by exchanging heat and work.

The first law of thermodynamics is about the conservation of energy. It states that the total energy
of a physical system remains the same during any transformation the system can go through,
provided we take into account how much work the system does and how much heat the
system exchanges (i.e. work and heat balances out).

It was first proposed by Julius Robert von Mayer (1814–1878) and subsequently reviewed by
James Prescot Joule (1818–1889) and Hermann Ludwig Ferdinand von Helmholtz (1821–1894).
Conservation of energy is strongly believed to be true and, to some extent, it is a self-sustaining
law: it is so strongly believed that in every instance we observe a possible violation, we think
harder to discover some way in which energy could have been overlooked and if we cannot
find a way, well… we invent a new kind of energy. In past we did so at the beginning of 1900
when Albert Einstein introduced the mass-energy equivalence, to account for the ‘missing
mass’during a nuclear transformation.

The second law is about how much energy in the form of heat we can draw from a system in
order to do work. Specifically, the second law shows that there are limitations to the amount of
work we can get from a given amount of energy present in the form of heat. There are few
equivalent formulations of these laws. We list here the two most popular, ascribed to Rudolf
Clausius and Lord Kelvin:

Clausius: ‘No process is possible whose sole result is the transfer of heat from a body of lower
temperature to a body of higher temperature’.

Kelvin: ‘No process is possible in which the sole result is the absorption of heat from a
reservoir and its complete conversion into work’.

An important consequence of the second law, discovered by Sadi Carnot in 1824 (when he was
28 years old), is that there is a limit to the efficiency of a thermal machine. In the publication
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entitled Réflexions sur la Puissance Motrice du Feu (‘Reflections on the Motive Power of Fire’)

Carnot generalized the concept, popular at that time, of ‘steam engine’ by introducing the

novel concept of ‘thermal machine’. A thermal machine is a physical system that can exchange

heat and work with its surroundings. Carnot showed that the efficiency of any thermal

machine operating between two temperatures is bounded by a quantity that is a function of

the two temperatures only and does not depend on the features of the machine (nor the

material, nor the geometry, nor the functioning principles). It was a great result, indeed.

Soon after the work of Sadì Carnot, Rudolf Clausius used his result to introduce a new

physical quantity that is useful in describing exactly how much heat can be changed into work

during the transformation. He suggested the name ‘entropy’ for this quantity.

The reasoning behind the introduction of this quantity, the entropy, is the following: to operate

a thermal machine, it is necessary to find a cyclic transformation during which heat is changed

into work. The cycle is necessary because you want to operate the machine continuously and

not just once: every time that a cycle is completed you get some work. By reiterating the cycle

you can get any amount of work you need. First of all, Clausius proved a theorem that states

that during a cyclic transformation, if you do the transformation carefully enough not to lose

any energy in other ways (like friction), then the algebraic sum of the heat exchanged with the

external (considered positive the heat that goes into the system and negative the heat that

leaves the system) divided by the temperature at which the exchanges occur is zero:

∮ dQ

T
¼ 0 (4)

An important aspect is that the cycle does not depend on the specific path that you take.

Moreover, being a cycle, you start and end at the same state. Clausius concluded that, from

the previous integral, it does exist a state function S defined as

SB−SA ¼ ∫
B

A

dQ

T
(5)

(or in differential form dS = dQ/T). The function S is a state function (it only depends on the

state) and represents a novel physical quantity called entropy.

In addition, Clausius showed that if during the transformation, you are not careful enough and

you lose energy (due to friction), than the inequality holds instead of the equality:

∮ dQ

T
≤ 0 (6)

The transformation like this is also called an irreversible transformation. It is easy to show that if

we take and irreversible transformation to compute the entropy, we end up with under-

estimating the change:

SB − SA ≥ ∫
B

A irr

dQ

T
(7)

It is important to point out that in practical cases it is practically unavoidable to have some

kind of friction, thus, the inequality holds. In the very special case, in which we have
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transformation where we do not have any heat exchange (sometimes called adiabatic transfor-

mation), then the right hand of the inequality is zero and the final entropy is always larger than

the initial one.

The concept of irreversible transformation is a bit tricky. You can have an irreversible transfor-

mation even if there is no apparent friction. This is the case, for example, of the so-called free

expansion of a gas. James Prescot Joule in 1845 has shown with a remarkable experiment that

you can have a gas to expand freely (without doing any work) from a smaller container to a

larger one, without any heat exchange. In this case, the irreversibility of the transformation

comes from the fact that during the free expansion, the gas is out of equilibrium, i.e. the usual

thermodynamic quantities like temperature, pressure and volume are not well defined due to

the fact that the gas is expanding and while parts of the gas are still at a certain temperature

(with a given mean velocity), other parts of the gas may show different mean velocities.

If we consider an infinitesimal transformation we have:

dS≥
dQ

T
or TdS≥dQ (8)

where the equal sign holds during a reversible transformation only. The previous equation is

often considered the formulation of the second law of thermodynamics [1]. By putting in

contact, a physical system that is at temperature T1 with a heat reservoir that is at temperature

T2 > T1, then some heat will be transferred from the reservoir to the system. Accordingly, the

integral is positive and the entropy of the system increases (meaning that this process can

occur without any work). The other way around phenomenon by which heat is transferred

from the system to the reservoir does not occur because it would require a decrease of entropy

(second principle) and thus we conclude that during a spontaneous transformation (i.e. with-

out external work) the entropy always increases. We can make the entropy of our system

decrease (e.g. like in a refrigerator) but we have to add work from outside [1].

Another way of looking at this formulation of the second principle is the following. In the

general case of irreversible transformation, instead of using the inequality, we can write the

previous expression as:

TdS ¼ dQþ Ed (9)

where Ed is the additional energy dissipated during the transformation, meaning that, when

we want the entropy to decrease a quantity TdS, we need to spend an amount of minimum

energy equal to dQ. If we cannot do things carefully enough to reach a reversible (i.e. lossless,

where the quantity Ed is always zero) transformation condition, then we need to spend dQ + Ed.

Instead, if we want to do the transformation where the entropy increases, then we do not need

to spend any minimum amount of energy. Entropy increase can come for free!

Back to the Clausius inequality, it is useful to interpret the quantity TdS in a reversible transfor-

mation as the amount of heat (meaning thermal energy) that cannot be used to produce work [1].

In other words, during the transformation, even if we are carefully enough not to waste energy

in other ways, we cannot use all the energy that we have to do useful work, part of this energy
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will go into the entropy change. If we are not carefully enough the situation is even worst and we

get even less work. The limitation in heat transformation is usually quantified by the introduc-

tion of the so-called free energy. The concept of free energy was proposed by Helmholtz in the

form: F = U − TS. The free energy F quantifies the maximum amount of energy that we can use to

do useful work, when we have available the internal energy U of a system with entropy S.

The introduction of entropy was aimed at quantifying the limitations on the use of heat to

produce work. However, it is not an exaggeration to say that entropy, in general, remained for

many years an obscure quantity, whose physical sense was difficult to grasp. It was the work

of Ludwing Boltzmann (1844–1906) that shed some light on the microscopic interpretation of

the second law (and thus the entropy). Boltzmann proposed an interpretation of the second

law, i.e. the natural tendency of systems to evolve (via spontaneous transformations) towards

the state characterized by the increased entropy as the tendency of a system to attain an

equilibrium condition identified as the most probable state, among all the states the system

can be in.

In the idealized world considered by Boltzmann, physical systems are gasses made by many

small parts represented by colliding little spheres. Let us consider an ideal gas made by N such

particles in the form of tiny hard spheres of mass m that can collide elastically (thus conserving

kinetic energy and momentum). Let us suppose that these particles are contained in a box with

one of the walls consisting in a moving set of mass M = Nm. The set is connected to a spring of

elastic constant k, as shown in Figure 3, and is at rest [1].

If all the particles have the same velocity v and collide perpendicularly with the moving set at

the same time (see Figure 4), they will exchange velocity with the set.

This will compress the spring up to an extent x1 such that:

1

2
M v2 ¼

1

2
k x21 ¼ U (10)

By a purely mechanical point of view, this is a mere transformation of kinetic energy into

potential energy. We can always recover the potential energy U when we desire and use it to

perform work. The work will be exactly U. In this case, we can completely transform the

kinetic energy of the gas particle into work. How comes? Well, in this case we are considering

Figure 3. Pictorial representation of an ideal gas contained in a box with a moving set connected to a spring. The gas

particles move randomly.
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a very special configuration of our gas (unique indeed) where all the particles are moving

accordingly in parallel lines. If we put randomly the particles in the box, what is on the

contrary the most probable configuration for their arrangement? Based on our experience

(and on some common sense as well), the most probable configuration is one where all the

particles are moving with random direction (but same velocity) in the box. The kinetic energy

of the gas is still the same (so is its temperature T) but in this case, the movable set will be

subjected at random motion with an average compression of the spring such that its average

energy isU/N. This is also the maximumwork that we can recover from the potential energy of

the movable set. Thus, it appears clear that, although the total energy U is the same in the two

cases, in the second case we have no hope of using the greatest part of this energy to perform

useful work. As we have determined, when we introduced the definition of free energy, the

quantity that limits our capability of performing work is the entropy. Following this definition,

the system that has the smaller entropy has the larger capability of performing work. Accord-

ingly, we can use the entropy to put a label on the useful energetic content of a system. Two

systems may have the same energy but the system that has the lower entropy will have the

‘most useful’ energy.

Figure 4. Pictorial representation of the ideal gas. Top: all the particles move in ordered way from left to right with

parallel velocities. Middle: the particles hit the piston and exchange velocity with it. Bottom: The piston compresses the

spring and reach zero velocity. All the energy is now stored as potential energy.
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This example helped us to understand how energy and entropy are connected to the micro-

scopic properties of the physical systems. In the simple case of an ideal gas, the system energy

is nothing else than the sum of all the kinetic energies of the single particles. We can say that

the energy is associated with ‘how much’ the particles move. On the other hand, we have seen

that there is also a ‘quality’of the motion of the particles that is relevant for the entropy. We can

say that the entropy is associated with ‘the way’ the particles move. This concept of ‘way of

moving’ was made clear by Boltzmann at the end of 1800, who proposed for the entropy the

following definition:

S ¼ kB log W (11)

where kB is the famous Boltzmann constant andW is called the ‘number of configurations’ and

represents the number of ways we can arrange all the particles in the system without changing

its macroscopic properties. In the previous example, we have only one way to arrange the N

particles so that they are all parallel, aligned and with the same velocity while we have a very

large number of ways of arranging the N particles to be a randomly oriented set of particles

with velocity v. Thus, it is clear that in the second case, the value of the entropy is much larger

than that in the first case (where it is indeed zero).

The Boltzmann formula refers to a case where all the microstates are equiprobable. The

extension to the more general case with microstates with different probabilities was proposed

by Josiah Willard Gibbs (1839–1903):

S ¼ −kB ∑i pi log pi (12)

where pi represents the probability of the microstate i.

We have seen above that during a spontaneous transformation, the entropy of the system

increases. This can occurred without any change in the energy of the system itself as it

was shown by Joule in the famous experiment of free gas expansion. Let us consider our

previous example where all the particles move along parallel lines. Let us suppose that

the trajectories are not perfectly aligned. Initially nothing happens but, due to a small

misalignment, sooner or later a collision between the particles can happen and, collision

after collision, the entire group of particles evolves into a randomly moving group. This is

clearly a spontaneous transformation. By the moment that the collisions are elastic the

energy of the system has not changed but the system entropy has rapidly increased from

the zero initial value up to its maximum value. Conversely, the free energy has reached its

minimum value. It is interesting to ask: can we bring the system back to its initial

condition? The answer is yes but in order to do it we need to spend some energy as

required by the second principle. How much? Clearly we need to spend a minimum of

TΔS of energy, where ΔS represents the difference in entropy between the final and the

initial states. The bad news is that if we spend this energy and decrease the entropy back

to its original condition, the energy that we spend does not change the total kinetic energy

of the system that remains the same. However, having reduced the system entropy we

have increased the Free energy and this improves our capability of extracting work from

the system itself.
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4. Digital computing and the physics of switches

In order to answer our initial question (what is the minimum energy required to process informa-

tion?) we need to apply the thermodynamics concepts that we have just learned to the binary

switches that are the basic elements of any information processing device.

As we have discussed in Section 2, a binary switch is a physical system that obeys the two rules

(1) and (2) that here we restate as follows:

1. a physical system capable of assuming two different physical states: S0 and S1

2. a set of forces that induce state changes in this physical system: F01 produces the change

S0! S1 and F10 produces the change S1! S0.

If we think about it, we can easily realize that there exist at least two classes of devices that can

satisfy these rules. We call them combinational and sequential devices [1].

Combinational devices are characterized by the following behaviour: when no external force is

present, under equilibrium conditions, they are in the state S0. When an external force F01 is

present, they switch to the state S1 and remain in that state as long as the force is present. Once

the force is removed they come back to the state S0. Popular examples are represented by

relays (Figure 5) and also by transistors, today widely exploited in modern computing devices

to make logic gates. A combinational device is a network of combinational switches.

Sequential devices are characterized by the following behaviour: if they are in the state S0, they

can be changed into the state S1 by applying an external force F01. Once they are in the state S1
they remain in this state when the force is removed. The transition from state S1 to S0 is

obtained by applying a new force F10. In contrast to the combinational device, the sequential

device remembers its state after the removal of the force. This memory lasts for a time that is

short compared to the system relaxation time. In fact, if one waits long enough, the sequential

device relaxes to equilibrium that, in a symmetric binary switch, is characterized by a 50%

probability to be in the S0 state and 50% probability to be in the S1 state. This relaxation process

is unavoidable in any real physical system that is operated at finite temperature. However, in

all practical cases the relaxation time is usually much longer than any operational time; hence,

the sequential device can be considered a system that remembers the last transition. Examples

Figure 5. Electro-mechanical switch (relay) as a combinational device: when an external force (magnetic induction force)

is applied the switch changes its state from open to close) and goes back to the initial state (open) when the force is

removed. Picture obtained from Wikipedia: https://commons.wikimedia.org/wiki/File:Relay_principle_horizontal.jpg.

ICT - Energy Concepts for Energy Efficiency and Sustainability48



include electronic flip-flop and DRAM (dynamic random access memory): the complex ‘stor-

age capacitor + transistor’. They are employed in computers to perform the role of registers

and memory cells. A simple mechanical example of sequential binary switch is the switch

illustrated in Figure 6.

In order to discuss the energetic behaviour of the two classes of binary switches, we need to

introduce a dynamical model that is capable of representing the action of the force and the

switch mechanism. In order to do so, we use a simple model based on a single degree of

freedom x(t) that represents the system state (this can be the position of a pebble or the value

of some electric voltage or current, as we discussed above). This quantity x(t) must be

subjected to constrains and forces that make it to behave according the two rules (1) and (2)

and also some time evolution equation, according to physics.

For both classes of devices, we can use the following equation:

m€x ¼ −

d

dx
UðxÞ−mγ _x þ ξðtÞ þ F (13)

where m represents the inertia of our system, F is an external force that can be applied when

we want to change state, and γ is the frictional force that represent dissipative effects in the

switch dynamics and

UðxÞ ¼
1

2
x2 for combinational devices (14)

UðxÞ ¼ −

1

2
x2 þ

1

4
x4 for sequential devices (15)

In general, U(x) is a potential function that has the role of confining x(t) in a well-defined

region. What is ξ(t)? This is a stochastic force and represents the role of fluctuations that are

unavoidably present due to a finite temperature. These fluctuations are responsible for the

relaxation process that we discussed above. In a macroscopic binary switch, this term is quite

small compared to the other terms in the equation of motion and is usually neglected. How-

ever, when we deal with micro- to nanoscale devices, like in modern binary switches, its role

might be relevant and its presence cannot be neglected [2].

The fluctuating force ξ(t) is represented here by a zero average stochastic process that is

defined in statistical terms. Due to its presence, the equation of motion is a stochastic equation

Figure 6. Mechanical binary switch as a sequential device: when an external force is removed it stays in the last state for

any interval of time, shorter than the relaxation time.
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and its solution is usually described in statistical terms. P(x, t)dx represents the probability for

the quantity x to be at time twithin the interval between x and x + dx and is a relevant quantity

to describe the system dynamics.

Here, we can define the two distinguishable physical states S0 and S1, as follows: the state S0 is

realized when x < xTH; the state S1 is realized when x > xTH, and xTH is a value of the quantity x

that can be chosen conveniently. Due to the presence of fluctuations, the two physical states are

assumed with a certain probability given by:

p0ðtÞ ¼ ∫
xTH

−∞ Pðx, tÞdx and p1ðtÞ ¼ ∫
þ∞

xTH
Pðx, tÞdx (16)

The switch event in a combinational device is illustrated in Figure 7.

Here, the application of a constant force, F01 = –F0, produces a net displacement of the p(x). By

setting properly the value of the threshold, we can easily realize the switch from S0 to S1.

According to the combinational character of our device, once the force is removed, the system

reverts back to the initial state S0. In order to compute the amount of energy required for this

switch, we should take into account the work done by the forces acting on the system. The

stochastic force does not do (on average) any work because it is a zero mean force. The dissipa-

tive force does a negative work that is proportional to the switch speed. The external force acts on

the potential and is a conservative force, thus through an entire cycle its work is null.

The role of the dissipative force and of the fluctuating force can be, more properly, discussed

within the thermodynamics framework that we have previously introduced. In fact, their

presence accounts for the existence of a coupling of our quantity x(t) with a thermal bath that

is responsible at the same time for the fluctuating part of the dynamics (i.e. the random force

ξ(t)) and the dissipative part (i.e. the damping constant γ). Indeed the two are connected

through a famous relation called the fluctuation-dissipation theorem [1] established by Harry

Figure 7. Switch event for the combinational device: the application of a constant force, F01 = −F0, produces a net

displacement of the p(x) from the one in black (centered around x = 0) and corresponding to the state S0 to the one in blue

(centered around x = 2) and corresponding to the state S1.
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Theodor Nyquist (1889–1976) in 1928, and demonstrated by Callen and Welton in 1951. This

relation is:

GR ¼
mKBT

π
γ (17)

where GR represents the intensity of the fluctuation with white noise spectrum [1].

Due to the existence of the thermal bath, thermodynamics sets the rule for the energy balance

during the switch process. Specifically, if we conduct the switch process from the initial state S0
to the final state S1 we need to spend a minimum energy (i.e. producing a heat Q that goes into

the thermal bath). In general, we have

TdS ¼ dQþ Ed (18)

If the transformation is carried out in a reversible manner, Ed = 0 and the amount of dissipated

heat is, according to Clausius, dQ = TdS. In a cyclic operation, this is clearly zero because T is

constant and S is a function of state only. On the other hand, if the transformation is not

reversible, the amount of dissipated energy is Ed and is larger than zero.

Could this be realized in practice? In a recent experiment, Lopez-Suarez and et al. [3] has built a

micro-cantilever that can be operated as a combinational device. They showed that by slowing

down the switching operation, Ed can be made arbitrarily small, thus confirming that the

minimum energy required to process information with a combinational device is indeed zero.

Let us now consider the switch event in a sequential device.

For this case [1], the definition of the switch event itself must be reconsidered. Previously, the

switch event was defined as the change from an equilibrium position (e.g. at rest at the bottom

of the potential well) to another equilibrium position (e.g. at rest at the bottom of the displaced

potential well). In this bistable potential, however, the particle is never at rest at the bottom of a

single well: due to the presence of the fluctuating force, the particle will be randomly oscillat-

ing around the potential minima, with occasional jumps between the two wells. Since the

potential is symmetrical and we have a zero-mean fluctuating force, the two states S0 and S1
have the same probability. This implies that the probability density distribution at equilibrium

P(x,t) = P(x) is stationary and symmetric, as represented in Figure 8.

When the particle is initially at rest at the bottom of the left well, after some time τ1 it starts to

oscillate around the potential minima and after some longer time τ2 it will jump into the right

well and eventually back into the left well and so on. The time τ1 and τ2 are random variables.

Their mean values t1=<τ1> and t2=<τ2> (with t2 > t1) can be computed on the bases of the

features of the potential U(x) and the stochastic force ξ(t). They are usually addressed as the

intra-well relaxation time and the inter-well relaxation time and, in general, they represent,

respectively, the average time the system takes to establish equilibrium within one well and

the average time it takes to go to global equilibrium. Since t2 depends exponentially on the

barrier height between the two wells, in practical switches the barrier height is chosen to be

large enough to guarantee that t2 >> t1.
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Based on these considerations, we can define the switch event as the transition from an initial

condition towards a final condition, where the initial condition is defined as <x> < 0 and the

final condition is defined as <x> > 0. With the initial condition characterized by:

p0ðtÞ ¼ ∫
0

−∞Pðx, tÞdx ≅ 1 and p1ðtÞ ¼ ∫
þ∞

0 Pðx, tÞdx ≅ 0 (19)

and the final condition by

p0ðtÞ ¼ ∫
0

−∞Pðx, tÞdx ≅ 0 and p1ðtÞ ¼ ∫
þ∞

0 Pðx, tÞdx ≅ 1 (20)

The conditions are reversed for a switch event from S1 to S0.

In order to produce the switch event, we proceed as follows: set the initial position at any value

x < 0 and wait a time ta, with t1 << ta << t2, then apply an external force F for an elapsed time

tb to produce a change in the <x> value from <x> < 0 to <x> > 0. Then remove the force. In

practice, it will be necessary to wait a time ta after the force removal in order to verify that the

switch event has occurred, i.e. that <x> > 0. The total time spent has to satisfy the condition

2 ta + tb << t2.

Now that a switch event has been defined in this new framework, we can return to the

question: what is the minimum energy required to produce a switch event?

As before, for the combinational device, it is quite easy to see that in order tominimize the energy

dissipation, the role of the friction has to be negligible. In addition to this condition, we need to

make sure that during the transformation no irreversible increase of the entropy takes place. The

most common case (to be avoided) is the free expansion. During a free expansion, the system

does not do anywork and the entropy increases without energy expenditure. However, whenwe

Figure 8. Bistable potential U(x) with superimposed the probability distribution P(x,t) = P(x) at equilibrium.
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need to bring back the system to its original state we cannot perform the reverse operation

without energy expenditure because we need to decrease the entropy and this cannot be

performed for free. This condition is particularly relevant for a procedure that is often followed

in the switch event. The procedure is shown in Figure 9 and consists in five subsequent steps.

We point out that from step 1 to step 2, the entropy of the system increases. During this

transformation, the potential changes by lowering the barrier. At this point, the particle

dynamics relaxes (in a very short time) to the new configuration and the entropy increases like

in a free expansion. This is apparent by the change in the probability distribution and can be

demonstrated by simply assuming that in step 1 we have p0 = 1 and p1 = 0, this gives S1 = -kB ln

1 = 0. In step 2, p0 = p1 = ½ and thus S2 = −kB (½ ln ½ + ½ ln ½) = kB ln 2. Thus, ΔS = kB ln 2 >0. On

the other hand, when there is a transition from step 2 to step 5, the entropy is reduced from S2
to S5 = S1 = 0, thus ΔS = −kB ln 2 < 0. According to the thermodynamics, these last steps cannot

be performed without providing energy to the system and thus the minimum energy in this

case is not zero [1].

Summarising, the conditions required to perform a switching event that takes zero energy, are:

(1) the total work performed on the system by the external force has to be zero. (2) The switch

event has to proceed with a speed arbitrarily small in order to have arbitrarily small losses due

to friction. (3) No free expansion entropy increase during the procedure.

In the following, we show a procedure (called zero-power protocol in the literature [4]) that

satisfies these three conditions. In order to satisfy condition (1), we apply a force that maintains

Figure 9. Potential U(x) + F. Equilibrium P(x) for the different cases. Second procedure: Step 1 and Step 5, F = 0; step 2

F = −x; Step 3 F = −x − F1; Step 4 F = −F1.
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the average position of the particle always close to the minimum of the potential well. In this

case, the force is zero and thus the work is zero. In order to satisfy condition (2), we apply very

slowly a change in the force. Finally, in order to satisfy condition (3), i.e. the probability density

in state 0 and in state 1 is the same; apply a force that does not change the probability density

along the path (constant entropy transformation). This can be done by applying a force that

alters the potential, as shown in Figure 10. Such a procedure clearly satisfies the three condi-

tions that we enunciated above.

According to the reasoning developed in this procedure, we can conclude that also in the case

of sequential devices, the minimum energy required to process information, i.e. to operate a

switch, is indeed zero.

5. Energy efficiency, Landauer reset and reversible computing

In the previous sections, we have seen that a generic computing device can be considered as a

machine that processes information while transforming work into heat. Pioneering research

developed by J. Von Neumann and by R. Landauer in the last century has shown that

information processing is intimately related to energy management (‘information is physical’

[5]). As a matter of fact, an ICT device is a machine that inputs information and energy

(under the form of work), processes both and outputs information and energy (under the

form of heat).

Figure 10. Potential U(x) + F. Equilibrium P(x) for the different cases. Third procedure.
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According to this model, energy efficiency during computation can be defined in terms of the

quantity of input energy that is used for computation against the quantity that is transformed

into heat. Thus, we can define energy efficiency as:

η ¼

L−Q

L
(21)

L is the input energy (in the form of work) and Q is the wasted heat produced during

computation. Clearly, it varies between 0 (a totally inefficient device: all the input energy is

wasted into heat) and 1 (maximum efficiency where all the energy is used to perform compu-

tation and none is wasted into heat).

Based on this definition, it is clear that the effort to reach the maximum efficiency is equivalent

to the effort to reach the zero heat produced condition Q = 0. We note that, in principle, a

computing device can be operated by keeping, during computation, the total change in the

internal energy U = L − Q = 0. So the minimum energy required is L = Q.

The question that we aim to address since the beginning of the chapter is the following: is there

a limit to how small can we make Q?

This topic has been widely discussed in the scientific community since the beginning of the

modern computers era. Based on our previous discussion, our question, by the moment that all

the combinational and sequential devices can be made by interconnecting respective binary

switches, translates into:

1. What is the minimum amount of energy required to operate a combinational switch?

2. What is the minimum amount of energy required to operate a sequential switch?

Based on the reasoning developed in the previous paragraph, we can now summarize the

answer.

The answer to question (1) is Q = 0, provided that the switch operation is performed slowly

enough in order to make negligible all the dissipative phenomena such as viscous damping

and internal friction. Sometime this way of operating switches is called adiabatic computing.

The answer to question (2) is Q = 0, provided that the switch operation is performed slowly

enough and that there is no irreversible entropy increase during the process (and the necessary

and costly subsequent entropy decrease).

While the adiabatic computing condition is common to both classes of switches, the sequential

devices demand an additional condition that requires some further discussion.

In fact, there exists a situation where the second condition in (2) cannot be satisfied. It is when

the sequential switch is relaxed to equilibrium and the initial state condition is shared with

equal probability by S0 and S1. In this case, it is common to say that ‘the knowledge of the

system state is lost’. In order to apply the zero-power protocol it is necessary to put the system

into a known state with 100% probability. This operation is called Landauer reset and cannot be

performed without entropy reduction [5]. By the moment that on average, it requires a

Fundamentals on Energy in ICT
http://dx.doi.org/10.5772/66973

55



reduction of the number of initial states from 2 to 1, the entropy decreases for a quantity ΔS =

KB Log 2 (it halves the state space) and this is necessarily associated with an amount of

minimum energy to be dissipated Q = KB T Log 2.

In conclusion, we have shown that a computing device can be operated with arbitrarily low

energy expenditure, provided that no Landauer reset is required. Otherwise, a minimum energy

expenditure has to be accounted in the measure of KB T Log 2 per reset.

Needless to say that this conclusion regards what we have called the ‘fundamental limit’ in

energy consumption, during computation. Clearly, other limits [1] can arise when we deal with

practical realization of computing devices. However, even if these limits are presently much

larger and more important for practical applications, we should not forget that they are

associated with the specific technology used. By changing technology, we can (in principle)

always aim at reaching the fundamental limits.

6. Energy bounds on communication as information transfer processes

In this section, we discuss the concept of information transmission and its implication on

the amount of energy required. This topic has been addressed since the beginning of last century

and has been put in the modern form by the father of information theory, Claude Shannon.

The starting point of Shannon’s reasoning is the following: if we want to transmit a certain

amount of information (i.e. a message) through a given communication channel (it could be air,

vacuum, copper wire, etc.) we want that this information reaches its destination uncorrupted.

The cause of potential corruption is called noise. Shannon was able to demonstrate that if in a

given channel characterized by a bandwidth B, at the destination you can measure an amount of

noise powerN and a signal power S, then themaximum amount of information per unit time (bit

per second) you can transmit (without corruption) is:

C ¼ B log2 1þ
S

N

� �

(22)

This relation is often addressed as the Shannon-Hartley theorem. We are interested in finding

the minimum energy Eb that is required to transmit a single bit through a channel with a

certain amount of noise. In order to find Eb, we need to express it in terms of the quantities in

the Shannon’s relation. By definition, the energy per bit is equal to the signal power S (energy

per unit time) divided per capacity C (bit per second): Eb = S/C. On the other hand, the noise

power N is equal to the noise spectral density N0 (noise power per unitary bandwidth) times

the bandwidth B: N = N0 B.

Thus, the previous relation becomes:

CB ¼ log2 1þ
Eb

N0
CB

� �

(23)

where we have introduced the quantity CB = C/B, capacity per unitary bandwidth. The quan-

tity Eb is readily obtained as:
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Eb ¼
ð2CB

−1Þ

CB

N0 (24)

If the channel bandwidth is much larger than the capacity (meaning that we transfer bits very

slowly), we can take the limit when CB goes to zero. By the moment that

limx!0
ðax−1Þ

x
¼ ln a (25)

we have Eb = N0 ln2. The role of noise here is quite evident. How large it could be? Well, in

principle, we can try to reduce the noise as much as possible but, even if we are able to

suppress every other noise source, there is one source that cannot be avoided, which is the

thermal noise, it is present in every physical system that is at finite temperature T and repre-

sent the natural oscillations of their elementary components (atoms and molecules). For the

thermal noise, we have N0 = KB T. Thus, the minimum energy required for sending a bit of

information, due to the fundamental noise limit, is

Eb ¼ kBT ln2 (26)

As before, we would like to stress that this is fundamental limit that sets the minimum energy

required. In practical systems, there are other noise sources that can play a relevant role as well.

One final word should be spent to compare this fundamental limit, i.e. the minimum energy

required to transmit one bit, with the minimum energy required to do a switch event, i.e. the

elementary step in the computation process. As we have seen that there is a minimum energy

to be spent only in the case in which a Landauer reset is required. This amount of energy is

dissipated in heat and it is definitively lost during information processing. For the minimum

energy required to send one bit, instead, Eb is the energy associated with the physical signal

that transmits the information. This quantity is not automatically dissipated in heat and, in

principle, could be restored once the signal is received at the destination.
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