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Abstract

Terahertz time‐domain spectroscopy is a well‐established technique to study the far‐infra‐
red electromagnetic response of materials. Measurements are broadband, fast, and per‐
formed at room temperature. Moreover, compact systems are nowadays commercially 
available, which can be operated by nonspecialist staff. Thanks to the determination of 
the amplitude and phase of the recorded signals, both refractive index and absorption 
coefficient of the sample material can be obtained. However, determining these electro‐
magnetic parameters should be performed cautiously when samples are more or less 
transparent. In this chapter, we explain how to extract the material parameters from 
terahertz time‐domain data. We list the main sources of error, and their contribution 
to uncertainties. We give rules to select the most adapted technique for an optimized 
characterization, depending on the transparency of the samples, and address the case of 
samples with strong absorption peaks or exhibiting scattering.

Keywords: terahertz time‐domain spectroscopy, transmission TDS, reflection TDS, 
attenuated total reflection, extraction precision, Kramers‐Kronig relations, scattering

1. Introduction

Up to the end of the 1980s, the far‐infrared electromagnetic response of materials was mostly 
investigated thanks to Fourier transform infrared (FTIR) spectroscopy, which exhibits sev‐
eral advantages. During one scan, the recorded time‐equivalent waveform is built from infor‐
mation delivered by the entire spectrum, whereas other dispersive prism‐ or grating‐based 
spectrometers receive at any time only signal from a narrow band, i.e., a weaker signal with 
a smaller signal‐over‐noise ratio (SNR). Second, and oppositely to dispersive spectrometers, 
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the resolution of FTIR instruments is not limited by the size of the source. These are respec‐
tively known as the multiplex and étendue advantages [1]. Nevertheless, FTIR instruments 
display some drawbacks mostly due to the lack of efficient sources and detectors of far‐
infrared waves. The sources must be broadband in view of achieving narrow waveforms 
and thus performing broad spectral measurements. Generally, blackbody‐like sources are 
implemented: they are rather powerless and deliver incoherent light. Thus, a long integra‐
tion time is necessary to get a high SNR. Moreover, to obtain a high‐frequency resolution, 
the waveform must be recorded over a long equivalent time window, during which noise is 
also recorded. Sensitive detectors, like Si bolometers, operate only at cryogenic temperatures. 
These experimental problems, i.e., long recording times and cryogenic temperature, were 
solved by Auston and Chueng [2] in 1985 who introduced and demonstrated the new concept 
of coherent time‐domain far‐infrared spectroscopy, known today as terahertz time‐domain 
spectroscopy (THz‐TDS). This initial work was completed by researchers at IBM Corp. [3, 
4], who definitively installed THz‐TDS as a very competing tool to study the far‐infrared 
properties of materials and devices. Since these pioneering researches, a strong effort has 
been devoted by numerous laboratories worldwide to improve THz‐TDS equipment and 
techniques. Today, several books describe this technology [5–9] and commercial systems are 
available [10]. THz‐TDS typically permits to investigate the range 0.1–5 THz, but some recent 
systems allow one to reach the mid‐infrared, i.e., frequencies larger than 10 THz [11–13]. 
In addition, the time‐domain technique makes possible to perform optical‐pump and THz‐
probe time‐resolved experiment to study the carrier dynamics in semiconductors [14, 15] or 
the kinetics of photo‐induced chemical reactions [16, 17]. Moreover, nonlinear THz effects 
can be observed, thanks to the huge THz peak power in THz‐TDS systems fed by amplified 
mode‐locked lasers [18].

In this chapter, we describe the principles of THz‐TDS and we explain how to extract the 
refractive index and the coefficient of absorption of materials from THz‐TDS data. We study 
the precision of this determination versus different error sources. We give rules to choose, 
depending on the samples under test, the most adapted THz‐TDS technique among transmis‐
sion or reflection ones. We also treat the case of materials that exhibit strong absorption bands, 
and heterogeneous materials that scatter and/or diffract the THz beam.

2. Principles and basics of THz‐TDS

In THz‐TDS setups, a train of ultra‐short laser pulses excites a THz antenna, which converts 
each optical pulse into an electromagnetic (EM) burst and radiates it in free space. In other 
words, the carrier frequency of the optical pulse is rectified and only its envelope is saved. 
Because of a noninstantaneous response of the antenna, the conversion widens the EM pulse 
duration when compared to the optical one. Thanks to some THz optical system, the EM 
pulse is focused onto a receiving THz antenna, which is triggered by a delayed part of the 
laser beam. In the receiving antenna, a nonlinear process mixes both incoming EM pulse and 
laser pulse, giving rise to a signal integrated by the reading electronics, which is proportional 
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to the convolution product of the laser pulse and the electrical field of the EM pulse. By vary‐
ing the time delay between emission and detection, which corresponds to a time‐equivalent 
sampling, the temporal waveform of the convolution product is obtained. Two major features 
should be noted: (i) emitter and receiver are enlightened by the same pulsed laser beam, thus 
they are perfectly synchronously excited; and (ii) because it is triggered by ultra‐short laser 
pulses, the receiver records the EM pulse signal only when it is excited by the laser pulses 
(typically during a 1‐ps time slot): noise in the time interval between two consecutive laser 
pulses (typically 10 ns) is not recorded. This amazing 1 ps/10 ns = 104 ratio, associated with 
the perfect synchronization between emission and detection, together with the high stability 
of mode‐locked laser pulse comb, makes the dynamics of THz‐TDS extremely high, usually 
larger than 60 dB in power. The spectrum of the signal is calculated through a numerical 
Fourier transform of the convolution trace. The Fourier transform supplies a complex value, 
with a modulus and a phase. The phase is related, in the time domain, to the relative ori‐
gin of the time delay between emission and detection while the modulus spectrum depends 
strongly on (i) the spectral efficiency of the emitting and receiving THz antennas, and (ii) 
the adjustment of the quasi‐optical THz‐TDS system. The most common THz antennas are 
photo‐conducting switches made from ultrafast semi‐insulating semiconductors, like low‐
temperature grown GaAs (LTG‐GaAs). Basically, a microstrip line with a narrower gap at its 
center is deposited over the semiconductor substrate. In emission, the structure is DC biased 
and the gap becomes conductive when illuminated by a laser pulse. It behaves as a dipole 
whose moment varies promptly due to the photoconduction process. This dipole radiates in 
the far‐field region an EM signal proportional to the second time‐derivative of the moment 
variation, i.e., to the first derivative of the current (conduction and displacement) surge flow‐
ing through the gap. In such antennas, detection occurs through a complementary effect. The 
gap is biased by the incoming THz field  E  (  t )     that accelerates the free carriers synchronously 
generated by the triggering laser pulses. This current, proportional to the THz field, is read 
and time‐integrated by the electronics, usually a lock‐in amplifier and it writes:

  S  (  τ )    ∝   ∫ 
−∞

  
+∞

   E  (  t )   N  (  t − τ )    dt,  (1)

where τ is the time delay between emission and detection, and  N  (  t − τ )     is the number of photo‐
carriers resting at time t from a generation occurring a delay τ before. The spectrum of  S  (  τ )     is 
obtained by a Fourier transform of Eq. (1):

   S ˜    (  ω )    = TF  [  S  (  τ )    ]    ∝   ∫ 
−∞

  
+∞

     ∫ 
−∞

  
+∞

   E  (  t )   N  (  t − τ )    e   −jωτ   dt dτ ∝  E ˜    (  ω )     N ˜     ∗   (  ω )     (2)

ω is the angular frequency,   E ˜    (  ω )     and   N ˜    (  ω )     are the spectra of  E  (  t )     and  N  (  t )    , and    N ˜     ∗   (  ω )     is the com‐
plex conjugate of   N ˜    (  ω )    . From now on, a tilde denotes a complex variable.

THz emission can also be obtained either by illuminating the bare surface of an ultrafast 
semiconductor wafer, at which photo‐generated carriers are accelerated inside the wafer by 
surface fields or/and by the Dember effect [19], or by optical rectification in an electro‐optic 
(EO) crystal effect. Detection is also commonly performed by EO sampling. Characterization 
of a sample is mostly achieved in transmission by locating the sample in the THz beam, and 
recording the THz waveforms without (reference) and with the sample. Then, one Fourier 
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transforms the waveforms, and the complex transmission coefficient    T ˜    
meas

    (  ω )     of the sample is 
equal to the ratio of the signal and reference spectra:

    T ˜    meas    (  ω )    =    S ˜    (  ω )    _____ 
  S ˜    ref    (  ω )   

   =    E ˜    (  ω )     N ˜     *   (  ω )    __________   E ˜    ref    (  ω )     N ˜     *   (  ω )      =    E ˜    (  ω )    _____   E ˜    ref    (  ω )      . (3)

The same procedure is performed in reflection, providing the experimental complex coefficient 
of reflection    R ˜    

meas
    (  ω )    . In this case, the reference signal is the THz waveform reflected by a perfect 

mirror placed exactly at the same position as the sample to be tested. To avoid the difficulty of 
the exact positioning of the reference mirror, attenuated total reflection (ATR) scheme is pre‐
ferred [20]. ATR set‐ups are especially dedicated to characterize liquids or powders since (i) 
THz radiations are strongly absorbed by classical liquids like water avoiding any transmission 
measurement, and (ii) ATR scheme is sensitive enough to characterize dilutions whose solute 
concentration could be as small as 1%. In ATR experiment, the THz beam is reflected against the 
base of a prism whose index of refraction is higher than that of the studied substance to achieve 
total internal reflection of the THz beam. The reference is recorded without the material placed 
upon the prism base to finally obtain the measured complex total reflection coefficient    R ˜    

ATR,meas
    (  ω )    .

The complex refractive index   n ˜   = n  (  ω )    + j κ  (  ω )     of the sample to be characterized is determined 
when the calculated transfer function (i.e., either   T ˜    (  ω,  n ˜   )    ,   R ˜    (  ω,  n ˜   )    , or    R ˜    

ATR
    (  ω,  n ˜   )    ), in which   n ˜    is the only 

adjustable variable, is equal to the experimental ones (   T ˜    
meas

    (  ω )    ,    R ˜    
meas

    (  ω )    , or    R ˜    
ATR,meas

    (  ω )    , respectively). 
When dealing with nonmagnetic materials, analytical expressions of the transfer functions are 
rather simple as long as the samples are slabs with parallel and flat faces. At the sample location, 
the incoming THz beam must be a plane wave. In practice, this is verified even with focused 
THz Gaussian beams, as far as the sample, placed at the focal point, is thinner than the Rayleigh 
length of the beam. Thus, analytical expressions of   T ˜    (  ω,  n ˜   )    ,   R ˜    (  ω,  n ˜   )    , and    R ˜    

ATR
    (  ω,  n ˜   )     are as follows:

   T ˜    (  ω,  n ˜   )    =   4 K ˜   _____   (   K ˜   + 1 )     2     φ   −1  FP  (  ω,  n ˜   )    e   −j  ω __ c  cosθ d   (4)

   R ˜    (  ω,  n ˜   )    = ±  1 −  K ˜   ____ 1 +  K ˜      (  1 −  φ   −2  )   FP  (  ω,  n ˜   )   ,     R ˜    ATR    (  ω,  n ˜   )    = ±  1 −  K ˜   ____ 1 +  K ˜      (5)

with    K ˜    
TE

   =   n ˜     2    K ˜    
TM

   =    √ 
_________

   n ˜     2  −  sin   2  θ   ________ cos θ   ,  φ =  e   j  
ω __ c  d √ 

_________

   n ˜     2 − sin   2 θ   ,  and  FP  (  ω,  n ˜   )    =   [  1 −   (     K ˜   − 1 ____  K ˜   + 1   )     
2

   φ   2  ]     
−1

  .

θ is the angle of incidence, d is the sample thickness, and c the speed of the light in vacuum. 
In Eq. (5), the sign “+” is for the TE polarization case and “‐” for the TM one. In the ATR case, 
K˜ takes similar expressions in which   n ˜    is substituted by   n ˜   /  n  

p
   , where   n  

p
    is the refractive index of 

the prism.  FP  (  ω,  n ˜   )     is the Fabry‐Perot term that accounts for the rebounds of the THz pulse in 
the sample. In ATR experiments, we suppose that d is much larger than the evanescent length 
of the THz beam in the sample, so rebounds are neglected as well as in reflection when the 
sample is opaque or strongly absorbing. In this case, for both reflection and ATR cases, solving   
R ˜    (  ω,  n ˜   )    =   R ˜    

meas
    (  ω )     is easy because Eq. (5) can be analytically inversed:

   K ˜   =   1 ±  R ˜    (  ω,   n ˜   )    ________ 1 ∓  R ˜    (  ω,   n ˜   )   
    (6)

Solving Eq. (4) (or Eq. (5) for thin samples) is more difficult because of the oscillatory com‐
plex exponential term φ. Consequently, the modulus and phase of   T ˜    (  ω,  n ˜   )     or   R ˜    (  ω,  n ˜   )     plotted in 
function of n and κ exhibit several minima (see Figure 1). Therefore, finding the right zero of   
T ˜    (  ω,  n ˜   )    =   T ˜    

meas
    (  ω )     or   R ˜    (  ω,  n ˜   )    =   R ˜    

meas
    (  ω )     is not an easy task.
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To get rid of the oscillatory behavior, we proposed [21] to employ an error function  δ  (  ω,  n ˜   )     that 
exhibits a monotonous shape with a single minimum that is quickly found with any numeri‐
cal method:

  δ  (  ω,  n ˜   )    =   [  ln   (    |   X ˜    (  ω,  n ˜   )    |    )    − ln   (    |    X ˜    
meas

    (  ω )    |    )    ]     
2

  +   [  arg   (   X ˜    (  ω,  n ˜   )    )    − arg   (    X ˜    
meas

    (  ω )    )    ]     
2

    (7)

with   X ˜   =  T ˜    or    R ˜   . Figure 2 shows  δ  (  ω,  n ˜   )     in transmission versus n and κ for two different cases: 
(i) transmission modulus   T  

meas
   = 0.01 , phase   ϕ  

T,meas
   = 10  rad,  ω d / c = 3  (e.g., a 180‐µm thick sample 

studied at  f = 0.8  THz), (ii)   T  
meas

   = 0.003 ,   ϕ  
T,meas

   = 30  rad,  ω d / c = 30  (e.g., a 2.4‐mm thick sample stud‐
ied at  f = 0.6  THz). A single zero of  δ  (  ω,  n ˜   )     is clearly seen, at which n and κ can be almost instan‐
taneously extracted using a numerical routine.

Figure 1. Map of the modulus (left) and the wrapped phase (right) of   T ˜    (  ω,  n ˜   )     versus n and κ. The sample is 1.2‐mm thick 
and the frequency is 1 THz.

Figure 2. Maps of the error function δ versus n and κ, with   T  meas   = 0.01 ,   ϕ  T,meas   = 10  rad,  ω d / c = 3  (left), and   
T  meas   = 0.003 ,   ϕ  T,meas   = 30  rad,  ω d / c = 30  (right).

Determining the Complex Refractive Index of Materials in the Far-Infrared from Terahertz Time-Domain Data
http://dx.doi.org/10.5772/66348

123



3. Precision on the parameters determination

The material parameters (n and κ) determined by THz‐TDS are obtained with a precision that is 
limited [22] by (i) a bad knowledge of the sample parameters (erroneous thickness, not parallel 
sides, surface roughness, inhomogeneity, etc.), (ii) a bad positioning of the sample, (iii) the fact 
that the THz beam is not a plane wave, and (iv) the experimental noise. Also, one must take into 
account errors and noises arising from a deficient delay line (mechanical drift, registration, etc.). 
In Ref. [22], Withayachumnankul et al. have given a complete study of the causes of uncertainty in 
THz‐TDS in terms of variance of the recorded signals. Here our approach is simplified but leads to 
analytical expressions, which emphasize the role and the weight of each experimental parameter.

3.1. Effect of a bad value of the sample thickness

A bad value of the thickness d modifies the results in the case of transmission THz‐TDS. The 
induced error Δn is calculated by setting the differential of   T ˜    (  ω,  n ˜   )     equal to zero. We get:

  Δ n ˜   = Δd  ∂   T ˜   ___ ∂  d   /   ∂   T ˜   ___ ∂   n ˜      (8)

Let us suppose, for the sake of sim and reflection are obtained by differentiating plification, 
that the Fabry‐Perot rebounds can be removed by a proper time‐windowing of the THz wave‐
form. Thus, Eq. (4) of   T ˜    (  ω,  n ˜   )     becomes:

   T ˜    (  ω,  n ˜   )    ≈   4 K ˜   _____   (   K ˜   + 1 )     2     e   j  ω __ c    (  cosθ− √ 
_

   n ˜     2 −si n   2 θ   )   d   (9)

A simple calculation leads to:

  Δ   n ˜    
TE

   =   
j   ω ___ c  n ˜      (   X ˜   − cosθ )     X ˜     2 

  ___________  
   X ˜   − cosθ ______  X ˜   + cosθ   + j X ˜     ω __ c   d

   Δ d,  Δ    n ˜    
TM

   =   
j   ω ___ c  n ˜      (   X ˜   − cosθ )     X ˜     2 

  _________________  
   X ˜   −   n ˜     2  cosθ ________  X ˜   +   n ˜     2  cosθ    (  1 − 2     X ˜     2  _   n ˜     2    )    + j X ˜     ω __ c   d

    (10)

with   X ˜   =  √ 
________

   n ˜     2  − si  n   2  θ   . Usually, experiments are performed at normal incidence, for which 
Eq. (10) simplifies into:
  Δ  n ˜   = j   ω __ c     

 n ˜   − 1 ________ 
   n ˜   − 1 ___  n ˜   + 1   + j   ω __ c   n ˜  d

   Δ d.  (11)

Typically, an error of 1% on d leads to an error smaller than 1% on n and κ (see Figure 3).

Figure 3. Δn (left) and Δκ (right) in %, versus n and κ, induced by a Δd =10 µm thickness error. The sample is 1‐mm thick 
(Δd/d= 1%) and f = 1 THz.
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3.2. Effect of an angular tilt

Using the same procedure, we investigate the influence of a bad orientation of the sample. The 
derivation is done versus the tilt angle Δθ. Under normal incidence, we get in transmission:

  Δ   n ˜    
TE

   =   
j   ω __ c   n ˜   d

 _______ 
   n ˜   − 1 ___  n ˜   + 1   + j   ω __ c   d

   Δθ, Δ   n ˜    
TM

   =   
j   ω __ c   n ˜   d
 ________ 

   n ˜   − 1 ___  n ˜   + 1   + j   ω __ c   n ˜  d
   Δθ.  (12)

A slight difference is obtained if the angular tilt is along the direction of the E‐field (TE) or 
perpendicular to it (TM). As shown in Figure 4, an angular tilt of 1° induces typically an error 
Δn much smaller than 1%, except for small values of n and κ, for which the error is of the order 
of 1%. However, as imaging the THz‐TDS beam is almost impossible, adjusting precisely 
the orientation of the sample in the beam is a difficult task and angular error tilts of several 
degrees are possible, which leads to errors larger than 1%.

Even if the samples are perfectly well aligned relatively to the THz propagation axis, a non‐
collimated THz beam could lead to inaccuracies equivalent to those induced by angular tilt. 
Indeed, any converging Gaussian beam can be decomposed into plane waves arriving onto 
the sample under different incidence angles, from 0° (along the propagation axis) up to the dif‐
fraction angle whose value depends on the frequency. Referring to Figure 4, this could induce 
an error of about 1%. This unwanted effect gets even worse as THz converging Gaussian 
beam probes thick samples, because it defocuses the THz beam that impinges the receiver. 
Consequently, the detected signal can be respectively larger or weaker than expected, which 
leads to an over‐ or underestimation of the sample losses.

In reflection, a bad orientation (angular tilt Δθ) of the tested sample leads to an additional 
error given by:
  Δ   n ˜    

TE
   = Δ   n ˜    

TM
   =     n ˜     2  − 1 ____ 

2 n ˜       (  Δθ )     2   (13)

By comparing expressions (12)—transmission—and (13)—reflection—it appears that the 
error Δn induced by an angular tilt is weaker (typ. 1/1000) in reflection than in transmission: 
this is due to the additional path of propagation in the material induced by the tilt in the 

Figure 4. Δn (left) and Δκ (right), versus n and κ, induced by a Δθ = 1° tilt in TE polarization. The sample is 1‐mm thick 
and f = 1 THz.
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transmission scheme, while the effect on the Fresnel coefficients at the sample interfaces is 
smaller. Nevertheless, it should be noticed that an angular tilt, in reflection THz‐TDS, is more 
perturbing, as all the energy of the deviated THz beam may not reach the detector. This error, 
which depends on each set‐up design, could be quite large in reflection THz‐TDS, but it could 
be wiped out by carefully aligning the set‐up and the sample.

3.3. Effect of a bad positioning of the reference mirror in reflection THz‐TDS

In the case of reflection THz‐TDS, the main geometrical error source is the misalignment of 
the sample as compared to the reference mirror. For the sake of simplicity, we suppose that 
the sample is thick enough to neglect the Fabry‐Perot rebounds. Let δ be the difference in posi‐
tion, which induces an erroneous phase difference  2δ ω / c :

    R ˜    meas    (  ω,  n ˜   )    =  R ˜    (  ω,  n ˜   )       e   j2  ω __ c  δ  =    n ˜   − 1 ___  n ˜   + 1    e   j2  ω __ c  δ  =  R ˜    (  ω,  n ˜   + Δ n ˜   )    =    n ˜   + Δ n ˜   − 1 _______  n ˜   + Δ n ˜   + 1    (14)

This phase difference leads to an error  Δ n ˜   :

  Δ n ˜   ≈ j2   ω __ c    (    n ˜     2  − 1 )   δ  (15)

Because of the j term, the error Δn depends on the imaginary part of    n ˜     2  , i.e., it is proportional 
to  nκ . For transparent materials ( κ ≈ 0 ), the error is negligible, but it becomes large for opaque 
materials that are usually characterized in reflection THz‐TDS. The error Δκ that varies as   
n   2  −  κ   2   is small for opaque materials and large for transparent materials. Therefore, THz‐TDS 
in reflection is a well‐adapted and precise technique for the determination of the absorption 
of opaque materials. Figure 5 shows the effect of a 1‐µm position shift versus n and α at f = 1 
THz. The error Δn is of the order of a few percent, while the error Δα is larger especially for 
transparent materials (Δα ∼100 cm‐1 for n = 2.6).

These rather large errors are induced by very small shifts, here  δ = λ / 300 , and get even larger 
at higher frequencies, according to Eq. (15). Therefore, in reflection THz‐TDS, a great atten‐
tion must be paid to position the sample at the exact location of the reference mirror, or, if not 

Figure 5. Δn (left) and Δα (right), versus n and α, induced by a δ = 1‐µm shift of the mirror position in reflection THz‐TDS 
for f = 1 THz.
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possible, to either control, measure, or correct the induced phase difference. For that purpose, 
it exists several experimental [23–26] or numerical [27] solutions.

3.4. Effect of a noise with photo‐conducting THz antennas

Noise makes uncertain the measured values of the magnitude and the phase of the THz signals. 
Let us treat here only the case of photo‐conducting antennas. We call   σ   2   the noise power, i.e., 
the square of the variance of the THz signals. A first noise   σ  

E
  2   is generated by the emitter: shot 

noise due to the random arrival of the pump laser photons, fluctuation of the laser intensity, etc. 
Drift and mechanical vibrations of the optical delay line as well as random fluctuations of the 
laser beam direction add a noise‐equivalent contribution. It depends strongly on the equipment: 
Withayachumnankul et al. [22] have measured an amplitude variance of the order of 10‐3 that 
was mostly due to delay‐line registration and mechanical drift. This noise is of the same order as   
σ  
E
  2   defined previously and can be included in the emitter noise. The THz beam, together with its 

noise, is then reflected or transmitted by/through the sample toward the receiving antenna. At 
the receiver, two additional noises perturb the recorded signal, namely, the shot noise   σ  

sh
  2    that is 

proportional to the recorded current   S  meas    (  σ  
sh

  2   = 2eΔf   S  meas   , Δf is the detection bandwidth and e 
the electron charge), and a noise   σ  

D
  2    that is independent of the current (Johnson noise, amplifica‐

tion noise, thermal noise, etc.). The total noise is the sum of all these contributions:

   σ   2  =   |    
 S  
D
  
 __  S  
E
     |     

2

   σ  
E
  2  + 2e Δf   S  

D
   +  σ  

D
  2  ,  (16)

where   S  
E
    is the current recorded without sample in the set up (reference current), whereas   S  

D
    is 

the current recorded with the sample. Taking into account the small value of the noise when 
compared to the signal (perturbation approach), we get:
   σ  

X
  2   = A  (  ω )    X   2  + B  (  ω )   X + C  (  ω )   .  (17)

Here, X is the modulus of the complex coefficients of reflection   R ˜    or transmission   T ˜   , depending 
on the type of performed THz‐TDS measurements. A, B, and C are parameters specific to each 
THz‐TDS set‐up and are given by:

  A  (  ω )    =   
2  σ  

E
  2  + 2e Δf   |   S  

E
   |    +  σ  

D
  2  
  ______________ 

  |   S  
E
   |     
2

 
  ,  B  (  ω )    =   

2e Δf
 ____ 

 |   S  
E
   |  
  ,  C  (  ω )    =   

2e Δf   σ  
D
  2  
 ______ 

  |   S  
E
   |     
2

 
    (18)

Figure 6 shows the A, B, and C coefficients of our homemade THz‐TDS set up, built around 
a mode‐locked laser (Tsunami Spectra‐Physics, 50 fs pulse duration at the antennas, 82 MHz 
repetition rate, pumped with a CW Millenia laser) and LTG‐GaAs dipole‐like THz anten‐
nas. The coefficients were determined as follows. Several samples of different thicknesses, 
and thus of different transmission coefficients, were made from the same material (Stycast 
glue). For each sample, several transmission THz‐TDS data were recorded, and the noise was 
deduced from the standard deviation of the transmission spectra. Then, the noise was plot‐
ted at any given frequency as a function of T and fitted with expression (17). Typically, at the 
maximum of sensitivity of the LTG‐GaAs antennas, i.e., around 0.5 THz,  A ≈ 15 × B ≈ 200 × C . It 
follows that the main source term is the noise in the emitter (  σ  

E
  2  ), which is larger than the noise 

in the detector (  σ  
D
  2   ). As the main difference in receiving and emitting antennas is the photocur‐

rent (both antennas are similar and excited by the same laser power), we conclude that the 
optical shot noise and laser intensity fluctuations in the emitter are the major source of noise.
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Relations (17) and (18) indicate that the standard deviation is proportional to the detection 
bandwidth Δf. Thus, reducing Δf, i.e., increasing the integration time of a lock‐in amplifier, 
decreases the error as well. On the other hand, the A, B, and C coefficients vary inversely to 
the available incoming THz signal. Increasing the THz power of the emitting antenna reduces 
the uncertainties. The influence of noise on the measurement precision is derived as follows. 
One writes any experimental spectral component, in terms of magnitude and phase, as the 
sum of the actual value and noise:
    X ˜    meas    (  ω,  n ˜   )    =  X  meas      e   j ϕ  meas    = X   e   jϕ  +  X  noise      e   j ϕ  noise     (19)

Assuming the noise is much smaller than the signal, one easily gets:

   X  meas   = X + cos   (  ϕ −  ϕ  noise   )    X  noise  ,    tan  ϕ  meas   =     
X sin ϕ+    X  noise   sin  ϕ  noise    _________________  
X cos ϕ+  X  noise     cos  ϕ  noise  

    (20)

With a fully random phase noise, the related standard deviations of the modulus and phase 
of the measured signals are:

   σ  
X
   =    ¯¯   (   X  meas   − X )     

2

     
1/2

  =  √ 
______

   1 __ 
2
    ̄   X  noise  2     ,     σ  ϕ   =   

 σ  
X
  
 __ 

X
  .  (21)

The validity of our analysis is experimentally verified as depicted in Figure 7. The standard 
deviations of the modulus R and phase ϕ of the signal reflected by a HR‐Si wafer is plot‐
ted versus frequency. The dashed lines represent the standard deviation as obtained from 
averaging eight different measures, whereas the continuous lines are calculated with Eq. (21). 
Between 0.2 and 1.2 THz, SNR is large and the agreement between calculation and experiment 
is good. Outside this range, the noise is too large and thus our perturbation approach is no 
more valid.

Finally, one should derive the experimental standard deviation from the actual measured sig‐
nals. The X value is the ratio of the transmitted or reflected signal   S  

X
    over reference signal   S  

Ref
   :

   X  meas   =   
 S  

X
   +  S  

X,noise   _________  S  Ref   +  S  Ref,noise  
   ≈ X +   

 S  
X,noise   − X   S  Ref,noise    ____________  S  Ref  

   . (22)

The standard deviation is calculated from Eq. (22):

   σ  
X
  2   =   

 σ  
X
  2   +  X   2     σ  Ref  2  

 ________  S  Ref  2      (23)

Figure 6. A, B, and C (SI unit) coefficients experimentally determined from transmission THz‐TDS of several samples 
of Stycast having different thicknesses. The data have been recorded with a THz‐TDS system equipped with LT‐GaAs 
antennas. The lines are a guide to the eye.
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The noise‐induced errors  Δ n    T  
R

  
  

 
      and  Δ κ    T  

R

  
  

 
      in transmission and reflection are obtained by differen‐

tiating Eq. (4) or Eq. (5), respectively. In the general case of oblique incidence, the differential 
expressions are huge and complicated but get simpler in the case of normal incidence, when 
rebounds can be filtered. In this latter case one obtains:

  Δ  n  T   ≃   (  1 + n )     3    
 nβ  (  1 + n )    + n − 1

  ______________    (  n − 1 )     2  +  n   2   β   2    (  1 + n )     2       e   κ β      
 σ  T   __ 
4
  ,  Δ  κ  T   ≃   

β  (  1 + n )    − n + 1
  __________   nβ  (  1 + n )    + n − 1   Δ  n  T    (24)

  Δ  n  R   = Δ  κ  R   = 2   
  |    (  1 +  R   2  )   cos  ϕ  

 
   − 2R |    +   |  sin  ϕ  

 
   |     (  1 −  R   2  )   

   _________________________   
  (  1 − 2R cos  ϕ  

 
   +  R   2  )     

2

 
    σ  R  .  (25)

 β =   ωd ___ c  .  Examples of so‐determined error  Δ n   T  
R
      are presented in Figure 8. For the Stycast samples, 

THz‐TDS experiments performed in transmission leads to the amazing precision  ΔnT/n < 0.05% 
between 0.6 and 1 THz. However, this value is only the noise‐induced error and the actual total 
imprecision (∼1%) is mainly due to a bad position of the sample or a bad knowledge of the 
sample thickness, as explained above. Conversely, characterizing HR‐Si in reflection is defini‐
tively not the best way, as the uncertainty is never below 10%. We explain below how to choose 
the optimized THz‐TDS technique in order to get a more precise determination of the material 
parameters. In the case of oblique incidence and of ATR measurements, one cannot get analyti‐
cal expressions like Eqs. (24) and (25), and thus the errors should be numerically estimated.

Figure 7. Standard deviations   σ  
R
    and   σ  ϕ    versus frequency for the THz signal reflected by a HR‐Si wafer. The dashed line 

is obtained from eight different measurements, whereas the continuous line is calculated.

Figure 8. Spectra  n  (  f )     together with the error  Δn  (  f )    ; left: HR‐Si measured in reflection. Continuous line and open circles 
are calculated using Eq. (25) in which σR is estimated using expression (17) with A, B and C given in Figure 6, and 
measured, respectively; right: Stycast measured in transmission (sample thickness 0.81 and 1.62 mm).
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Figure 9 summarizes the influence for the different error sources in transmission THz‐TDS. 
The sample is a 1‐mm thick slab, with n = 2 and κ = 0.01. The errors Δn and Δκ are plotted 
versus frequency in the case of a thickness error Δd = 0.01 mm, of an angular tilt Δθ = 1°, and 
a noise defined by Eq. (24) in which σT is substituted by expression (17) with A = 10‐3, B = 10‐5, 
and C = 10‐6.

The angular tilt is by far the largest source of error for the refractive index n. κ is mostly 
affected by the noise at lower frequencies, while the angular tilt effect is predominant at 
higher frequencies. In any case, Δκ is larger than Δn, especially at lower frequencies, where 
Δκ in percent tends toward infinity because of the 1/κ term. The sum of all these errors is 
typically 1–2% for n and about 10% for κ. Because of the Fourier transform properties, the 
precision on the frequency is simply related to the recording time window, i.e., in most of 
THz set ups, to the length of the mechanical delay line. If the THz waveform is recorded over 
a time window Δτ, the frequency resolution is  Δf = 1 / Δτ . Common delay lines are 25–50 mm 
long, thus  Δτ = 150 ∼ 300  ps, and  Δf = 3 ∼ 6  GHz. Using longer delay lines [28] to achieve a bet‐
ter frequency resolution is made difficult because of long‐term fluctuations of the laser power 
and possible weak deviations of the direction of the laser beam.

4. Transmission or reflection THz‐TDS?

For opaque samples, it is compulsory to perform THz‐TDS measurements in reflection because 
no THz signal is transmitted. For low‐index transparent samples, transmission scheme is pref‐
erable, as the induced phase variation is integrated over the whole sample length, while the 
Fresnel phase change in reflection are weaker. For samples with a moderate absorption coeffi‐
cient, the choice of the best experimental scheme is not obvious. However, the error study pre‐
sented in the previous paragraph helps in selecting the optimized THz‐TDS characterization 
technique, i.e., either in reflection or in transmission. For the sake of simplicity, we address 

Figure 9. Δn (left) and Δκ (right) versus frequency as induced by a 1% thickness error (thick continuous line), by a 1° tilt 
(thin continuous line) and by the noise (dotted line). Thes estimation is made in transmission for a 1‐mm thick sample 
with n = 2 and κ = 0.01.
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here only the case of normal incidence. We suppose that the samples are perfectly placed in 
the THz beam (no angular tilt) and that the sample thickness is perfectly known. We suppose 
also that the sample is thick enough to permit a record of only the directly reflected or trans‐
mitted THz pulse, by a proper time‐windowing of the other rebounds. Thus, the only source 
of inaccuracy is induced by intrinsic noises, given by relation (18), resulting on the errors 
expressed by Eqs. (24) and (25), where σx is expressed using Eq. (17). In reflection, Δn and 
Δκ do not depend on the phase term  β = ω d / c , whereas they do in transmission. Indeed, the 
transmitted THz signal encounters a phase increase due to propagation through the sample. 
Thus, we perform our numerical study with β as parameter. Figure 10 (left) shows  Δ  n  

R
   / Δ  n  

T
    

versus n and κ calculated for  β = 20  and A = 10‐3, B = 10‐5, and C = 10‐6.

The white curve indicates the limit  Δ  n  
R
   = Δ  n  

T
   . Above this limit,  Δ  n  

R
   > Δ  n  

T
    and thus trans‐

mission TDS is more precise than reflection TDS. This happens when absorption is rather 
small ( κ < 0.3 ). At higher absorption, reflection is preferable because the transmitted signal 
becomes weaker. The limit between both techniques is plotted in the (n,κ) space on Figure 10 
(right) for different β. For a given set‐up (given A, B, C values), the technique to be selected 
depends mostly on κ. For example, a 0.5‐mm thick sample studied at 1 THz  (β = 10 )  should be 
characterized in transmission as soon as κ < 0.6, i.e., α < 12 cm‐1.

5. Combined transmission and reflection THz‐TDS

In the far infrared, some materials exhibit strong absorption lines due to molecular resonances 
or/and due to collective excitations. In gases, narrow molecular resonances correspond to 
the excitation of mechanical vibrations of the whole molecule structure. In liquids and solid 
materials, the molecular resonances are coupled and broadened by thermal and density inho‐
mogeneity at the molecular scale, resulting in wider absorption bands. In crystals, excita‐
tion of phonons leads also to a strong absorption of the THz waves. When characterizing 

Figure 10. 3D map of the ratio  Δ  n  R   / Δ  n  T    versus n and κ for  β = 20  (left); limit between the reflection and transmission 
schemes for an optimized parameter extraction (right).
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such materials in transmission THz‐TDS, there could be no signal detected in transmission 
within the absorption bands. The phase is lost in these spectral regions, and thus extraction 
of the material parameters at higher frequencies is no more possible using common THz‐
TDS extraction procedures as 2mπ phase jumps (m is an unknown integer) of the transmitted 
phase   ϕ  

T
      occur at the absorption peaks. On the other hand, reflection THz‐TDS is applicable 

even in the absorption regions, but its precision is inferior to that of transmission THz‐TDS, 
especially because of a possible shift in position with regards to a reference mirror. Thus, 
even if R is measured over the whole achievable THz range, the precision  Δ  n  

R
    of the refrac‐

tive index obtained in reflection THz‐TDS is worse than the one  Δ  n  
T
    obtained in transmis‐

sion, excepted in the absorption bands, as shown in Figure 11 (left). Both transmission and 
reflection techniques may be combined to precisely evaluate   n ˜    (  ω )     of such materials over the 
whole experimental bandwidth [29]. Basically, the procedure consists in determining with a 
great precision    n ˜    

T
    from transmission data in the first region of transparency (below 1.4 THz 

for maltose, see Figure 11, left). Thus,    n ˜    
R
    is extracted, with a minor precision, over the whole 

spectrum from the reflection data. The possible bad position δ of the sample as regards to 
the reference minor is corrected by adding the necessary frequency‐dependent phase term  Δ  
ϕ  
R
   = 2δω / c , so that    n ˜    

R
    equalizes    n ˜    

T
    in the first spectral region and thus    n ˜    

R
    is corrected over 

the whole spectrum. In the second region of transparency (1.6–2 THz), the possible 2mπ step 
of the phase   ϕ  

T
      occurring at the resonance is retrieved by forcing    n ˜    

T
    obtained in transmission 

to be equal to the corrected    n ˜    
R
   .

The same procedure is repeated for each observed saturated resonant peak. Finally,   n ˜    is 
accurately obtained from corrected transmission in all regions of transparency, while in the 
absorption peaks, we set   n ˜   =   n ˜    

R
   . An example is given in Figure 11 (right). An 890‐µm thick pel‐

let of pure maltose has been characterized by THz‐TDS. In the vicinity of the absorption peaks 
at 1.15, 1.65, and 2.05 THz, transmission of the sample is below the noise level. In these spec‐
tral ranges, we save the value of    n ˜    

R
    extracted from corrected reflection data, while in the other 

Figure 11. Left: Relative noise‐induced error on the refractive index of maltose (2‐mm thick) obtained in transmission 
(Δn

T
) and in reflection (ΔnR) THz‐TDS. Right: Refractive index n and coefficient of absorption α of maltose, as extracted 

from THz‐TDS measures with an 890‐µm thick sample. The thick curves are from corrected transmission data, while the 
thin ones are from corrected reflection data.
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regions of transparency, we retain the phase‐corrected transmission values    n ˜    
T
   . Absorption 

peaks as high as 250 cm‐1 can be precisely evaluated.

6. Combined transmission THz‐TDS and Kramers‐Kronig analysis

Reflection schemes are sometimes not available with commercial systems, preventing any 
phase correction procedure as detailed in the previous paragraph. Fortunately, phase 
jumps can be corrected from transmission measurements only. The causality of THz 
response of natural materials makes possible to calculate  n  (  ω )     from  α  (  ω )     with the Kramers‐
Kronig (KK) relations. In fact, the phase jumps, due to saturation of transmission in the 
absorption peaks, impact mainly the extraction of  n  (  ω )     and very slightly  α  (  ω )     outside the 
absorption bands. Thus, the idea [30] here is to extract  α  (  ω )     from TDS data in the trans‐
parency spectral regions and to perform a KK calculation to get  n  (  ω )    . Missing  α  (  ω )     values 
(in the absorption peak) induce an error on  n  (  ω )    , which is quite small because it is spread 
over the spectrum thanks to the integral KK calculation. Comparing, in the transparency 
regions,  n  (  ω )     determined by the KK transformation and the one extracted from THz‐TDS 
data permits to know and correct the phase jumps occurring at each resonance, if any. A 
last extraction, with the phase corrected transmission TDS data, leads to a very precise 
determination of  n  (  ω )     between the absorption peaks. In fact, THz‐TDS data are obtained 
over a limited spectral range, while KK calculation should be completed from 0 to infinity.  
The resulting error is minimized by performing a singly subtractive Kramers‐Kronig 
(SSKK) transform [31]:

  n  (  ω )    = n  (   ω  
a
   )    +   c  __ π    PP   ∫  

0
  

∞

    
α  (    ω   ′  )      (   ω   2  −  ω  

a
  2  )   
  _____________  

  (    ω   ′    2  −  ω  
a
  2  )     (    ω   ′    2  −  ω  

a
  2  )   

   d  ω   ′   (26)

PP stands for “principal part.” The SSKK transformation requires knowing the refractive 
index at a given angular frequency, namely, the anchorage angular frequency   ω  

a
   . When deal‐

ing with THz spectra exhibiting saturated peaks, employing SSKK has two advantages: to 
minimize errors due to a limited experimental bandwidth, and to take advantages of the pre‐
cisely known value  n  (   ω  

a
   )     as long as   ω  

a
    is chosen before the first saturated peak. This technique 

combining transmission THz‐TDS and KK analysis has been used to retrieve the refractive 
index of a 790‐µm thick DAST sample. The refractive index nSSKK has been calculated from α

T
 

with an anchorage frequency f
a
 = 0.5 THz, and compared to the optical parameters extracted 

from a 235‐µm thick DAST sample (dashed curves), which do not suffer from any satura‐
tion effects. Because of the large absorption peaks of DAST centered at 1.1 and 3.1 THz, no 
transmitted signal was detected around these peaks. As seen in Figure 12, this results in a 
saturation of the absorption peaks together with an offset of   n  

T
    (  ω )    , determined by a classical 

THz‐TDS extraction, after the low transmission bands. The SKKK method leads to a corrected 
spectrum   n  

SSKK
    (  ω )    , which however suffers from a small discrepancy due to missing  α  (  ω )     data. 

But   n  
SSKK

    (  ω )     is sufficiently close to the actual  n  (  ω )    , which permits to find the phase jump value 
by comparing   n  

TDS
    (  ω )     and   n  

SSKK
    (  ω )    , and then to perform again a classical extraction with the 

phase corrected over the saturated peak frequencies.
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7. Scattering effect

When dealing with chemical compounds, many samples are pellets fabricated by pressing 
a powder mixture of the material to be studied and of a transparent hosting matrix. This 
technique permits to characterize materials (named hereafter “inclusion” material) that are 
extremely absorbent in the THz range, or that cannot be manufactured as bulky or film sam‐
ples, or that could be dangerous at a high concentration. The optical parameters (refractive 
index and absorption coefficient) of the inclusion material, diluted in the hosting powder, 
are retrieved through a model describing the electromagnetism response of the mixture. If 
this mixture can be considered as homogeneous, i.e., if powder grains and more generally 
inhomogeneity are smaller than the wavelength, there is no scattering: the electromagnetic 
response of the material can be described by effective medium theories. Among many theo‐
ries, the most popular models are the Maxwell‐Garnett one (MG) [32] and the Bruggmann 
(BG) one [33]: the inclusions are supposed to be spheroids or ellipsoids embedded in the 
hosting matrix. According to these models, the dielectric constant of the mixture respectively 
obeys:
  MG :  ε  mixture   =  ε  host     

2  (  1 − p )    ε  host   +   (  1 + 2p )    ε  
in
  
  ________________  

  (  2 + p )    ε  host   +   (  1 − p )    ε  
in
  
  ,  (27)

   BG (spheroids) :   (  1 − p )      ε  host   −  ε  mixture   __________  ε  host   + 2  ε  mixture  
   + p   

 ε  
in
   −  ε  mixture   _________  ε  

in
   + 2  ε  mixture  

   = 0.  (28)

p is the volume concentration of the inclusions. Basically, MG models allow one to nicely fit 
experimental data when both p and the contrast εin/εhost remain small. For larger contrasts, 
the Bruggeman's model is preferable. Figure 13 (left) shows the real part of the permittiv‐
ity, at 0.6 THz, of a mixture of HDPE and fructose powder versus the volume fraction of 
fructose. Both MG (continuous line) and Bruggeman (dashed line) models well fit the experi‐
mental data (open circles), because scattering effects do not affect so much the time of flight 
of the THz beam across the sample, i.e., the real refractive index n. On the other hand, the 

Figure 12. n
T
 and α

T
 of DAST extracted from transmission THz‐TDS measurements of a 790‐µm thick sample, and 

the refractive index corrected by the SSKKR method (solid line), by evaluating the 2mπ phase jump at f0 = 2.95. nSSKK 
(attention n et pas eta) has been calculated from αt with an anchorage frequency f

a
 = 0.5 THz. These results are compared 

with the ones obtained with a 235‐µm thick DAST sample (dashed curves) that does not suffer from any saturation effect.
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imaginary part of the permittivity (Figure 13, right) cannot be fitted by a MG model because 
scattering losses, which are not taken into account in the MG theory, are misinterpreted as 
absorption.

Thus, in many heterogeneous samples, scattering occurs and depends on the relative 
size of the scattering particles as compared to the wavelength [34]. If the particle size is 
smaller than about λ/20, scattering may be neglected while, if it is bigger than about 10 
× λ, rays are geometrically deviated by powder grains. In between these limits, when 
particles are smaller than the wavelength, the scattering process is well described by the 
Rayleigh theory, while Mie scattering occurs for grain size comparable or bigger than the 
wavelength. Because of the typical size of the grains in common powders, Rayleigh scat‐
tering is almost negligible at THz frequencies and Mie scattering [35] model or even more 
complicated theories must be employed. As there is no analytical expression available to 
render the scattered amplitude, numerical codes are used. Nevertheless, Mie theory can be 
approximated at low scatterer concentration by simplified models, like the one proposed 
by Raman [36] to explain the Christiansen effect [37]. In this case, the equivalent absorp‐
tion is expressed as:

   α  scattering   = Δ K²f ²   (   n  
in
   −  n  host   )     

2

  . (29)

Δ is the average size of the scattering grains and K is a coefficient that depends on the 
shape, the concentration, and the distribution of the grains. Such model is established on 
the  probability, at one dimension, that an incoming photon is scattered by a grain. It shows 
a loss variation proportional to the square frequency. Multiple scattering is not entered into 
the theory, which means that the absorption coefficient of a sample does not depend on its 
thickness. Figure 14 (left) illustrates the scattering effect in mixtures of HDPE and sugars 
(fructose, maltose, glucose). At the lowest frequencies, absorption obeys a f2‐law (dashed 
lines). Let us point out that the f2‐dependence is also the behavior of Mie‐type scattering, 

Figure 13. Real part (left) and imaginary part (right) of the permittivity εmixture of a mixture of HDPE and fructose 
powders versus the volume fraction of fructose at 0.6 THz. Open circles: experimental data; continuous line: MG model; 
dashed line: BG model.
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which should be considered. Figure 14 (right) shows the absorption of a HDPE‐maltose mix‐
ture corrected from scattering to be compared to absorption obtained with a pure maltose 
sample.

The limit of validity of the Raman model is also shown in Figure 15. The measured absorption 
of the mixture is plotted versus the volume fraction p of fructose (Figure 15, left).

At different frequencies, the experimental data are well fitted by a linear curve for p < 20–30% 
and for p > ∼50%, (28). In between, the transition fructose‐in‐HDPE to HDPE‐in‐fructose can‐
not be described by the Raman model. Figure 15 (right) presents the measured absorption 

Figure 14. Left: Absorption of a mixture of powders of 25% of HDPE and 75% of sugars (maltose, glucose, and fructose) 
versus frequency. For the sake of visibility, the glucose and fructose curves are vertically shifted of 75 and 150 cm‐1, 
respectively. The dashed lines are parabolic fitting curves; (right) absorption of maltose (continuous) and HDPE‐maltose 
mixture (dashed) corrected from scattering.

Figure 15. Left: Measured absorption of a mixture HDPE‐fructose powder mixture versus the volume fraction p of 
fructose at different frequencies. The lines are a guide to the eye; (right) measured absorption of a mixture HDPE‐
fructose powder mixture (p = 30%) versus the size Δ of the fructose grain at different frequencies. The lines are parabolic 
fits.
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versus the size Δ of the fructose grains, for a constant volume ratio p = 30%. The experimental 
points are fitted by parabolic curves, which do not obey to relation (29), except at the limit 
Δ→0. A more rigorous modeling of the scattering process in such mixtures is based on the Mie 
scattering theory. Several numerical codes are freely available to estimate the Mie scattering, 
like the one from the Oregon Medical Laser Center [38]. Figure 16 exhibits the extinction coef‐
ficient, taking into account both absorption and scattering losses, at 1.5 THz of a HDPE‐fruc‐
tose mixture (p = 30%). Mie modeling gives a curve (dotted line) below the experimental data 
(dots), when the bulk value nHDPE = 1.51 is entered in the calculation. A better fit is obtained 
with nHDPE = 1.41. Such a result could be explained by residual air inclusions (20%) in the pel‐
let which decrease the effective refractive index of the host substance [39]. The agreement 
between experimental data and calculated ones is good, especially as no adjustable parameter 
is input in the calculation. Moreover, some geometrical factors cannot be taken into account, 
like for example the shape of the fructose grains, which looks like cubes instead of spheres as 
required to apply Mie hypothesis.

8. Conclusion

We have described here the main features of THz‐TDS. This is a unique technique to quan‐
titatively and precisely characterize the electromagnetic response of materials and devices 
over a broadband in the far‐infrared domain. However, because of limited space, we did 
not address in this chapter some additional possibilities of THz‐TDS in terms of material 
characterization:

• Anisotropic materials: Their characterization by THz‐TDS is not tricky as most of THz 
antennas (photo‐conducting switches or electro‐optic crystals) are polarization‐sensitive, 
with a rather good rejection level (a few percent). Even cross‐polarization effects can be 
investigated by rotating the receiving antenna around the optical axis of the THz system. 

Figure 16. Absorption, including scattering, of a mixture of HDPE‐fructose (p = 30%) determined from transmission 
THz‐TDS (dots). The lines are calculated with a Mie scattering code [39]: with nHDPE = 1.51 (dotted), with nHDPE = 1.41 
(continuous). The dashed line is a parabolic dependence at small grain sizes.
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Moreover, THz‐TDS supplies the phase of the transmitted signals with respect to the in‐
volved THz beam polarization, from which the anisotropic parameters of a sample can be 
deduced.

• Metamaterials: They are quite easy to manufacture for the THz range, as they require repet‐
itive features whose size is smaller than the wavelength, i.e., in the range below a few tens 
of microns. This is achieved with MEMS or/and microelectronics technologies. Such THz 
metamaterials [40] show amazing properties, like negative refractive index (left‐handed 
property), chirality, and so on. THz‐TDS is especially well adapted to characterize these 
metamaterials because it delivers both amplitude and phase of the reflected or/and trans‐
mitted signal. Thus, for example, a negative phase, due to propagation in a left‐handed 
material, is clearly observed in the THz‐TDS experimental spectra.

• Time‐resolved THz‐TDS [41]: This technique can be applied if the sample under test is sen‐
sitive to light. In this case, a third part of the pulsed laser beam illuminates the sample with 
an adjustable delay as compared to the impinging THz pulse. The light‐induced modifi‐
cation of the sample properties, mostly by photo‐generation of free carriers, changes the 
transmission of the THz beam. By varying the optical‐THz time‐delay, the photo‐induced 
excitation in the material is time resolved. This method works very well to study the carrier 
dynamics in semiconductors and in superconductors, as far as the carrier lifetime is not too 
short as compared to the THz pulse duration. The main limitation of the technique is the 
rather long duration of the THz pulse, i.e., few hundreds of femtoseconds, as compared to 
very fast phenomena in matter. Investigating short events requires a proper deconvolution 
of the temporal records, which is not an easy task.

The list of applications of THz‐TDS is for sure quite long and giving it exhaustively is almost 
impossible. Moreover, the continuous progress of technology makes the technique really easy 
to use, especially with commercial systems, and numerous new scientific results are regularly 
published.
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