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1. Introduction 

As more and more complex and sophisticated hardware and software tools are available, 
complex problems described by consistent mathematical models are successfully 
approached by numerical simulation: modelling and simulation are present at almost each 
level in education, research, and production. Numerical “experiments” have predictive 
value, and complement physical experiments. They are unique in providing valuable 
insights in Gedankenexperiment-class (thought experiment) investigations. 
This chapter presents numerical simulation results related to a structural optimization 
problem that arises in systems with gradients and fluxes. Although the discussion concerns 
the optimal electrical design of photovoltaic systems, it may be extended to a larger class of 
applications in electrical and mechanical engineering: diffusion and conduction problems. 
The first concern in simulation is the proper formulation of the physical model of the system 
under investigation that should lead to consistent mathematical models, or well-posed 
problems (in Hadamard sense) (Morega, 1998). When available, analytic solutions – even for 
simplified mathematical models – may outline useful insights into the physics of the 
processes, and may also help deciding the numerical approach to the solution to more 
realistic models for the systems under investigation. Homemade and third party simulation 
tools are equally useful as long as they are available and provide for accurate solutions. 
Recent technological progresses brought into attention the Spherical PhotoVoltaic Cells 
(SPVC), known for their capability of capturing light three-dimensionally not only from 
direct sunlight but also as diffuse light scattered by the clouds or reflected by the buildings. 
This chapter reports the structural optimization of several types of spherical photovoltaic 
cells (SPVC) by applying the constructal principle to the minimization of their electrical 
series resistance. A numerically assisted step-by-step construction of optimal, minimum 
series resistance SPVC ensembles, from the smallest cell (called elemental) to the largest 
assembly that relies on the minimization of the maximum voltage drop subject to volume 
(material) constraints is presented. In this completely deterministic approach the SPVC 
ensembles shapes and structures are the outcome of the optimization of a volume to point 
access problem imposed as a design request. 
Specific to the constructal theory, the optimal shape (geometry) and structure of both 
natural and engineered systems are morphed out of their functionality and resources, and of 
the constraints to which they are subject. 
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2. Shape and structure out of a multiphysics principle 

The development of the constructal principle (Bejan, 2000) relies on the analysis of natural 
dynamic systems with fluxes and gradients (e.g., temperature, pressure, electric potential, 
chemical potential, etc.) that, internally, are outside thermodynamic equilibrium. A second 
important aspect is that the variety of geometrical natural forms, which we may recognize 
and which are found in both animate and inanimate worlds, is not that vast: natural systems 
may have the same geometric shape without being identical. For instance, two bronchial trees are 
never identical. Basically, when these systems are presented by a single image out of the 
endless diversity of natural flow forms we have the ability to recognize and classify them as 
tree, round and slice. If one single principle explains all these forms then it may act 
everywhere, and it becomes a law that ties different areas such as physics and biology or, 
better said, two different modes of reasoning, two different points of view. 
The constructal principle is used in this work to produce architectures (shapes, structures) 
based on the optimization of the systems under investigation – purpose, function – rather 
than by conjectural assumptions. 

2.1 Functional objective and constraints 

Spatial and temporal structures observed in Nature are the results of global optimization 
subject to local and global constraints: a finite-size heterogeneous system undergoes changes 
in shape and structure such as to provide for an as easy as possible access, or low 
impedance paths, of its internal fluxes. Optimization principles such as minimum travel 
time, minimum flow resistance, minimum power consumption are invoked and used, and it 
is remarkable that these deterministic principles are independent, and do not follow up, do 
not result, from other, known laws.  
Engineering design starts by a clear understanding of the objective: the system mission, its 
purpose, function and performance. The design’s objective implies also optimization, because 
the engineered system is expected to perform the best possible. Possible means that there are 
local and global constraints (limitations) that the system may have. 
Examples of some very common global constraints are the system mass and volume; the heat 
generated within the occupied volume, e.g., by an electronic ensemble, is another global 
constraint when the electronic components have to fit within an imposed volume.  
The local constraints are more subtle, but equally important. For instance, in a system with 
internal heat generation (e.g., a cable that carries electric current, electronic devices, etc.) the 
maximum temperature is not to exceed a certain safe limit. From this perspective, the 
number and localization of the hot spots is not important. The local constraints may then be 
gathered in an objective function defined at the system level. The geometry is the unknown. 
The external shape and the internal structure emerge then by recurrent, iterative design.  
In the constructal theory, the deterministic evolution occurs in time, from principle 
(engineering) to Nature. The history of science and technology abounds in examples where 
the sense is the opposite i.e., from Nature to engineering – this method is recognized today 
as Biomimetics, and it continues to be a valuable instrument in engineering design. 
Compared to Biomimetics, constructal theory acts in the opposite sense: the engineering 
generates a purely theoretic point of view, from which Nature may be better understood, i.e. 
more simply. And this is consistent with Poinacré’s conclusion: “C'est là la simplicité cachée, 
celle qu'il faut découvrir” (Poincare, 1902). 
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2.2 Fermat’s principle; constructal principle 

Fermat’s principle, used only in optics (Lemmons, 1997), postulates that light, which 
propagates between two points (A,B) located in different optical media, must choose the 
path that minimizes the travel time. It follows then that the angle of refraction, 

    
sinβi sinβr = νi ,r , is an optimization result, where νi,r is the refraction index relative to the 

two media. Fermat’s principle covers the much older principle of the shortest path 
postulated by Heron of Alexandria: light propagates following a straight path and the incident 
angle at a mirroring interface is equal to the reflection angle. 
By contrast to the point-to-point “flow” law of Fermat and Heron, the constructal law refers 
to finite size systems with internal flow generation, from the volume (an infinite number of 
points) to a sink (M) located on the boundary. 
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Figure1. Fermat’s (a), and constructal (b) optimal access principles 

In Figure 1 the volume is represented by a rectangle of area A0 = H0L0, called elemental 
system. The size of A0 is fixed, but the aspect ratio H0/L0 may vary. The system is made of 
two media, where motion may occur at two speeds, V0 << V1. The amount of high-speed 
material (V1) is small and fixed – much smaller than the rest of volume occupied by the low-
speed material, (V0), with internal generation (e.g., heat, current, etc.).  
The objective of the elemental cell finite-size system optimization consists of maximizing the 
volume-to-point access between all points of A0 and M. The geometric shape and the 
internal structure of A0 (i.e., the distribution of high speed material throughout the low-
speed material) are then natural results. The global constraints are the fixed size of the 
system and the amount of high permeability material to be distributed within the system. 
On the other hand, some of the internal points will always have easier access to M than 
other points. The longest trip to M is associated to the most distant point in A0 (point P in 
Fig. 1), which is then the most solicitated point – it is the analogous to the point of highest 
mechanical stress in a mechanical structure or the hottest spot in a thermal structure. The 
design may be improved by changing the external aspect ratio, to produce more uniform 
access to the volume from M.  
The constructal optimization works similarly to Fermat’s principle that anticipates the 
geometric shape of the light beam. Unlike Fermat’s principle where the trajectory is broken 
at the interface between the two semi-infinite media, in the volume-to-point access problem 
the bent (e.g., R) is found on the central axis of A0, and this is the result of an optimization 
principle. The volume-to-point construct is then a bundle of an infinite number of flow 
paths that verifies Fermat’s principle.  
At this point we may introduce the fundamental constructal problem: “Given a finite size 
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volume with internal heat generation and of low conductivity, which is cooled by a small-size sink 
placed on the boundary, distribute a fixed amount of high conductivity material within the volume 
such that the hotspot temperature is minimum” (Bejan, 2000). In other words, find the shape and 
structure that minimize the system’s thermal resistance.  
For instance, electronic structures (packages) are subject to thermal objectives and 
constraints. The global constraint is the finite volume where the system must fit. The 
thermal design objective consists of installing as many components as possible, hence an as 
high as possible heat generation rate, q (electrical structures generate heat). The maximum 
temperature in the systems may not exceed a specified limit, Tmax – this is the local 
constraint. The optimal design is then superior if q is large, i.e. the global thermal 
conductance q/(Tmax–T0) is high – T0 is the initial temperature of the environment that 
absorbs the heat. 

3. Photovoltaic cells optimization – a design problem 

The interest on PhotoVoltaic Cells (PVC) has increased recently due to the energy crisis and 
the advance of the alternative energies. Solar cell power generation systems installed in 2000 
has reached 711 MW worldwide, and in the future it is expected to grow (Kyosemi, 2006). 
As over 90% of the nowadays PVCs use polysilicon as a raw material, the recent shortages of 
high-grade silicon will significantly impact on the growth of the PV industry. 
PVCs are semiconductor devices, made of two sandwiched layers of intrinsic 
semiconductors of p and n–type that convert light directly into electricity. The photons 
absorbed by the PVC wafer generate electric charges (electrons and holes) that are drained 
across the p-n junction in opposite directions by the action of an electric field produced by 
the photovoltaic effect. This segregation generates a voltage across the junction that may 
conduct a current in an external load (CPE-UNSW, 2004), (EMSOLAR, 2004).  
Partial reflection of the incident light, the incomplete absorption and utilization of the 
photons energy, the partial recombination of electrical charge carriers and the leakage across 
the junction (Burgers & Eikelboom, 1997), (Green, 1986), (Horzel & De Clerq, 1995), (Verbeek 
& Metz, 1996), (STARFIRE, 2002) are main factors that reduce the PVC efficiency. The power 
loss occurs in the bulk of the base material, Rp (Fig. 2a), in the narrow top-surface layer, at 
the interface between the cell and the electrical terminals of the PVC. 
The cell series resistance, RS (Fig. 2a), met by the lateral current in the cell’s top layer is 
responsible for the flattening of the current-voltage characteristic (Fig. 2b) and for the 
corresponding PVC output power loss. It may be reduced by using a highly conductive 
material for the top layer (or window), by increasing its thickness, by good galvanic contacts 
and by optimized geometry for the contact electrode grid (STARFIRE, 2004), (EMSOLAR, 
2004). 
The front collector – a finger-like metallic contact connected to a busbar system – is to 
reduce RS. Unfortunately, this structure prevents the incident radiation to reach the cell: 
large electrical contacts may minimize RS, but they would cover the cell and block too much 
of the light. An optimal design is then a compromise between an as low as possible RS 
(closely spaced, highly conductive grid with good adhesion and low RS) and an as high as 
possible light transmission (fine, widely spaced fingers). Currently, the acceptable loss from 
the contact shading is 10% in commercial cells (EMSOLAR, 2004), (STARFIRE, 2002, 2004).  
The series resistance optimisation consists of minimising the sum of the collector shadow 
and resistance (Joule) losses and, despite the many physical processes within the PVC 
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(Altermatt et al., 1977) it may be conducted separately (Radike et al., 2002). Instead of the 
double diode description of the PVC, we used the maximum power point (MPP) (Fig. 2,c) 
approach (Burgers & Eikelboom, 1997), which allows for the PVC to be optimised for either 
a specific or a mix of irradiation levels, such as it occurs under normal working conditions. 
In addition, the optimal design of the collector has to comply with criteria such the aesthetic 
appearance, and several collector patterns derived from the flat-surface H-type PVC were 
proposed (Radike et al., 2002). 

 

Figure 2. An equivalent circuit for a hetero-junction PVC: (a) Equivalent scheme; (b) The 
effect of Rp and RS; (c) Maximum power point, MPP [13] 

As seen in the previous subsection, constructal theory is based on the thought that 
architecture comes from a principle of maximization of flow access for both animate and 
inanimate flow systems. The theory provides a framework to design and analyze finite-size, 
constraint systems. We apply this strategy to connect an area with PV current generation to 
a terminal, with the objective of draining the generated current throughout a minimum 
resistance path.  
The basic volume-to-point access problem has an equivalent electrokinetic formulation 
(Morega & Bejan, 2005), (Morega et al., 2006a, 2006b): given a finite size volume in which 
electrical current is generated at every point, which is connected by a small patch (terminal) located 
on its boundary, and a finite amount of high (electrical) conductivity material, find the optimal 
distribution of high conductivity material in a given volume so that the peak voltage is minimized. 

3.1 The mathematical model in the PVC series resistance optimization 

We assume that the PVC operates under DC conditions hence the associated electric field is 
potential. For the n-layer of the PVC the current flow in the emitter and metallic collector is 
essentially 2D. By Ohm’s law, the total current density is 

 
   
J = σ 0,p E + Ei( )= −σ 0,p ∇V +σ 0,p Ei = −σ 0,p ∇V + Ji . (1) 

Here, Ji is the photovoltaic current density (assumed uniform), σ0,p are the electrical 
conductivities of the collector and emitter, respectively (assumed linear, homogeneous and 
isotropic). The partial differential equations that give the electrical field are obtained by 
setting to zero the divergence of the total current density 

www.intechopen.com



Recent Advances in Modelling and Simulation 

 

322 

 
  

∂2V

∂X 2
+

∂2V

∂Y 2
+

1

σ 0

′ ′ ′ w = 0, emitter (2) 

 
  

∂2V

∂X 2
+

∂2V

∂Y 2
= 0, collector (3) 

Here,       ′ ′ ′ w = div Ji , and Ji  are known quantities.. Except for the output port through which 

the current exits the cell (set at ground potential, a Dirichlet condition), the boundary is 
assumed electrically insulated (a Neumann homogeneous condition).  
This electrokinetic problem is equivalent to the conduction heat transfer problem, with the 

correspondence   T ↔ V ,  ′ ′ ′ q ↔ ′ ′ ′ w ,   k0 ↔ σ 0 , 
 
kp ↔ σ p  (kp, k0 are the thermal conductivities of 

the collector and emitter, respectively). The electrically insulated boundary is equivalent to 
adiabatic boundaries (Bejan, 1997b), (Ordonez et al., 2003).  
Next, we present the constructal growth for the flat surface PVC, from the elemental cell to 
higher order ensembles. Numerical simulations are validated against analytic solutions, and 
then used in more realistic circumstances. 

3.2 Flat-surface PVC optimization – an analytic solution 
(a) The elemental system 
Figure 3 shows the PV smallest system, called elemental system. We consider a rectangular 
PV cell and its metallic collector (finger), situated on the long symmetry axis. Except for the 
port at the origin, the boundary is electrically insulated. 

  H0 2

  −H0 2

x

y

D0 

p 

σ0 , ′ ′ ′ w 

   σ0 , ′ ′ ′ w  

    I = ′ ′ ′ w H0L0

O

L0 

 
Figure 3. The elemental system with internal PV current generation, and its metallic collector 

The cell area     A0 = H0L0  and the area of the metallic grid, Ap, are kept constant throughout 

the optimization. However, H0 and L0 may vary and, as H0 << L0, it follows that the current 

in the emitter flows mainly in y direction, to be then collected by the 
 
σ p  finger at     y = 0 and 

drained in x direction – this assumption is discarded in the numerical model.  
The closed form solution to the problem of the current flow in the PVC emitter – eq. (4), 

    
∂V ∂y

y=H 0 2
= 0, 

  
V x ,0( )=V0 x( ) – is 

  

V x,y( )=
′ ′ ′ w 

2σ 0 H0y − y2⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

+
  
V0 x , y( ). The closed form 

solution to the problem of the current flow in the PVC collector –   σPD0 d 2V dx2 + ′ ′ ′ w H0 = 0, 
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V0 x= 0

=V 0,0( ), 
    

dV0

dx
x=L 0

= 0  – is 

  

V x,y( )−V 0,0( )=
′ ′ ′ w 

2σ0

H0y−y2⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ +

′ ′ ′ w H0

σPD0

L0x−
x2

2

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 
 (Morega & 

Bejan, 2005). 
Using these results, it may be inferred that the maximum voltage drop on the elemental cell, 

    ΔV0, has a minimum with respect to the cell shape 
  
H0 L0( ) 

 

   

ΔV0,min

′ ′ ′ w H0L0 σ 0

=
1

2

σ 0H0

σPD0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1 2

, 

  

H0

L0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
opt

= 2
σ 0H0

σPD0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1 2

. (4) 

This conclusion is consistent with the assumption that the elemental system is slender, 

suggesting that     σP σ 0 >> H0 D0 >> 1 . 

Two additional properties of this geometric optimization are remarkable (Bejan, 1997b): 
1. The principle of equipartition: the voltage drop in the emitter equals the voltage drop 

along the finger, i.e., 
   
ΔV0,min  is divided in half by the bend (x = L0, y = 0). 

2. At the elemental level, the voltage drop, 
   
ΔV0,min = ′ ′ ′ w H0

2 4σ 0( ), decreases as     H0
2. This 

motivates the effort to manufacture the smallest possible elemental system. 
(b) The first order ensemble 
Figure 4 shows the first order ensemble, where the D0 fingers are connected to the D1 
current path, called busbar. The boundary is insulated, except for the terminal of size D1 at 
the origin, where the collected current leaves the structure. The new optimization problem is 

to find how many elemental volumes to assemble, or the optimal shape H1 × L1, such that the 
maximum value of the voltage drop in the assembly from a point to the origin is minimal. 
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Figure 4. The first construct made of optimized elemental systems 

In a volume-average sense, the ensemble behaves as the σ0 region, except that its effective 

conductivity is     σ 1 = σP D0 H0 .  

A similar analysis may be conducted to calculate the voltage drop on the first order 

ensemble,     ΔV1. Its maximum has a minimum, 
      
ΔV1,min = ′ ′ ′ w H0

2 4σ 0 , registered between the 

farthest corner 
    

L1 , H1 2( ) and the exit port at the origin, (0,0). 

The resistance of the ensemble is then minimized by using the principle of equipartition, 

with the constraint 
  
φ1 = Ap ,1 H1L1,opt( ), where 

  
AP ,1 = D1L1,opt +n1,optD0L0,opt  is the area of 
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high conductivity material (φ1 is sometmes called porosity) (Morega & Bejan, 2005), yielding 

      
ΔVa1 ,min = 3 8( ) ′ ′ ′ w H0

2 σ 0
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ . Apparently, the busbar has to be wider than the fingers, and 

    
D1 D0( )

opt
= D0σP( ) H0σ 0[ ]

1 2
>> 1. 

An important result of this analysis is the scalability of the construct: the voltage drop on the 
optimized ensemble is almost equal to the optimized voltage drop on the elemental system.  

A twice optimized, first order ensemble – with respect to the   H1 × L1  shape and to the 

allocation of high conductivity material – is then obtained for the optimal number of fingers 

    
n1,opt = σP σ 0( )D0 H0( )[ ]

1 2
>> 1  and for the busbar length 

  
L1,opt = 1 2( )H0D0σp σ0( )

1 2
.  

Remarkably, the optimal shape of this ensemble is a constant, 
  
H1 L1( )

opt
= 2, independent 

of the type of conducting materials 
  
σP σ 0( ) and of the proportion in which 

  
φ1( ) they are 

built into the ensemble. Consequently, the optimal shape   H1 × L1  is such that a square of side L1 

forms on either side of the D1 busbar (x axis). By using 
  
H1 = 2L0,opt , it yields 

  
L1 L0( )

opt
= 1. 

(c) Second and higher order ensembles 
The best second order ensemble (Fig. 5a) is made of two optimized first order ensembles 

patched such that 
  
H2 = H1 = 2L1,opt = 2L2 . The D1 wide strip is the D1 wide busbar in Fig. 4. 

 L1,opt

 D2 

 L2 

 D1 

 H1 

 H2 

 
a. Second order ensemble 

 H1 

 D3

 L3 

 D2

 H2

 H3

 
b. Third order ensemble 

 H2 

 D4

 L4 

 D3

 H3 

 H4 

 
c. Fourth order ensemble 

Figure 5. Second to fourth order ensembles: made of two optimized lower order constructs 
The best third order assembly (Fig. 5b) may be obtained by a double optimisation (geometric 
shape and busbar width) of a system made of optimised second order ensembles. Figure 5c 
shows the fourth order ensemble made of two third order ensembles 

Apparently, in the process of optimization the finger width doubles from one ensemble to 
the next, higher order one, outlining the following relations, where i is the ensemble order 
(Morega & Bejan, 2005) 

 

  

Di ,opt =
2i

31 2
D0

D0σ p

H0σ 0

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

1 2

   for  i ≥ 2, (5) 

 

   

Li = 2

i

2
−m

H0D0

σ p

σ 0

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

1 2

,  i ≥ 3,   m =
2 ,   i  even

5 2 ,  i odd

⎧ 
⎨ 
⎩ 

 (6) 
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Hi = 2

i

2
−p

H0

D0σ p

H0σ 0
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⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

1 2

,  i ≥ 2,   p =
1 ,   i   even

1 2 ,  i  odd

⎧ 
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 (7) 

 

   

φi = φi −1 +
2

i −2r( ) 2

31 2

D0

H0

,    i ≥ 3,    r =
0 ,   i   even

1 2  ,  i   odd

⎧ 
⎨ 
⎩ 

 (8) 

 
  
ΔVa i ,min =

3

16

φi

D0 H0

′ ′ ′ w H0
2

σ 0

. (9) 

Figure 6a shows the optimised fourth order ensemble with its constituent parts, including 
the elemental cells (the strips). The number of such striations is not a constant, and it 

depends on 
    
2 σ 0H0 σPD0( )

1 2
. Another important feature is that the width of the optimised 

busbar increases with the ensemble order. Figure 7 shows the high order end of the 
optimised construction sequence. 

 

 
a. Fourth order ensemble 

 

 
b. Eighth order ensemble – the fourth order 

ensemble is marked in grey 
Figure 7. Optimized networks of higher-order ensembles – designs based on analytic 
solutions 

3.3 H-type PVC optimization – numerical simulation solution 

The analytical work may be accompanied by numerical simulation. First, eqs. (2), (3) are 
non-dimensionalized 

   Δv +1 = 0 , emitter (10) 

   Δv = 0 , collector (11) 

by dividing the coordinates with the length scale, 
  

H0L0 , the current source with 

      ′ ′ ′ w = div Ji , and the electrical conductivities of the emitter and collector with σ0. It follows 
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then that the voltage scale is   V0 = ′ ′ ′ w H0L0 σ0 . In the optimization process of the 2D flat-

surface PV ensembles the laplacian [eqs. (10), (11)] is defined as   Δv = ∂2v ∂x2 +∂2v ∂y 2 . 

 
a. Elemental system 

 
b. First order ensemble 

 
d. Third order ensemble  

 
c. Second order ensemble  

Figure 8. Optimized networks of higher-order ensembles – numerical simulations 

To check the first five steps of the procedure we used a finite element software (Comsol, 
2004-2008) that implements Galerkin-Lagrange technique. The meshes we used were 
unstructured, Delaunay-type. Figure 8 displays the typical steps that follow the constructal 

optimization sequence, conducted for an elemental cell with   d0 = 0.005, h0 = 0.1, l0 = 0.5 , and 

    
σ p σ 0 = 1000 . 

4. Spherical photovoltaic ensembles – structural optimization  

A variety of flat surface PVCs, materials and manufacturing methods have been developed 
(CPS-UNSW, 2006). However, the incident sunlight to a solar cell varies according to the 
position of the sun, weather conditions, the objects around that reflect sunlight, and flat light 
reception surface cells (Fig. 9,a) cannot sufficiently meet these diverse conditions. Recently, 
novel Spherical PhotoVoltaic Cell (SPVC) technologies were developed (Fig. 9b,c) that 
capture sunlight three-dimensionally, not only as direct sunlight but also as light diffused 
by clouds, and as light reflected from buildings (Kyosemi, 2006), (Fujipream & Clean 
Venture, 2006), (SSP, 2006). 
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b. Spherical PVC – honeycomb Spherical by Solar Power 
array (Morega, 2006,1) and by Fujipream (Fujipream & 

Clean Venture, 2006) 

a. Polysilicon PVC – 
standard flat-surface “H” 

design 

  
c. Spherical PVC – Kyoto Semiconductor Corporation 

(Kyosemi, 2006) 
Figure 9. Flat-surface and SPVC ensembes 

In contrast to flat-surface cells, Spherical Sunlight Reception Surfaces (SSRS) can receive 
light in all directions thus increasing their power generation capacity. They minimize the 
output fluctuations even under direct sunlight, and even when the angle of the reflected 
incident light changes. Practically non-directive, SSRS can increase their output power by 
improving the efficiency of light utilization, as there are fewer restrictions on their 
mounting. The SPVC consists of a single spherical p-n junction (Fig. 10). 

 

p-doped spherical
Si crystal 

p-n junction

Anode (Al)

Cathode (Ag)
n+ diffusion

 layer 

Antireflection
film 

 
Figure 10. A spherical solar cell captures light in all directions – after (Kyosemi, 2006) 

This technology uses less costly silicon, and gives more flexibility and ease of integration in 
different applications. The process starts with low cost silicon, which is the raw material 
used in the sphere fabrication process. The silicon is first purified and then formed into tiny 
spherical beads of proper size (Kyosemi, 2006). The diameter of a SPVC should be small in 
order to increase the proportion of the light reception surface area of the semiconductor 
crystal to its volume so as to raise the efficiency of the material (Morega et al., 2006a, 2006b). 
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Notably, the cells are spherical and thus excellent in mechanical strength. The mounting 
may be white resin reflection plate, with its surface covered with transparent resin. 
Although very small (0.2–2mm), the SPVC maximum open voltage is the same as that of a 
larger flat junction type cell. SPV modules are produced in a variety of power needs ranging 
from an extremely small to a large power source – e.g., through connection of cells in series 
and parallel with fine copper wire (Kyosemi, 2006).  

4.1 Structural optimization of SPV ensembles by numerical simulation 

The previous section reported the flat-surface PVC ensembles optimization. Unlike that 
case, here the design goal is to find either the particular pattern of the SPVCs distribution on 
a high conductivity material foil or a wireframe network that would connect the PV beads 
such that RS is minimized. In both cases we consider the DC regime of the electric field. 
The mathematical model (10), (11) with appropriate boundary conditions was solved 
numerically, by FEM technique (Comsol, 2004-2008), for the two different types of SPV 
modules: the honeycomb and the interconnected (wired) ensembles. First, the non-dimensional 
electrical field (v) is solved for. We used solvers that utilize the symmetry of the algebraic 
system generated by this linear problem. Then, two quantities are sought: the maximum 
voltage drop on the cell/ensemble (the maximum potential, vmax) and the series resistance, 
RS, defined here as the ratio of vmax through the total current produced by the cell/ensemble. 
The time-arrow of the design goes from the elemental system to higher order ensembles, following the 
constructal technique 

4.2 Honeycomb arrayed SPVC ensembles – a first model 

The honeycomb (SSP, 2006) ensembles fabrication process involves bonding the tiny silicon 
spheres between sheets of thin and flexible substrates (usually aluminium) – Fig. 9b. The 
front foil acts as the cathode and determines the spacing of the spheres (Fig. 11), while the 
back foil acts as the anode to the core of the spheres (Morega et al., 2006a). 

 
Figure 11. Honeycomb SPVC array 

The optimization problem of the honeycomb packaging differs from the fundamental flat-
surface PV problem in the sense that the (current) sources are spread throughout a very 
good conducting material, which embeds the PV beads and cannot be distributed in a 
spanning tree structure. Further more, the ensemble edges act as paths of high conductive 
material, draining part of the current generated by the SPV cells closer to the boundary. 
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Another difficulty related to this design – if modelled at the SPVC level – is the staggered 
arrangement itself. It appears more convenient – and within satisfactorily accuracy limits – 
to rely on average, equivalent 2D SPVC models. The first concern is then to define an 
equivalent elemental cell that consistently represents the actual SPVC (Fig. 5). 
(a) Simplified 2D models for the spherical solar cell 
First, a simplified 2D axial-symmetric model may be used to evaluate the current 
distribution through the n-layer of the SPV bead – Fig. 12b. The following boundary 
conditions may be used to close the Laplace problem for the electrical potential: 

• On the inner surface of the shell (the p-n interface) a non-homogeneous Neumann 
condition defines the photovoltaic current source. 

• The outer surface of the bead is electrically insulated. 

• The contact between the bead and the aluminum foil collector is set at V = 0, because the 
excellent electrical conductivity of aluminum suggests an almost equipotential contact. 

Ag electrode

Al electrode

n shell 

P 

core

Antireflection
shell

 

 
a. The spherical SPVC – after (Kyosemi, 2006) b. A simplified 2D axial-symmetric model 

Figure 12. The SPCV bead – an equivalent 2D axial model and the BCs in the DC problem 

This 2D axial model gives an estimate of the series resistance of the n-layer, which is part of 
the global series resistance of the SPVC. 

 
a. 2D Axial model b. 2D Cartesian model 

Figure 13. The 2D equivalent models of a spherical solar cell – electric field spectra 
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Figure 13a shows the electrical field (voltage surface color map and equipotential contour 
lines), and the electric current flow (arrows and streamlines) within the shell, obtained by 
numerical simulation. 
The next step is to “flatten” the 2D axial model, i.e. to recast it into a 2D Cartesian model that 
comprises also the collector (aluminum) “territory” of the bead: the n shell is projected onto 
a circular crown that has the same series resistance as the actual spherical layer; the inner 
rim of the crown produces the same amount of current as the inner boundary of the 
spherical n-shell. The actual size of the aluminum patch that embeds the bead may make the 
object of another optimization problem. Figure 13b depicts the voltage (surface color map 
and contour lines) and the current flow (arrows and streamlines) when the external 
boundary is set to ground. Of course, symmetry may be used to simplify the problem, but 
the numerical effort to solve this linear problem for the entire domain is not significant. 
The 2D Cartesian model is further used to define the elemental cell of the structural 
optimization sequence. The elemental cell may contain a number of SP beads, and it is the 
smallest entity, the construct or “brick” that is optimized for minimum series resistance: its 
shape and structure are essential to the shape and structure of higher order constructs in the 
optimization sequence.  
(b) The elemental system 
The first elemental cell design we propose (Fig. 14a) is a simple system that, by constructal 
growth, may evolve into a staggered honeycomb SPVC ensemble (Fig. 11). It is assumed that 
the photovoltaic current leaves the cell through the vertices, and that the edges are 
electrically insulated. The only degree of freedom here is the relative position of the beads 
along the principal axes of the triangular surface, between vertices and the mass center. 
The ratio between the peak-voltage, wherever it occurs, and the total current produced by 
the SPV beads, defines the series resistance of the cell, Rs. Its inverse, the series conductance, 
is a quality factor (QF), a design quantity. As Rs depends on the relative position of the 
beads, we carried out numerical experiments to find the layout that leads to its minimum. 
Figure 14b shows the mesh produced by the adaptive algorithm used to solve the 
conduction problem. The circular interior boundaries are current source, and the vertices are 
patched with tiny metallic electrodes: they are the current ports to the structure. 

 
a. The elemental system b. The FEM mesh for elemental system – detail 

Figure 14. The computational domain in the honeycomb SPV ensemble optimization 

By symmetry grounds, the optimal elemental system should have the same type of symmetry. 
Figure 15 shows the voltage (surface map and contour lines), the current density (arrows), for 
three layouts, including the optimal design with highest QF (minimum, maximum voltage). 
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a. The wide spacing limit 

 
b. Optimal design 

 
a. The narrow spacing limit 

Figure 15. The electric field in the structural optimization of the elemental system 

(c) Higher order ensembles 
Next, the optimal elemental system is used to build higher order ensembles. The first 
construct is obtained by mirroring the elemental cell with respect to its edges (Fig. 16a).  

 
 

a. First order ensemble b. Second order ensemble 

 
 

c. Third order ensemble d. Fourth order ensemble 

Figure 16. The first four higher order SPVC ensembles – voltage and electric current 

As this simple replication does not guarantee an optimum first order construct, numerical 
experiments (Negoias & Morega, 2005) were needed to validate the optimality of this 
design: QF was evaluated for different positions of the SPV beads along the principal lines 
of the first construct. There are countless layouts that might be considered, however we 

www.intechopen.com



Recent Advances in Modelling and Simulation 

 

332 

used the symmetry of this design to reduce the computational domain to 1/6 of its actual 
size, and the SPV beads were displaced such as to preserve symmetry. The analysis 
confirmed the layout obtained by mirroring the elemental cell, and the reason is that the 
aluminum foil has a very good electrical conductivity as compared to the cells. 
The mirroring technique may be pursued to generate ensembles of higher and higher order, 
thus propagating the triangular symmetry (Fig. 16b-d). Apparently, the inner regions are 
working at almost uniform voltage, and the vertices regions, acting as electrical terminals, 
are areas of higher voltage gradients.  
Remarkably, all constructs exhibit almost the same series resistance, which is a feature of 
constructal structures (Morega & Bejan, 2005), (Bejan, 2000). 

4.3 Honeycomb arrayed SPVC ensembles – a second model 

To exemplify the influence that the elemental system has in the shape of the higher order 
ensembles generated by the contructal growth technique, in this subsection we report a 
different approach to the honeycomb SPV ensembles optimal design.  
Here, we assume that by technological reasons (optimum spacing between spheres) there 
are no degrees of freedom in changing the size of the honeycomb (Fig. 11) – e.g., (SPP, 2006). 
We skip the optimization sequence for the elemental system that may make the object of a 
distinct investigation. In this sense, our approach is quasi-constructal. 

 
a. The elemental cell 

 
b. The FEM mesh 

 
c. The electric field – the voltage distribution 

Figure 17. The honeycomb SPVC elemental system 

Figure 17 shows the computational domain for the elemental system for the proposed 
packaging. The optimization was carried out by numerical simulation, and the mathematical 
model is made of eqs. (10) and (11) with appropriate boundary conditions. 
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The coloured disks in Fig. 17a represent the SVPCs, and the white background is the 
aluminium cathode. The port is seen at the boundary on the right. The white disks add to 
the high conductivity path to the exit port. Figure 17c shows the electric field by voltage 
surface map and contours. The hardest working point (of the highest voltage) is farthest 
from the exit port (the upper and lower vertices on the left edge of the elemental cell). 
Higher order ensembles are produced starting from the elemental system. Figure 18 shows 
the computational domains for the 1st, 2nd, 3rd, 4th order ensembles. Note that each new 
ensemble results by combining two, lower level optimized ensembles; in this process either 
one column or a row (depending on odd-even the order of the ensemble) is lost by partially 
overlapping the two constituent lower-level ensembles in order to preserve symmetry with 
an odd number of columns/rows. Also, the high conductivity path obtained by removing 
SPVCs preserves the same thickness in each ensemble. As seen from Fig. 18, depending on 
the ensemble order, the path that connects the high conductivity tree to the port on the 
boundary may be a either a straight or a saw-teeth-like strip. 

  
a. First order ensemble b. Second order ensemble 

  
c. Third order ensemble d. Fourth order ensemble 

Figure 18. Constructal ensembles – computational domains 

Figure 19 shows the voltage distribution on the first four higher order ensembles. As the 
order of the ensemble increases, the tree-like structure of the highly conductive material 
emerges: The tree is the flow architecture that provides the easiest (fastest, most direct) flow access 
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between one point (source, or sink) and infinity of points (curve, area, or volume). Among other 
practical applications of tree-shaped flow architectures note the cooling of electronics (Bejan, 
1997), (Ledezma et al., 1998), reconfigurable power networks (Morega & Ordonez, 2007), 
(Morega et al., 2006c, 2008) and the flows through porous media (Ordonez et al., 2003), 
(Azoumah, 2004). 

 

 

 

 

a. First order ensemble b. Second order ensemble 

 

 

 

 

c. Third order ensemble d. Fourth order ensemble 
Figure 19. Higher order constructal ensembles – electric field 

At this point it is instructive to investigate the surface grey map in Fig. 20: the current flow 
in the second order ensemble. It outlines clearly the cathode foil and the high conductive 
tree that conveys the current to the exit port on the boundary. 
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Figure 20. The cathode foil and the high conductive path evidenced by the current density 
spectrum in the second order ensemble 

The non-dimensional maximum voltage and the series resistance obtained by numerical 

simulation, for different conductivities ratio, σp/σ0 are given in Fig. 21a,b respectively. 

 
a. Maximum voltage drop 

 
b. Series resistance 

Figure 21. The maximum voltage and the series resistance for the first four ensembles for the 
honeycomb SPV modules (non-dimensional quantities) 

As expected, the higher conductivity ratio, the lower the voltage drop on the module, hence 
the lower the losses by series resistance. The optimized ensembles (continuous curves) have 
consistently lower series resistances than their unstructured counterparts (dashed curves). 
An important result exhibited by the optimized ensembles is that Rs does not vary with the 
ensemble order: this is an important feature of constructal structures and it evidences their 
scalability (Bejan, 2000). The fact that the proposed structural growth – from the elemental 
system to higher order ensembles – is scalable confirms – a posterirori – the constructal 
nature of the design that we adopted, imposed by the technological constrains that come 
with the assumed honeycomb pattern and the spherical packaging. 
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4.4 Wired spherical photovoltaic cells 

A different technology (Kyosemy, 2006) utilizes larger-size SPV cells that are provided with 
two, top and bottom electrical contacts, which allow connecting the cells in ensembles 
through thin wires – in parallel or series – to deliver higher current and voltage. As for the 
honeycomb module, the spacing between cells, or the “domain of existence” for a SPVC, is 
not a degree of freedom in the optimization process, and it is assumed imposed by 
technological grounds: the spheres should not shadow each other, nor should they be too 
loosely packed since the module has to be compact. 
The optimization process starts by assuming an elemental system made of a pair of 
interconnected SPVCs (Fig. 22a). As the SPVCs are embedded in an electrically insulating 
mass, the elemental system is reduced to a pair of the SPVCs and the interconnecting wires. 
All sides are insulated, except for the port where the current leaves the structure. Here too, 
the structural, quasi-constructal design and its optimization were carried out by numerical 
simulation. The mathematical model for the kinetic, DC electric field is made of eqs. (10), 
(11) and appropriate boundary conditions (Morega et al., 2006a). 

 
 
 

 
a. Computational domain 

 
 
 

 
b. Electric field – voltage 

Figure 22. The elemental system for the wired SPVC made of pair of cells 

Figure 22b shows the voltage distribution (surface color map and contour lines), and the 
current density path through streamlines for the elemental system. 
The constructal growth follows by first merging two mirroring elemental cells. Then, two 
first-order ensembles are joined into a second order ensemble, and so on. Figure 23 displays 
the electric field through the voltage and current density spectra for the first three higher 
order ensembles. 
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a. First order ensemble 

 
c. Third order ensemble 

 
b. Second order ensemble 

Figure 23. The electric field distribution for several higher order ensembles of wired SPVCs 

The simulation results are synthetically presented through the maximum voltage (Fig. 24).  

 
Figure 24. The maximum voltage drop for wired SPV ensmebles (non-dimensional 
quantities) 

Apparently, Vmax decreases as the conductivity of the high conductivity material increases. 
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Figure 25. The series resistance for wired SPV ensembles (non-dimensional quantities) 

Figure 25 shows the series resistance for the elementary cell (n = 0) and the first three higher 

order ensembles (n = 1, 2, 3) as functions of the conductivities ratio, σp/σ0. 
Clearly, the maximum voltage drops as the conductivity of the high conductivity material 
increases, which means that the overall voltage drop due to the series resistance is also a 

decaying function of σp/σ0. 
As for the honeycomb SPVC ensembles, these results suggest that for higher conductivities 
ratios all ensembles exhibit almost the same series resistance: a feature consistent with the 
constructal optimization process. 

5. Conclusions 

In the structural optimization conducted through analytic and numerical simulation the 
following conclusions were drawn: 

• The constructal principle is deterministic, based on the outlining physical laws in the 
system under investigation. The optimal series resistance, RS, of the PV ensembles are 
constructed starting from an elemental system, in a time arrow from small to large. This 
technique differs fundamentally from non-deterministic (i.e., postulated) designs, e.g., in 
a top-down sequence from higher order to lower order ensembles. 

• The structural optimization used to design each building block and ensemble provides 
for the minimization of the PV series resistance, or optimal electrical current access. The 
optimized ensemble exhibits the easiest access of its internal current. 

• The result of the PV RS optimization is a structure where the total current is driven to 
the exterior (terminal) by the smallest voltage drop. This results also in the smallest 
power loss by the series resistance of the PV system.  

• The starting point in the design is the optimization of the elemental system by utilizing 
the underlying physical laws (here, Maxwell). 

• Beginning with the second order flat-surface PV ensemble, one particular rule emerges: each 
new ensemble is made of two, lower order, optimized ensembles of the immediately lower level of detail. 

• Although not optimal in a strict mathematical sense, the PV ensembles of order higher 
than two are the best blocks that fit together. 
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• The optimization based on the analytic solution is valid when the conductivities ratio 

    σP σ 0 >> 1 , and when the porosity   φi << 1. 

• Constructal minimization of RS leads to a design that is not only optimal: it has also a 
naturally attractive appeal, where the collector fingers are seen to evolve naturally into 
busbars. Therefore, depending on the shape of the elemental system (rectangular 
geometry in our analysis), the optimized structures produced by this design may cope 
with aesthetic criteria requested by architectural and design goals with which PV 
ensembles have to comply. 

• Numerical simulation and the commonly available hardware resources have reached 
the level where they complement the design tools in engineering. 
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