
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 2

Electromagnetic Levitation System for Active Magnetic

Bearing Wheels

Yonmook Park

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67227

Abstract

In this chapter, the author presents an electromagnetic levitation system for active 
 magnetic bearing wheels. This system consists of a rotor, a shaft, a cover, and a base. The 
author derives a meaningful electromagnetic force by using the singular value decompo‐
sition. The author develops a control system using the proportional‐integral‐derivative 
controller to control the position of the rotor and regulate the two gimbal angles of the 
rotor. The author gives the numerical simulation and experimental results on the control 
of the electromagnetic levitation system.

Keywords: active magnetic bearing, electromagnetic levitation system, motion control

1. Introduction

As a reaction wheel in spacecraft, a ball bearing wheel, a magnetic bearing wheel, and an active 

magnetic bearing wheel have mainly been used. First, a ball bearing wheel uses a ball bearing 

to maintain the separation between the bearing races. Ball bearings reduce rotational friction 

and support radial and axial loads by using at least two races to contain balls and transmit 

the loads through balls. Ball bearings tend to have a lower load capacity than other kinds of 

rolling element bearings mainly due to the small contact area between balls and races. Also, 

ball bearings should be lubricated periodically with a lubricant such as oil and grease for ball 

bearings to operate properly [1]. Next, a magnetic bearing is used in a magnetic bearing wheel. 

A magnetic bearing supports a load by the magnetic levitation principle. In magnetic bearing 

wheels, permanent magnets are used to carry a wheel, a control system is used to hold a wheel 

stable, and power is used when a levitated wheel deviates from its target position. A magnetic 

bearing wheel also requires a back‐up bearing in case of control system or power failure and 
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during initial start‐up conditions. A magnetic bearing has two kinds of instabilities. One is 

that attractive magnets provide an unstable static force that decreases at distant distances and 
increases at close distances. The other is that magnetism gives rise to oscillations that may 

cause loss of suspension if driving forces are present [1]. Finally, in an active magnetic bearing 

wheel, a rotating shaft is levitated by the principle of electromagnetic suspension. A wheel 

is supported in an active magnetic bearing wheel without physical contact. The contactless 

operation of the active magnetic bearing wheels eliminates the need of lubrication of the bear‐

ing components, which allows them to operate cleanly. Moreover, it can accommodate irregu‐

larities in the mass distribution automatically, which allows it to spin around its center of mass 

with very low vibration, and can suppress the nutation and precession of the rotor effectively. 
The components of an active magnetic bearing wheel are an active magnetic bearing, a wheel, 

a control system, an electromagnet assembly, power amplifiers, and gap sensors. This bias 
current is mediated by a control system that offsets the bias current by equal but opposite 
perturbations of current as the rotor deviates by a small amount from its center position [1].

The active magnetic bearing wheel exhibits very lower vibration than ball bearing wheels 

and magnetic bearing wheels. Thus, it is a desirable reaction wheel for the spacecraft attitude 
control since vibration is the critical factor for the high precision spacecraft attitude control. 
The active magnetic bearing is the very important component among components of active 

magnetic bearing wheels. Due to this importance, various kinds of active magnetic bearings 

have been developed and their control methods have been studied (e.g., [2–10]).

In this chapter, the author presents an electromagnetic levitation system for active mag‐

netic bearing wheels. This system consists of a rotor, a shaft, a cover, and a base. Also, 

this system does not include a mechanism for spinning the rotor around its rotating axis. 

The author derives a meaningful electromagnetic force by using the singular value decom‐

position [11]. The proportional‐integral‐derivative (PID) controller is used to control the 

position of the rotor and regulate the two gimbal angles of the rotor. The author gives the 

numerical simulation and experimental results on the control of the electromagnetic levita‐

tion system.

2. Electromagnetic levitation system

In Figure 1, the schematic of the electromagnetic levitation system developed in this chapter 

is given. The cover protects the rotor, and the base supports the rotor, shaft, and cover. This 

system can levitate the rotor up to 0.8 mm from the ground in the z‐axis, rotate the rotor, and 

gimbal the rotor within a small angle of ±0.2°.

The dynamic equations of motion of the electromagnetic levitation system are given as follows:

  m z  ¨   =    F  
z
    (1)

  I ɸ ¨    =    T  
x
    (2)

  I   θ  ̈  =    T  
y
    (3)
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In Eqs. (1)–(3), φ and θ are the gimbal angles of the rotor in the x‐ and y‐axes, respectively, z 

is the displacement of the rotor in the z‐axis, F
z
 is the control force in the z‐axis, T

x
 and T

y
 are 

the control torques applied to the rotor in the x‐ and y‐axes, respectively, m = 0.72 kg is the 

mass of the rotor, and I = 877.367 × 10‐6 kg m2 is the inertia of the rotor for the x‐ and y‐axes.

Let us consider the four pairs of electromagnets shown in Figure 1. Then, the control inputs 

F
z
 in Eq. (1), T

x
 in Eq. (2), and T

y
 in Eq. (3) can be represented as follows:

    ∑  
i=1

  
4

    F  
ei
     =    F  

z
     +  mg  (4)

   D  
e
    (   F  

e2
     −    F  

e4
   )     =    T  

x
    (5)

   D  
e
    (   F  

e3
     −    F  

e1
   )     =    T  

y
    (6)

In Eqs. (4)–(6), F
ei
 is the electromagnetic force generated by the ith pair of electromagnets, and 

g = 9.8 m/s2 is the acceleration of gravity. Then, Eqs. (4)–(6) can be written as follows:

  A  F  
e
     =  u  +    u  

g
    (7)

where

  A  ≜    [    

1

  0  
−  D  

e
  
    

1

   D  
e
    

0

     

1

  0  
 D  

e
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  −  D  
e
    

0

    ]     (8)

F
e
  ≜ [ F

e1
 F

e2
 F

e3
 F

e4
]T, u  ≜    [F

z
 T

x
 T

y
]T, and u

g
  ≜    [mg 0 0]T. After designing the control inputs 

F
z
, T

x
, and T

y
, the four electromagnetic forces F

ei
, i = 1,…,4 have to be determined by Eq. (7). 

Among solutions for Eq. (7), the minimal norm solution is derived by using the singular value 

decomposition [11]. Let the singular value decomposition of the matrix A ∈ R3×4 in Eq. (8) be 

UΣVT and define

   A   +    ≜   VΣ   +   U   T   (9)

Figure 1. Schematic representation of the electromagnetic levitation system.
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where U∈ R3×3 and V ∈ R4×4 are orthogonal matrices, Σ ∈ R3×4, and A+ ∈ R4×3 and Σ+ ∈ R4×3 denote 

the pseudoinverse matrices of the matrices A and Σ, respectively. With some calculations, we 
obtain the following by the singular value decomposition of the matrix A in Eq. (8)
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In Eq. (11), 0
1×3

 implies the 1 × 3 zero matrix. Then, with A+ of Eq. (9), we obtain
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The following condition holds for any other solution    F 
^
    
e
      to Eq. (7) [12]

   ‖F  
e
    ‖  

2
     <  ‖   F 

^

    
e
   ‖    

2
    (14)

where ‘   ‖   ⋅  ‖    
2
   ’ denotes the Euclidean norm of a vector (i.e., for a vector x ∈ Rn,   ‖x‖  

2
     ≜    √ 

_____

   ∑  
i=1

  
n

    x  
i
  2    ).

Since the two gimbal angles, φ and θ, are very small, we can approximate sin(φ)  ≅  φ and sin(θ)  ≅  θ 

by the small‐angle approximation. Thus, the displacement from the bottom surface of the ith gap 

sensor to the top surface of the rotor in the z‐axis can be calculated as follows:

   l  
g1

     =    L  
g1

     +  δ  L  
g1

     =    L  
g1

     −  z  +    D  
g
   sin   (  θ )    −  D  

g
   sin   (  φ )    ≅    L  

g1
     −  z  +    D  

g
   θ  −    D  

g
   φ  (15)

   l  
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     =    L  
g2
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g
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g
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g
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g
   φ  (16)

   l  
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     =    L  
g3
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     =    L  
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     −  z  −    D  
g
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g
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g
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g
   φ  (17)

   l  
g4

     =    L  
g4

     +  δ  L  
g4

     =    L  
g4

     −  z  +    D  
g
   sin   (  θ )    +    D  

g
   sin   (  φ )    ≅    L  

g4
     −  z  +    D  

g
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g
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Then, from Eqs. (15) to (18), the system state z, φ, and θ can be calculated as follows:

  z =     1 __ 
4
    (    ∑  
i=1

  
4

    L  
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     −     ∑  

i=1
  

4

    l  
gi
   )      (19)
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4  D  

g
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     +    l  

g4
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     −    l  
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   )    ]     (20)
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g
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Similarly, the displacement from the bottom surface of the ith pair of electromagnets to the 

top surface of the rotor in the z‐axis can be calculated as follows:

   l  
e1

     =    L  
e1

     +  δ  L  
e1

     =    L  
e1

     −  z  +    D  
e
   sin   (  θ )     ≅    L  

e1
     −  z  +    D  

e
   θ  (22)

   l  
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e
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e
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e3

     =    L  
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e
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   l  
e4

     =    L  
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e
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e
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By the Maxwell's equation [13], the following equation is obtained for the control currents 

supplied to the coils of the four pairs of electromagnets

   i  
i
     =     

2  l  
ei
  
 ___ n    √ 

____

   
 F  
ei
  
 ____ 

 μ  
0
   G 

    ,  i  =  1, … , 4  (26)

where μ
0
 = 4π × 10‐7 N/A2 is the permeability constant of free space, n = 240 is the number of 

coil turn, i
i
 is the control current of the ith pair of electromagnets, and G = 50.265 × 10‐6 m2 is 

the cross‐sectional area of a pair of electromagnets. The author limits each control current in 

Eq. (26) by 1 A.

3. Numerical simulation and experimental results

The author gives the numerical simulation and experimental results on the control of the 

electromagnetic levitation system in this section.

The author uses the following discretized PID controller to control the displacement of the 

rotor in Eq. (19) and the two gimbal angles of the rotor in Eqs. (20) and (21).

  u  (  t )     =    K  
p
    x  
e
    (  t )     +    K  

i
    T  
s
    ∑  
i=o

  
t

    x  
e
  (i )   +    K  

d
     
 (   x  
e
    (  t )     −    x  

e
  (t − 1 ) )  

  ____________ 
 T  
s
  
    (27)

where T
s
 is the sampling time and given by T

s
 = 1 ms, x

e
 ≜ x

t 
− x is the error between the sys‐

tem state x ≜ [z φ θ]T and the target system state x
t
 ≜ [z

t
 φ

t
 θ

t
]T and K

p
 ≜ diag[K

pz
, K

pφ, Kpθ], 

K
i
 ≜ diag[K

iz
, K

iφ, Kiθ], and K
d
 ≜ diag[K

dz
, K

dφ, Kdθ] denote the 3 × 3 diagonal positive definite 
matrices.

The target position and target gimbal angles of the rotor are set to be z
t
 = 0.3 mm and φ

t
 = 0° 

and θ
t
 = 0°, respectively. The author initially decides the feedback gains of the PID controller 

in Eq. (27) that can achieve the control objective by adopting the well‐known Ziegler‐Nichols 

method [14] and then finely tunes the feedback gains of the PID controller in Eq. (27) by an 
experiment. Also, the antiwindup compensator is used to make the overshot as small as pos‐

sible. According to the Ziegler‐Nichols method [14], first, K
i
 = K

d
 = diag[0, 0, 0] are set, and the 

proportional gain K
p
 is then increased until the system just oscillates. The proportional gain 

is then multiplied by 0.6, and the integral and derivative gains are calculated as K
p
 = 0.6 K

m
,  

K
i
 = K

p
(ω

m
/π), and K

d
 = K

p
(0.25 π/ω

m
) where K

m
 ≜ diag[K

mz
, K

mφ, Kmθ] denotes the 3 × 3 diagonal 

positive definite matrix with the gain elements at which the proportional system oscillates, 
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and ω
m

  ≜  diag[ω
mz

, ω
mφ, ωmθ] denotes the 3 × 3 diagonal positive definite matrix with the oscil‐

lation frequency elements. As a result, the feedback gains of the PID controller in Eq. (27) are 

chosen as follows: K
pz

 = 1000, K
pφ = Kpθ = 20, K

iz
 = 5000, K

iφ = Kiθ = 8.33, K
dz

 = 100, and K
dφ = Kdθ 

= 0.013. Consequently, we see that the dominant feedback gains in this PID controller are K
p
 

and K
i,
 and thus, one can obtain K

mz
 ≅ 1666.67, K

mφ = Kmθ  ≅  33.33, ω
m

 ≅ 15.71 rad/s and ω
mφ = 

ωmθ ≅ 1.31 rad/s.

The control flow diagram of the system is shown in Figure 2. After we measure the displace‐

ments from the bottom surfaces of the four gap sensors to the top surface of the rotor, we cal‐
culate the displacement of the rotor and the two gimbal angles of the rotor by Eqs. (19)–(21), 

respectively. The control input u ≜ [F
z
 T

x
 T

y
]T is made by the PID controller in Eq. (27). Then, 

we calculate the four electromagnetic forces and the displacements from the bottom surfaces of 
the four pairs of electromagnets to the top surface of the rotor by Eq. (13) and the Eq. (22)–(25), 

respectively. After we calculate the control currents by Eq. (26), they pass through the current 

limiters and are supplied to the coils of the four pairs of electromagnets by the power electronics.

In the numerical simulation, it will be demonstrated that the electromagnetic force F
e
 of 

Eq. (13) satisfies the condition of Eq. (14) with respect to the following electromagnetic force 
   F 
^
    
e
   , which is another solution to Eq. (7)
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e
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   (28)

Figure 2. Control flow diagram of the electromagnetic levitation system.
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With the initial system state given by z
ini

 = 0 mm,    z ̇    
ini

     = 0 mm/s, the values are φ
ini

 = θ
ini

 = 0° 

and    φ ˙    
ini

     =    θ ˙    
ini

     = 0°/s. In Figures 3–5, the numerical simulation results on the control of the 

electromagnetic levitation system using F
e
 of Eq. (13) and    F 

^

    
e
    of Eq. (28) are shown. As shown 

in Figure 3, the rotor reaches the target position z
t
 = 0.3 mm, and the control forces using F

e
 

of Eq. (13) and    F 
^

    
e
    of Eq. (28) show the same behaviors, respectively. In Figure 4, we see that 

each control current using F
e
 of Eq. (13) reaches the same value, the control currents of i

1
 and 

i
3
 using    F 

^

    
e1

    and    F 
^

    
e3

    of Eq. (28), respectively, reach the same value, and the control currents of i
2
 

and i
4
 using    F 

^

    
e2

      and    F 
^

    
e4

      of Eq. (28), respectively, reach the same value. In Figure 5, we see that 

the Euclidean norm of F
e
 of Eq. (13) is about 3.162 times smaller than that of    F 

^

    
e
    of Eq. (28) in the 

steady‐state region. Therefore, the numerical simulation results shown in Figure 5 illustrate 

that F
e
 of Eq. (13) satisfies the condition of Eq. (14) with respect to    F 

^

    
e
    of Eq. (28).

The experimental results on the control of the system using F
ei
, i = 1,…,4 of Eq. (13) are shown 

in Figures 6–9. As shown in Figures 6 and 7, the PID controller successfully levitates the rotor 

at the target position z
t
 = 0.3 mm with well regulating the two gimbal angles. The trajectories 

of control currents are shown in Figure 8. And the Euclidean norm of F
e
 of Eq. (13) is shown in 

Figure 9. As shown in Figures 4, 5, 8, and 9, the trajectories of control currents and Euclidean 

norm of F
e
 of Eq. (13) obtained by the experiment move around the values obtained by the 

numerical simulation.

Figure 3. Time histories of the position of the rotor and the control force, which are obtained by the numerical simulation.
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Figure 5. Time histories of the Euclidean norm of the electromagnetic force, which are obtained by the numerical 

simulation.

Figure 4. Time histories of the control currents, which are obtained by the numerical simulation.
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Figure 6. Time histories of the system state of the electromagnetic levitation system using Fe of Eq. (13), which are 

obtained by the experiment.

Figure 7. Time histories of the control inputs of the electromagnetic levitation system using Fe of Eq. (13), which are 

obtained by the experiment.
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Figure 8. Time histories of the control currents of the electromagnetic levitation system using Fe of Eq. (13), which are 

obtained by the experiment.

Figure 9. Time histories of the Euclidean norm of Fe of Eq. (13), which are obtained by the experiment.
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In order to simulate an external disturbance, a human hand presses down hard on the rotor 

to the ground at about 20 s, and it is removed from the rotor momentarily. In Figure 6, we 

see that, after we remove the external disturbance from the rotor, the system state becomes a 

steady state within 2 s. Also, in Figure 8, we see that, as the external disturbance applied to 

the rotor increases, each control current increases to resist the external disturbance. It should 

be remarked that the operating parameters like an applied load and a speed of the rotor may 

influence on the design of electromagnetic levitation system because these parameters make 
an impact on the system dynamics.

4. Conclusion

In this chapter, the electromagnetic levitation system was developed as a prototype for devel‐

oping active magnetic bearing wheels. A control system was developed to control the position 

and two gimbal angles of the rotor. The experimental results demonstrated that the control 

system can control the position of the rotor and regulate the two gimbal angles. The refine‐

ment of the electromagnetic levitation system for the development of active magnetic bearing 

wheels is the further research topic.
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