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Abstract

Mixed cells (multicomponent cells) emerging in the development of Lagrangian-Eulerian
(ALE) or Eulerian numerical techniques for solving the gas dynamics and elastoplasticity
equations in multicomponent media contain either interfaces between materials or a
mixture of materials. There is a problem of correctly approximation of the equations in
such cells and the ALE code accuracy and performance depend on how the problem is
resolved. Many approximation methods use the equation splitting into two stages, one of
which consists in solving a given equation in Lagrangian variables. If mixed cells are
simulated, the system of equations describing the gas dynamics and elastoplasticity is
unclosed and there is a need to introduce additional closure relations that will allow
determining the thermodynamic parameters of components using the available data for
the mixture of components, as a whole. The chapter presents a review of the equation
closure methods and results of themethods verification using several test problems having
exact solutions.

Keywords: ALE method, mixed cell, closure model, numerical simulation, verification

1. Introduction

Mixed cells in arbitrary Lagrangian-Eulerian (ALE) or Eulerian methods contain interfaces

between different materials or a mixture of materials. In the next section, we will not distin-

guish these two methods, considering that both methods solve the advection equation, includ-

ing the vicinity of mixed cells. Most of these methods use a two-stage approximation of

equations. The first stage considers gas dynamics or elastoplasticity equations without convec-

tive terms. The convective transfer comes into play at the second stage. Among many similar

methods, we consider only the ALE methods that contain Lagrangian gas dynamics and

elastoplasticity in the pure form, and the problem of mixed cells at that particular stage is the

subject of research reported here. Note that mixed cells can be present even in purely
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Lagrangian techniques, and the problems related to their presence should also be addressed in

this case.

Here, we will generally use the term “Lagrangian gas dynamics” (or simply “gas dynamics”),

bearing in mind that, in the case of elastoplasticity, this will also involve equation terms related

to the stress tensor deviator. Historically, several approaches to the problem of mixed cells in

gas dynamics associated with materials distinction in such cells have been considered. In this

chapter, we consider only the single-velocity model of matter. The major approach that has

become predominant these days uses complete thermodynamic distinction of materials.1 Next,

we will use the term “material” meaning that, mathematically, an interface can also divide

identical materials; moreover, one of the materials can be vacuum and/or a perfectly rigid

body.

Thermodynamic parameters in gas dynamics include density, internal energy, and pressure. If

other processes are modeled, the number of parameters increases; for example, for elastoplasticity,

additional parameters will include components of the stress tensor deviator. In addition to

thermodynamic parameters, volume fractions of constituent materials are introduced in each

mixed cell that can be used to determine the geometric location of the interface inside a mixed

cell, which is used in some models.2

This approach to materials identification allows one to model mixed cells containing not only

contacting but also intermingled materials. When mixed cells are used for gas dynamics

equations, additional closing relations are needed, which in fact define the interaction of

materials inside the cell (the subcell interaction). Most of the known models manage with

information about volume (or mass) fractions of the materials and their thermodynamic states

[12–26]. Such models can be divided into two classes according to the number of computa-

tional stages involved.3

The first class of models is based on introducing closure models at a single stage, while

the second class includes two-stage models, in which the second stage is in fact complemen-

tary to the first one and involves additional interaction between materials inside a mixed cell

(so-called subcell interaction).

Next, we often use the terms “model” and “method” without distinction. One should note

here that a method is understood to be an algorithm implemented in the form of a program

and based on some physical model.

1

Early in the development of Eulerian methods, a smaller number of parameters have been used to identify the materials;

for example, in [1, 2], mass fractions of the materials and average energy of matter were employed. Accordingly, other

closing relations were used, the required number of which in this case is plus one compared with the complete materials

distinction. The models thus considered include the “isobar-isothermal” and the “isobar-isodQ”models, which, although

successful in some respect, in the general case failed to deliver acceptable accuracy of results.
2

The problem of identifying the contact location based on the material volume fractions is beyond the scope of this study;

it is a separate problem discussed in dedicated studies (see, e.g. [1, 3–11]).
3

Our classification and description of models is limited to the case of two materials in a cell, although many formulas

mentioned in this chapter are also suitable for their larger number. For this reason, some models developed specifically for

the case of several materials in a cell are left beyond the scope of our review.
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Basic single-stage closure methods include the following:

1. Method based on the model of equal pressures of constituent materials (the P method) [12],

2. Tipton's method [13],

3. Delov's method based on the acoustic Riemann solver [14] (this approach is also used in the

DSS [22] and KSR [23] methods developed later),

4. The K&S method based on a local Riemann problem [15]. This method is not described in

this work because of its impracticability, as noted in [15], but its test simulation results are

given for comparison.

Note that these four models and methods developed on their basis are relaxation with respect

to pressure. In a number of studies, nonrelaxation methods have been proposed, which use the

following assumptions (models):

5. Equal velocity divergences (∇ � u) of the materials [17].

6. Equal pressure changes (Δ p) of the materials [18],

7. Equal velocities (Δ u) of the materials behind a weak shock wave [19].

Two-stage models include the stage of subcell interactions between the materials in the

nonequilibrium state; so the first stage here can only use models 5–7. This approach for closure

models has been proposed independently in [20, 21]. The subcell pressure relaxation method

in [20] is versatile and it is used in combination with models 5–7, denoted as the ∇ � u-PR, Δ p-

PR and Δ u-PR (pressure relaxation) methods.

All the above-mentioned methods do not employ the contact location inside a mixed

cell. However, there are methods that make essential use of the information about the

contact location. A method of this kind was first proposed in [21] and then developed in

the “interface-aware subscale dynamics” IA-SSD method [24, 25] for the multimaterial

case. It offers a two-stage model, the first stage of which employs the ∇ � u model. At the

second stage, driven by the materials’ individual pressures, the interface between the

materials moves normally to it. The interface is reconstructed based on the volume

fractions, and its motion is accomplished based on the solution of an acoustic Riemann

problem (model 3).

Let us point out one common feature (associated with the assumptions made in the models) of

all the above closure methods. Velocity in the methods is normal to the interface (definite or

imaginary) irrespective of interface location relative to the vector of velocity. In fact, they are

isotropic in the sense that compression (expansion) ratios of materials are assumed to be equal

in all directions. One can mention a number of other closure methods that employ algorithms

similar to those used in the above-mentioned models [27–33]. This property of the methods is

quite acceptable for most applications, but there are problems (see below), as applied to which

it results in significant errors in simulations.

In [34], anisotropic closure methods, ACM-1 and ACM-2, are proposed, which are an exten-

sion of models 5–7. They possess all the advantages of methods 5–7, which are central to the
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EGAK code [35] when modeling flows, for which one can assume that they are isotropic, but

have an important advantage when modeling more complex flows.

Apart from the basic closure method, mixed cells require additional relations to address the

ways of pressure and artificial viscosity calculations for the whole cell and artificial viscosity

calculations for the materials. Six approaches to calculate the artificial viscosity of materials are

discussed in [36].

2. Finite difference approximation of elastoplasticity equations

2.1. Initial equations for multimaterial elastoplasticity

The initial set of equations solved at the Lagrangian stage for 2D elastoplastic flows is the

following:

du

dt
¼ −

1

ρ
∇ � T, (1)

dρξ

dt
¼ −ρξ∇ � uξ, (2)

dβξ
dt

¼ βξð∇ � uξ−∇ � uÞ, (3)

deξ
dt

¼
1

ρξ

SpðTξDξÞ, (4)

dr

dt
¼ u: (5)

In this set of equations: u(ux, uy) is the velocity, ρ is the density, T is the stress tensor, D is the

strain rate tensor, and е is the specific internal energy, βis the volume fraction of the material

(βξ ¼
Mξ

V ), r(x,y) is the radius vector. The subscript ξ is the material index; also note that in the

expression for the velocity divergence (or simply divergence for short) it relates to the diver-

gence as a whole, rather than to the velocity. Bold type here and below is used to indicate the

vector, tensor, and deviator.

Eq. (3) can be derived from the equation of continuity (2), in which the materials’ density is

substituted with its expression in the form of ρξ ¼ Mξ

Vξ
, where Mξ and Vξ are the mass and

volume of the materials in the Lagrangian cell. We obtain dVξ

dt ¼ Vξ∇ � uξ and then introduce an

expression for Vξ in terms of volume fractions Vξ = βξV into this equation. Thus, Eq. (3) is a

consequence of Eq. (2), and we give it here solely for the purpose of empathizing that the

volume fractions for multimaterial matter should also be updated to tn+1. In the single-material

case, Eqs. (1)–(5) come down to usual Lagrangian gas dynamics equations, because Eq. (3) is not

present in this case, and the quantities in other equations are written without material indices.

Lagrangian Mechanics72



Stress and strain rate tensors are expressed as follows:

T ¼
Txx Txy 0
Tyx Tyy 0
0 0 Tφ

2

4

3

5, D ¼
dxx dxy 0
dyx dyy 0
0 0 dφ

2

4

3

5

: (6)

The stress tensor is represented as a sum of the spherical part (pressure p) and the deviator S(Sxx,

Syy , Sxy , Sφ). Deviator components are defined by the relation Sij = Tij - δijp.

For the materials, we define equations of state

pξ ¼ Pξðρξ, eξÞ, (7)

and equations to express the deviator Sξ as a function of the strain rate tensor Dξ

f ξðSξ,DξÞ ¼ 0: (8)

The specific form of Eq. (8) is determined by the model of matter adopted.

EGAK uses decomposition in physical processes, in which the pressure-related terms are

approximated at the Lagrangian gas dynamics stage, and the terms related to the stress tensor

deviator, at the other stage of the computation. In the present technique, materials can be both

different substances with their equations of state and vacuum.

2.2. Finite difference approximation of elastoplasticity equations

EGAK uses a quadrangular mesh with node-centered velocities and all the other quantities

(ρξ , βξ, eξ, pξ, Sξ) defined at cell centers and for each material individually. Also note that for

the purpose of program implementation, pressure in Eqs. (1)–(5) is replaced with a sum of

pressure and artificial (computational) viscosity for matter as a whole and for the materials,

p ! p + q and pξ ! pξ + qξ, respectively. Known quantities (basic variables) in Eqs. (1)–(5) in

the 2D case include ux , uy, ρξ , βξ, eξ, pξ, Sξ, and the quantities p, S, q, qξ, ∇�uξ, Dξ need to be

determined. In the following formulas, the subscript means discretization in space and the

material number ξ in the multimaterial case, and the superscript denotes discretization in

time. Cell-centered quantities are marked with a semi-integer superscript (for example, i +1/2),

and the node-centered ones, with an integer superscript (i). If in a specific formula it is clear

from the context that the superscripts are the same for all the quantities, they are omitted.

Cell masses in Lagrangian gas dynamics remain constant in the course of calculations, so

they have no temporal indexing.

Suppose that we know all the basic quantities at time tn and that we seek to update their values

at time tn+1 = tn + τ, where τ is the timestep chosen based on the requirement that the difference

scheme should be stable (these issues are beyond the scope of this work). Let us write the

difference scheme of EGAK for the multimaterial case.

First half-timestep (determination of predicted pressure)
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r
nþ1=2 ¼ r

n þ τ � un, (9)

V
nþ1=2
iþ1=2, jþ1=2 ¼ V r

nþ1=2
iþ1, jþ1, r

nþ1=2
i, jþ1 , r

nþ1=2
iþ1, j , r

nþ1=2
i, j

� �

, (10)

pnξ ¼ Pðρn
ξ, e

n
ξÞ, (11)

∇ � un ¼
ðVnþ1=2

−VnÞ

ðτ � VnÞ
, (12)

p
nþ1=2
ξ ¼ pnξ−χ � ρn

ξ � ðc
n
ξÞ

2 � τ � ∇ � u
n
ξ: (13)

In Eq. (13), χ ¼ 0:6 (this value was chosen in [17]), cnξ is the speed of sound.

Full timestep

Mi, j ¼ 0:25 �
X

ξ

Mξ, i−1=2, j−1=2 þMξ, i−1=2, j−1=2 þMξ, iþ1=2, j−1=2 þMξ, iþ1=2, jþ1=2

� �

, Mξ ¼ ρξ � βξ � V,

(14)

Mi, j

ðunþ1
i, j −u

n
i, jÞ

τ
¼ ∇g

nþ1=2
þ ∇ � S

n
� �

i, j
, (15)

) u
nþ1
i, j ¼ u

n
i, j−

τ

Mi, j

� �

� ∇g
nþ1=2

þ ∇ � S
n

� �

i, j
, (16)

u
nþ1=2 ¼ ðun þ u

nþ1Þ=2, (17)

r
nþ1 ¼ r

n þ τ � unþ1, (18)

Vnþ1
ξ ¼ Vn

ξ þ τ � Vnþ1
ξ ∇ � u

nþ1
ξ , (19)

ρnþ1
ξ ¼

Mξ

Vnþ1
ξ

, (20)

βnþ1
ξ ¼

Vξ

Vnþ1
, (21)

enþ1
ξ ¼ enξ −

τ

ρnξ
� g

nþ1=2
ξ � ∇ � u

nþ1=2
ξ − Snξ,xxd

nþ1=2
ξ,xx − Snξ,yyd

nþ1=2
ξ,yy − 2Snξ,xyd

nþ1=2
ξ,xy þ Snξ,xx þ Snξ,yy

� �

d
nþ1=2
ξ,ϕ

h i

:

(22)

In Eq. (22), gnþ1=2
ξ ¼ p

nþ1=2
ξ þ qnξ. The methods to calculate the materials’artificial viscosity qnξ are

discussed in Section 4. The bar denotes the difference counterpart of a corresponding operator

(the formulas are generally known, so we skip them). In the following, we will not use the bars

assuming that all the operators are difference operators. We have not described the way of

updating the materials’ stresses, i.e., the approximation of Eq. (16), as it is beyond the scope of

this work; we only note here that these equations include components of the tensor Dξ.
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The formulas for total pressure, viscosity, and stress deviator are the following:

pnþ1=2
¼

X

ξ

ψξp
nþ1=2
ξ ,

qn ¼

X

ξ

ψξq
n
ξ,

Sn ¼

X

ξ

ψξS
n
ξ:

(23)

where the factor ψξ is determined by the chosen closure model (see below).

Thus, the quantities that are not yet determined in Eqs. (14)–(22) include ∇ � uξ, ψξ, qξ, and Dξ.

To calculate these, one needs to use some closure relations, being the consequences of different

assumptions (models) about thermodynamic states of the materials in mixed cells.

When introducing the closure relations, one should fulfill some requirements resulting from

the laws of conservation.

Requirement 1 is additivity of volumes (the law of conservation of “volume”)

V ¼

X

ξ

Vξ

or

X

βξ ¼ 1,

(24)

the consequence of which is the relation

ΔV ¼

X

ξ

ΔVξ,

or

X

βξ∇ � uξ ¼ ∇ � u:

(25)

The natural extension of relation (25) is D ¼

X

βξDξ, which is fulfilled at

Dξ ¼ D
∇ � uξ

∇ � u

� �

: (26)

Formula (26) is used to determine Dξ in Eq. (22) and when approximating Eq. (16).

Requiment 2 is additivity of energies (the law of conservation of energy)

e ¼
X

αξeξ, (27)

where the mass fraction αξ ¼
Mξ

M
is given by the following expression:
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αξ ¼ βξ �
ρξ

ρ
,

where

ρ ¼

X
βξρξ:

(28)

The requirement (27) can also be written for increments of specific energies

Δe ¼
X

αξΔeξ, (29)

where Δeξ is the energy increment for the constituent material, and Δ e, for the whole cell.

Let us consider closure methods for the case of approximation of gas dynamics equations. In

EGAK, the difference approximation of the energy equation (22) for the constituent materials

has the following form:

Δeξ ¼ −

τg
nþ1=2
ξ

ρn

ξ

∇ � u
nþ1=2
ξ : (30)

We insert their expression (30) into Eq. (29) for Δeξ and, using Eq. (28), obtain

−

τgnþ1=2
∇ � u

nþ1=2

ρ
¼ −

τ
X

β
ξ
g
nþ1=2
ξ ∇ � u

nþ1=2
ξ

ρ
þ

X
α

ξ
Δe

=
ξ: (31)

Using Eq. (23) and the given ways of finding ∇ � uξ from Eq. (31) one can obtain the values of

Δe
=
ξ that represent additional changes in the materials’ internal energy to meet the energy

balance requirement.

Given that g
nþ1=2
ξ ¼ gnþ1=2, it follows from Eq. (31) that

X
αξΔe

=
ξ ¼ 0. Thus, this term repre-

sents the change in the materials’ internal energy as a result of their pressure relaxation. If no

pressure relaxation is used, i.e., Δe
=
ξ ¼ 0, then the definitions of ψξ follow directly from the

closing conditions.

In the general case of nonequal pressures, the requirement Eq. (31) can be fulfilled, when some

conditions imposed on the function ψξ are satisfied. These conditions are discussed in Section 3.

Let us write the expression for ψξ as

ψξ ¼ βξλξ, (32)

where the quantity λξ is determined by the chosen model of distributing the total divergence

of the mixed cell to the constituent materials from the relation

∇ � uξ ¼ λξ∇ � u: (33)

Lagrangian Mechanics76



3. Closure methods for gas dynamics equations

There is no single closure method for gas dynamics equations in mixed cells that might be

suitable for all types of flow. Closing relations are quite numerous, but many of them are not

used nowadays and are of historical interest only. Next, we consider the most frequently used

closure methods, most of which have been implemented in EGAK.

3.1. Isotropic single-stage closure methods

It will be convenient to introduce some closure methods if we consider the 1D problem, as

shown in Figure 1. The i – 1/2th cell is mixed; it contains two materials; the interface is

denoted by point A. Depending on the way of velocity definition at the point A, one can

derive one or another method for calculating divergences (and densities) of the materials in

the mixed cell.

3.1.1. Method based on the equal pressure model

Method 1 uses the assumption that the materials have equal pressures (as proposed in [1]); in

addition, artificial viscosities are assumed to be equal, too:

pξ ¼ p,
qξ ¼ q:

(34)

For EGAK, method 1 based on the model (Eq. (34)) has been developed in [37].

This method first calculates the energy increment for the cell as a whole:

ΔE ¼ ðenþ1=2
−enÞM ¼ −

τðpnþ1=2 þ qnÞ

ρn
∇ � unþ1=2M

¼ −τðpnþ1=2 þ qnÞ∇ � unþ1=2Vn ¼ ðpnþ1=2 þ qnÞμΔV,

(35)

where μ ¼ −∇ � unþ1=2Vnτ=ΔV.

By analogy with Eq. (35), the energy increment equation for the materials can be rewritten by

adding respective material indices in the quantities ΔV and ΔE. Then, using expressions (25)

and (34), one can write the following closed system of equations:

Figure 1. Computational mesh. Point A is the interface.
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ΔEξ ¼ ðpnþ1=2 þ qnÞμΔVξ,

ΔV ¼
X

ξ

ΔVξ,

P
Mξ

Vn
ξ þ ΔVξ

,
Eξ þ ΔEξ

Mξ

 !

¼ pnþ1=2:

(36)

The system (Eq. (36)) contains 2N + 1 equation in 2N + 1 unknown ΔVξ, ΔEξ, and pn+1/2 and

can be solved iteratively. Solving the system of equations gives updated values of specific

energies and volume fractions of the materials:

e
nþ1=2
ξ ¼ eξ þ

ΔEξ

Mξ
, β

nþ1=2
ξ ¼

Vξ þ ΔVξ

V þ ΔV
: (37)

Among the drawbacks of this method one should note its expensiveness because of the

iterative methods that are needed for solving the system (Eq. (36)) with complex equations of

state. Also note that the assumption about equal pressures can turn out to be inconsistent, for

example, in problems associated with energy release at every timestep.

3.1.2. Tipton's method

The model underlying Tipton's method is close to the model (34). Let us consider it as applied

to the difference scheme implemented in [22] and being slightly different from Eqs. (9)–(22). At

the first half-timestep, instead of Eq. (9) the method uses the equation r
nþ1=2 ¼ r

n þ τ=2 � un,

and in Eq. (13), χ ¼ 1:0. Then,

p
nþ1=2
ξ ¼ pnξ−ρ

n
ξ � ðc

n
ξÞ

2 � τ � ∇ � un
ξ: (38)

This method assumes that the pressures of the constituent materials at the half-timestep

should equal the average pressure pnþ1=2, which requires

pnþ1=2 ¼ p
nþ1=2
ξ þ R

nþ1=2
ξ , (39)

where R
nþ1=2
ξ is different for different materials. The following equation is used to determine

this quantity:

R
nþ1=2
ξ ¼ −ρn

ξ � c
n
ξ � h

n � ∇ � u
n
ξ, (40)

where hn is the characteristic mesh spacing.

Eqs. (38) and (39) can be combined into one equation.

pnþ1=2 ¼ pnξ−
~Bξ
n
∇ � un

ξ, (41)

where ~Bξ
n
≡ðcnξÞ

2ρn
ξ � τ 1þ hn

ðτcn
ξ
Þ

h i

:
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Eq. (41) together with the requirement (Eq. (25)) constitutes a closed set of algebraic equations

with the unknowns ∇ � un
ξ and pnþ1=2. As mentioned in Section 3.1.1, the system can be solved;

for ξ = 1, 2, the solution is the following:

∇ � un
ξ ¼

ðpnξ−p
nÞ þ B

n
� ∇ � un

~Bn
ξ

,

pnþ1=2 ¼ pn−B
n
∇ � un, (42)

where the barred terms denote average values of the quantities

pn≡

X

ðβnξp
n
ξ=
~B
n

ξ
Þ

X

ðβnξ=
~B
n

ξ
Þ

and B
n
≡

X βnξ
~B ξ

� �� 	−1

: (43)

Eq. (42) leads to an expression for the change in the volume fractions

Δβ
nþ1=2
ξ ¼ βnξ

pnξ−p
n

~Bξ
n

 !

þ βnξ τ
B
n

~Bξ
n −1

 !" #

∇ � un: (44)

To update the quantities at tn+1, another assumption is made that increments of the quantities

after a full timestep are twice the half timestep increments:

Δβnþ1
ξ ¼ 2Δβ

nþ1=2
ξ

and

βnþ1
ξ ¼ βnξ þ 2Δβnþ1

ξ :

(45)

The difference energy equation for the materials in the cell is the following:

enþ1
ξ ¼ enξ−p

nþ1=2
ΔVnþ1

ξ

Mξ
, (46)

where ΔVnþ1
ξ ¼ Δβ

nþ1=2
ξ � Vnþ1.

3.1.3. Delov's method

Method 3 based on the acoustic Riemann solver is proposed in [14]. Let us consider this

method as applied to the one-dimensional problem (see Figure 1) with a single velocity

component u. We consider the following acoustic Riemann problem in a mixed cell:

p ¼ pn1 , u ¼ u
nþ1=2
i−1 for m < mА,

p ¼ pn2 , u ¼ u
nþ1=2
i for m > mА,

(47)

where m is the mass variable (mA is the cell mass).

The set of equations for the quantities similar to the Riemann invariants along the advanced

and retarded characteristics has the following form:
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u
nþ1=2
A þ

p
nþ1=2
A

ðρcÞn1
¼ u

nþ1=2
i−1 þ

pn1
ðρcÞn1

,

u
nþ1=2
A −

p
nþ1=2
A

ðρcÞn2
¼ u

nþ1=2
i −

pn2
ðρcÞn2

:

(48)

The solution to this set will be the following expression for the velocity u
nþ1=2
A :

u
nþ1=2
A ¼

u
nþ1=2
i−1 � ðρcÞn1 þ u

nþ1=2
i � ðρcÞn2 þ pn1−p

n
2

ðρcÞn1 þ ðρcÞn2
: (49)

Now, let us write the equation of continuity for the problem at issue. By replacing the diver-

gence with a corresponding expression, we obtain the following equation:

1

ρnþ1=2
−

1

ρn
¼ τ �

u
nþ1=2
i −u

nþ1=2
i−1

M
, (50)

where M ¼ ρh is the linear cell mass.

A similar equation for the materials is obtained if one of the velocities is replaced with a

velocity at the point A and a respective index is attached to density and mass. After substitut-

ing the expressions for velocity (49) into the equation of continuity (50), we obtain

1

ρ
nþ1=2

1
2


 �

−

1

ρn
1
2


 �

¼
τ

M 2
1


 �

�

ðρcÞn 2
1


 �

ðρcÞn1 þ ðρcÞn2
� u

nþ1=2
i −u

nþ1=2
i−1

� �

þ
pn1 − p

n
2

ðρcÞn1 þ ðρcÞn2

2

6

6

4

3

7

7

5

: (51)

Thus, as distinct from models 1–3, the present model does not employ any equilibration

algorithm for pressure relaxation in this method, because the volume changes of the materials

are also controlled by their pressures.

The extension of Eq. (51) in the multimaterial case without constraint of the number of

materials can be written as follows:

1

ρ
nþ1=2
ξ

¼
1

ρn
ξ

þ
λn
ξ

αn
ξ

�
1

ρnþ1=2
−

1

ρn

� �

þ
ω � τ

βnξ � ρ
n
ξ � h

n ðp
n
ξ − p

n
PÞ �

1

ðρсÞnP
, (52)

where

pnP ¼
1

N

X

N

ξ¼1

pnξ, (53)

ðρcÞnP ¼
1

N

X

N

ξ¼1

ðρcÞnξ, (54)
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λn
ξ ¼

1

ðN−1Þ
1−

ðρcÞnξ
X

N

ζ¼1

ðρcÞnζ

0

B

B

B

B

@

1

C

C

C

C

A

, (55)

where hn is the characteristic mesh spacing, and ω∼1 is the factor introduced to improve

stability conditions of the difference scheme.

From Eq. (55), using Eq. (12), one can obtain an expression for divergences:

∇ � un
ξ ¼

λn
ξ

βnξ
� ∇ � un þ ω �

ðpnξ − p
n
PÞ

βnξ � h
n � ðρсÞnP

: (56)

Now, let us consider the quantity λn
ξ. The change in the materials’ volume, as we see from

Eq. (55), can be written as

Vnþ1
ξ −Vn

ξ ¼
λn
ξ

βnξ
� ðVnþ1

−VnÞ þ ω � τ �
ðpnξ − p

n
PÞ

ðρсÞnP
: (57)

From this, using the requirement (Eq. (25)), we obtain that the equality
X

N

ξ¼1

λn
ξðβ

n
ξÞ

−1 ¼ 1 must

be fulfilled. One can easily see that in the 1D case, for ω = 1 andN = 2, Eq. (52) includes Eq. (51).

Now, let us show that the quantity λn
ξðβ

n
ξÞ

−1 can be taken as a function ψξ (ψξ ¼ λn
ξðβ

n
ξÞ

−1) for

determining the average pressure using Eq. (23). For this purpose, it will suffice to consider the

case when the materials have equal pressures. Indeed, in this case, the second term in (56) is

equal to zero, and to meet the energy additivity requirement (31), it will be sufficient to assume

that in Eq. (23)

ψξ ¼ λn
ξ=β

n
ξ: (58)

If the materials have different pressures, when we use Eq. (58), the right-hand member of the

energy equation should be corrected by Δe′ξ, for example, in the form of

Δe′ξ ¼
ω � τ

αξρn � hn
�

ψξ

ðρcÞn
Σ

�
X

ξ

pnξ � ðp
n
ξ−p

n
Σ
Þ: (59)

This method provides good results in Lagrangian calculations, when the materials’ volume

fractions in the cell are invariable and close to each other, i.e., at 1≫βξ≫0. However, the values

of β in ALE calculations can range freely within 0 < β < 1 and, at β close to zero, the method

gives a noticeable error associated with the presence of division by β in Eq. (58). This situation

is physically attributed to the fact that, in Riemann problem calculations, waves travel some

distance that must be equal to or less than the size of the region occupied by each of the
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materials. As the choice of the timestep is based on the Courant constraint, the necessary

requirement can be violated, which leads to unphysical results (e.g., a negative updated value

of material volume). To fix this, additional constraints on volume increments are required.

3.1.4. Method 5 based on the equal compressibility model

Method 5 rests upon the most frequently used model of equal compressibility of materials, or

to put it differently, of their equal divergences. The model has been proposed in [17]; it has also

been considered in [38, 39] and is formulated as follows:

∇ � un
ξ ¼ ∇ � un

: (60)

Naturally, it is also assumed that ∇ � unþ1
ξ ¼ ∇ � unþ1.

Thismethod,whichappears at first glance tobe strange, results fromtheassumption that thevelocity

at the point A (Figure 1) is determined by distance-linear interpolation between nodal velocities. In

the 2D case, thismethod is generalized on the assumption of volume-linear interpolation.

In this method, λξ = 1 and formula (25) gives

ψξ ¼ βξ, (61)

which ensures the fulfillment of the requirement (31) at Δe′ξ ¼ 0. As a result, formula (23)

transforms to

p ¼
X

βξpξ: (62)

Thus, all the quantities we need to solve Eqs. (9)–(22) are defined.

Formula (62), which is natural for a homogeneous mixture of ideal gases, has a simple inter-

pretation for a heterogeneous mixture. Let us consider a mixed cell containing two materials of

volume V0 (see Figure 2).

Let us assign pξ to the centers of their volumes. If the volume is used as a variable, then the

linear interpolation of pressure over the cell volume can be written as

pðVÞ ¼ 2 �
p2− p1
Vo

V−
V1

2

� �

þ p1: (63)

Figure 2. Graphic illustration of Formula (62).
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If we insert the value of V ¼ V0=2 into Eq. (63), we will obtain the very same Formula (62). It is

easy to demonstrate that for the case of an arbitrary number of materials, the value of pressure

at the point V0=2 will also be defined by Formula (62) (first, two materials are considered, and

then other materials are added one by one). Thus, in the heterogeneous case, for linear

interpolation of pressure between the materials’ pressures, Formula (62) defines the pressure

at the volume center of the mixed cell. As the approximation of the momentum equation uses

cell-related pressures, Formula (62) is consistent enough for determining the average pressure

in the mixed cell.

Strengths and weaknesses of method 5 are evident. It is easy to implement and inexpensive in

operation, but it can lead to nonphysical states of the materials. The point is that the materials

in the mixed cell in calculations by this method are compressed uniformly, which leads to

different pressures of the materials, which do not relax with time (see the test calculations in

Section 5). Nevertheless, the method delivers quite acceptable results when used for flows with

distinct interfaces.

3.1.5. Method 6 based on the equal pressure increments model

Bondarenko and Yanilkin [18] proposed a closure method based on the equality of pressure

increments of the materials in the mixed cell. This model is mathematically expressed as

ρξc
2
ξ∇ � uξ ¼ ρζc

2
ζ∇ � uζ: (64)

The condition (64) is derived as follows. For adiabatic flows,

∂p

∂t
¼

∂p

∂ρ
�
∂ρ

∂t
¼ c2ρ∇ � u: (65)

Going over in Eq. (65) to the materials and claiming that
∂pξ
∂t ¼

∂pζ
∂t , we obtain the condition (64).

The set of algebraic equations (64), Eq. (25) is closed, and its solution is given by

∇ � un
ξ ¼ λξ∇ � un, (66)

where

λξ ¼
βk
ρkc

2
k

� �−1

� ðρξc
2
ξÞ

−1: (67)

When this model is used in calculations for adiabatic flows, pressures will stay approxi-

mately equal, if the materials’ initial pressures in the cell are equal. However, in some cases,

pressures may turn out to be different: if energy release is specified for one of the materials;

behind a strong shock in the mixed cell, because the condition of equal pressure increments

is incorporated in the adiabatic approximation; after calculating convective fluxes at the

Eulerian stage, etc. In this case, the use of this model in its original form is associated with

some problems.
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One of them is the following. Let pnξ ≠ p
n
ς . For an ideal gas, the following estimate is true:

∇ � uξ ∼ ðρξc
2
ξÞ

�1
∼ ðγξpξÞ

�1: (68)

It follows from Eq. (68) that at close values of γξ, the values of ∇ � uξ are inversely proportional

to pξ. As a result, the material with a lower pressure relaxes more actively on relief, with an

opposite trend in compression. However, according to the physics of the process, pressure

relaxation should take place in any case. The predicted pressure for the lower pressure mate-

rial can even turn out to become negative. To fix this flaw, in the case of cell expansion, method

5 uses a requirement that relative rather than absolute pressure increments of the materials

should be equal. Let us write the modified equation (Eq. (65)) as

∇ � uξ≈ −
Δpξ
pξ

�
pξ

τpξdpξ=dpξ
, (69)

require that the condition Δpξ=pξ ¼ Δpζ=pζ is fulfilled, and obtain formula (70):

λξ ¼ −

p
ξ

p
ξ
c2
ξ

�
1X

βkpk=ðρkc
2
kÞ
: (70)

This value of λξ will also be used in Eq. (32) to determine ψξ, which meets the requirement (31)

at Δe′ξ ¼ 0.

3.1.6. Method 7 based on the equal velocity increments model

This model has been proposed in [19]. The assumption that the materials’ velocity increments

are equal that is the consequence of the fact that the set of gas dynamics equations is solved in

the one-velocity approximation. Since the materials’ velocities in the mixed cell are equal at

any time, it is natural that the changes in the materials’ velocities at every timestep will also be

equal. One can treat changes in physical quantities over a timestep as those resulting from the

propagation of some perturbations. If one assumes that these perturbations are plane acoustic

waves, for which Δρ=ρ ¼ Δu=c, then for ∇ � uξ one can write the following expression:

∇ � uξ≈ −
Δρξ

ρξτ
¼ −

Δuξ
cξτ

: (71)

Considering that the materials’ velocity increments Δuξ in the mixed cell are assumed to be

equal, for ∇ � uξ we obtain the following relation (72):

cξ∇ � uξ ¼ cζ∇ � uζ: (72)

The set of algebraic equations (72) and (25) is closed, and its solution can be given by
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∇ � u
n

ξ ¼ λξ∇ � u
n, (73)

where

λξ ¼ cξ

X

k

β
k

ck

 !

−1

¼
c

cξ
, (74)

with

c ¼

X

k

β
k

ck

 !

−1

:

This value of λξ will also be used in Eq. (32) to determine ψξ, which satisfies the requirement

(31) at Δe′ξ ¼ 0.

3.1.7. Pressure relaxation methods

The use of models 5–7 as single-stage methods in real simulations is associated with a number

of problems that sometimes lead to inconsistent results. All these cases are related to the

absence of the pressure relaxation mechanism for materials in mixed cells. The analysis shows

that, even in model 6, despite the equal pressure increments of the materials at a timestep,

equality of pressures at tn+1 is not always the case. The situation in the other twomodels is even

worse.

For this reason, methods 5–7 that can be used as single-stage methods are combined with

subcell pressure relaxation. Next, we consider two known relaxation methods. In all the two-

stage isotropic closure models, cell divergence is redistributed among the materials only if it is

different from zero. As for the second (subcell) stage of the models, it involves interactions

between the materials if these are in the nonequilibrium state with no mandatory requirement

that the divergence should be nonzero.

3.1.7.1. The PR method

Let us consider the PR pressure relaxation method proposed in [20]. As the materials occupy

finite volumes in the mixed cell, equilibration of the materials’ pressures occurs not instanta-

neously (instantaneous pressure equilibration occurs only at the points of the surface, along

which the materials contact each other), but over some time in several timesteps.

This method calculates ∇ � uξ at the timestep in two stages:

∇ � uξ ¼ ∇ � uξ1 þ ∇ � uξ2: (75)

In Eq. (75), ∇ � uξ1 is the material's divergence at the first stage obtained by one of the above

methods. The second stage includes pressure relaxation of the materials. The second stage

imposes the requirement that both ∇ � u and the total internal energy, i.e., ΔE2 = 0, should

remain unchanged at that stage. Pressure relaxation is implemented by calculating additional

divergences of the materials ∇ � uξ2 by the formulas
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∇ � uξ2 ¼ −

Δpξ
τρξc

2
ξ

, (76)

where

Δpξ ¼ A
cτ

h
ðp−pξÞ, (77)

where p is the average pressure. Expression (76) was derived using a known relation in the

adiabatic approximation, Δp ¼ −ρc2τ∇ � u. The factor cτ=h, equal to the ratio of the timestep to

the characteristic pressure equilibration time of the mixed cell h=c, determines the fraction of

the materials’ pressure difference, by which the materials’ pressure equalizes. According to the

meaning of expression (77), A ∼ 1; in this case, the materials’ pressures will not relax over a

single timestep.

As p in the equilibration algorithm (not to confuse with the average pressure at the basic

stage done by Eq. (23)) we take Eq. (62). Then, the requirement that the cell volume should be

constant at this stage,
X

βξ∇ � uξ2 ¼ 0, will be satisfied automatically. The choice of the

formula for p is ambiguous. For example, the choice based on Eq. (23) may prove to be

unbeneficial. Let us illustrate this with the following example. Suppose a mixed cell contains

two ideal gases having the same EOS γ1 = γ2 = γ, but disparate pressures and volume

fractions. Let p1 = 1000, β1 = 0.9 and p2 = 1, β2 = 0.1. Using Eqs. (23) and (25) combined with

the relation ρξc
2
ξ ¼ γξpξ, one can easily calculate that p = 10. Thus, the cell-average pressure

calculated by Eq. (23) is a hundred times lower than the pressure in the material occupying

nearly the whole cell. Formula (62) is free of this flaw and, as shown above, has a certain

mathematical basis.

This method results in the internal energy exchange between the materials. Indeed, let us

represent the total change in the materials’ internal energies as

ΔE ¼ −PþΔVþ−P−ΔV−, (78)

where

Pþ ¼
X

βξpξ if pξ > p;

P− ¼
X

βξpξ if pξ ≤ p
and ΔVþ and ΔV− are the volume changes of these materials.

With pressure equilibration, the materials with Pþ expand, so ΔVþ > 0 and ΔV− < 0. As far as it

follows from the volume conservation condition that ΔVþ ¼ jΔV−j, and by definition Pþ>P−, ΔE

in the pressure equilibration procedure by Eq. (78) will always be negative. This situation is

associated with the fact that motion of interfaces causes internal (subcell) motion in the cell, and

part of the cell's internal energy converts into the subcell kinetic energy. Since the subcell kinetic

energy is not taken into account in the calculations, it is returned to the materials in the form of

internal energy increments Δe′ξ in accordance with the equation
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−

τ

ρn

X

ξ

βξðp
nþ1=2
ξ þ qnξÞ∇ � u

nþ1=2
ξ2 þ

X

ξ

αξΔe
′
ξ ¼ 0, (79)

The quantity ∇ � unþ1
ξ2 present in this expression is calculated by the formula

∇ � unþ1
ξ2 ¼ ∇ � un

ξ2ð1−Acτ=hÞ:

It remains to decide how to distribute the dissipated kinetic energy among the materials

(formula (79) defines only the total dissipated energy ΔE ¼
X

ξ

αξΔe
′
ξ). In [20], it is assumed

that Δe′ξ ¼ Δe′. In this case, for all the materials in the mixed cell we obtain from Eq. (79) that

Δe′ξ ¼ Δe′ ¼
τ

ρn

X

ξ

βξðp
nþ1=2
ξ þ qnξÞ∇ � u

nþ1=2
ξ2 : (80)

Note that this pressure relaxation approach is universal, i.e., it is independent of the way, the

total velocity divergence in the mixed cell is distributed among the materials. In EGAK, it is

employed for the three above-mentioned methods. However, its application to physically

inconsistent generation of pressure difference between the materials through the basic closure

relation may lead to excessive energy exchange between them, so for each specific method its

consistency needs to be validated by test simulations.

3.1.7.2. Method of Barlow, Hill and Shashkov (BHS)

This method is described in detail in [25]; here we briefly summarize and illustrate the basic

concept of the method for the case of two materials, which is sufficient for understanding the

whole method. In its complete form, the method has been developed for the multimaterial

case; for details see [25].

This method assumes that the total change in the material volume over a timestep is the sum of

two terms:

ΔVξ ¼ ΔV1ξ þ ΔV2ξ, (81)

where the subscripts 1 and 2 denote the two stages of the closure model.

The first stage employs model 5, which assumes that the materials’divergences are equal and

do not require the information on the contact location in the cell. The equality of divergences

means that

ΔV1ξ ¼ β1ξΔV: (82)

The second (subcell) stage uses the model based on the acoustic Riemann problem (Delov's

model), which calls for the reconstruction of the contact location in the mixed cell. In cell 1234,

as shown in Figure 3, it is the segment AB.
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After the first stage, P1 > P2. Then, after the subcell stage, the contact will move to the location

CD. The quantity of volume increment is represented by the quadrilateral ABCD determined

based on the solution of the acoustic Riemann problem

ΔV2 ¼
p1− p2

ρ1c1 þ ρ2c2
SABτ

n, (83)

where all the unindexed quantities are taken after the first stage, and SAB is the area of the

boundary between the materials.

Thus,

ΔV21 ¼ ΔV2,
ΔV22 ¼ −ΔV2:

(84)

The updated volumes of the materials calculated by formula (81) accounting for the volume

increments must satisfy the following inequalities:

Vnþ1
> Vnþ1

ξ > 0, (85)

which, however, is not always the case for the same reason as in Delov's method (see the

remark at the end of Section 3.1.3). Therefore in [25], the authors introduce constraints on

volume increments, which complicate the method significantly, especially in the multimaterial

case.

3.2. Anisotropic closure models

3.2.1. Model fundamentals

Let us consider two limiting cases of contact location relative to the wave motion (shock,

acoustic, or elastic wave) presented in Figure 4, in which cells contract or expand, i.e., the

divergence is nonzero. In the first case (Figure 4a), most of motion is normal to the interface,

so all the above models 1–7, each having its own accuracy, are suitable. In the second case

(Figure 4b) most of motion occurs along the interface, while the lateral motion is insignificant

Figure 3. Contact location reconstructed after the first stage.
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and is therefore auxiliary. It means that the materials contract or expand tangentially to the

interface; thus, equality of compressibilities, i.e., model 5, may be more consistent in this case.

Indeed, calculations show that, for example, using models 6 and 7 for such flows in the

elastoplastic case one can obtain a considerable error, while model 5 provides good accuracy.

The above fact implies that closure models 5–7 are inappropriate for modeling such flows.

Thus, to ensure acceptable modeling accuracy for the two different types of flow (in different

directions relative to the interface), different closure relations need to be used. For this pur-

pose, two-stage models are proposed.

3.2.2. The ACM-1 model

At the first stage in the anisotropic model ACM-1 [34], matter in the mixed cell moves as a

whole, and all nonuniformities (including the interface) are assumed to be frozen. The freezing

condition in terms of closing in the first approximation means that the materials’ divergences

are equal.

The second stage includes relaxation of pressure (and stresses) concurrent with such motion. The

work [34] suggests using the above pressure relaxation procedure at this stage with the degree

of relaxation made dependent upon the mutual orientation of the velocity direction and the

interface. If the velocity is normal to the interface, the pressure relaxation is the highest, and if

the velocity is directed along the interface, it is the smallest.

In the implementation of the ACM-1 model, two stages are used to calculate ∇ � uξ at a

timestep

∇ � uξ ¼ ∇ � uξ1 þ ∇ � uξ2: (86)

In Eq. (86), ∇ � uξ1 is calculated at the first stage in accordance with closure model 1:

∇ � uξ1 ¼ ∇ � u: (87)

The second stage includes pressure relaxation of the materials in mixed cells according to

the algorithm, basically similar to the algorithm described in Section 3.1.7.1. The only

distinguishing feature is that for the ACM-1 model, the coefficient A in Eq. (76) depends on

Figure 4. Two cases of contact location relative to wave motion.
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the mutual orientation of the velocity and the interface. The total divergence is written as the

sum of two components:

∇ � u ¼ ∇ � uτ þ ∇ � un, (88)

obtained by velocity decomposition to two components: along the interface (u
τ
) and normal to

it (un). We also assume that

A ¼ A0 �
∇ � un

∇ � u
, (89)

where A0 is some constant.

Thus, the coefficient A is a variable in this case. If the velocity is normal to the interface

(Figure 4a), ∇ � un ¼ ∇ � u and A = A0; this is the case with the highest pressure relaxation. If

the velocity is directed along the interface (Figure 4b), ∇ � un ¼ 0 and A = 0, i.e., there is no

pressure relaxation at all, and only the first stage of the closure method is in effect, i.e.,

formula (87).

The constant A0 in Eq. (89) must be determined based on test simulation results. In [34], its

value was determined in several simulations, and it proved to coincide with the value of the

constant A in Section 3.1.7.1, i.e., A0 = 1.

3.2.3. The ACM-2 model

The anisotropic model ACM-2 is formulated as follows. We divide the divergence of the entire

cell and its materials into two components: normal and tangential (relative to the contact

location):

∇ � u ¼ ∇ � un þ ∇ � uτ

∇ � uξ ¼ ∇ � uξn þ ∇ � uξτ
: (90)

Along the interface, the materials are assumed to have equal compressibilities, i.e., the distri-

bution of the corresponding divergence component among the materials is described by the

relation

∇ � uξτ ¼ ∇ � uτ: (91)

As for the divergence in the direction normal to the interface, it can be distributed to the

materials using any of closure models 5–7. In this work, we use model 7, which, as shown in

[40, 41], is the most widely applicable with respect to modeling different kinds of flow. It

follows from it that

∇ � uξn ¼ λξ∇ � un

λξ ¼ cξ

X

k

β
k

ck

 !

−1
: (92)

Once this part of divergence is distributed to the materials, relaxation of their pressures is

carried out by the algorithm described in Section 3.1.7.1, which makes an additional

contribution,∇ � u′
ξn, to the divergence ∇ � uξn:
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∇~�uξn ¼ ∇ � uξn þ ∇ � u′
ξn: (93)

The ultimate formula for the distribution of ∇ � u among the materials will be

∇ � uξ ¼ ∇~�uξn þ ∇ � uξτ: (94)

4. Artificial viscosity

For mixed cells, closure relations for calculating divergences of constituent materials are

insufficient. Such cells require an additional relation to determine the artificial viscosity for

the cell as a whole and for each individual material. Two approaches can be used to calculate

the viscosity of the materials.

The first approach is based on viscosity calculations directly for the materials based on their

individual parameters. The viscosity for matter as a whole is then calculated based on the

procedure used to calculate the average pressure from the materials’ pressures.

The second approach is based on the calculations of the viscosity for the cell as a whole based

on the cell-average parameters of matter and its distribution to the materials according to some

assumptions on the way of its distribution.

The first approach is more expensive both in terms of research effort, and in terms of compu-

tations; therefore, the less complicated second approach has been developed more widely. This

work mostly considers viscosity definition procedures based on the second approach.

4.1. Artificial viscosity for matter as a whole

The viscosity of matter as a whole in EGAK is calculated in the cells, and it is a combination of

the von Neumann and Richtmyer type quadratic viscosity and linear viscosity

qn ¼ C1 � ρ
nðhn∇ � unÞ2 þ C0 � ρ

n � с � hn∇ � un if ∇ � un
< 0

qn ¼ 0 if ∇ � un
≥0

:

(

(95)

In Eq. (95), C1 = 1 and C0 = 0.2 are the fixed coefficients. In addition, expression (95) contains

the characteristic dimension h and the divergence ∇ � un of the cell. Here, we will not address

the issues of determining these quantities, as it does not matter for our purposes. Let us

consider the approaches to viscosity distribution to materials.

4.2. Artificial viscosity of materials in mixed cells

The research summarized below has been carried out in [36]. Viscosity calculations for

materials represent an ambiguous problem; for solving it correctly, it is usually insufficient

to have data on the subcell behavior of the materials. The way of the materials’ viscosity

representation governs the distribution of energy dissipated in the cell on shock propaga-

tion to the materials. The problem of energy distribution to the materials is a subcell
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problem that lacks information needed for obtaining the exact solution. In reality, the

shock front width is generally much smaller than the mesh spacing, so the shock propa-

gates through each material in the heterogeneous mixture practically independently.

Shock parameters in each material are different, and they differ from average values in

the mixed cells, so it is practically impossible to determine uniquely the fraction of

dissipated energy for each material. Pressures and velocities of the materials are different

behind the shock, and the processes of pressure and velocity relaxation provide additional

redistribution of dissipated energy between the materials.

When considering the approaches to viscosity definition for the materials, let us characterize

these approaches in terms of dissipated energy distribution among the materials and resulting

changes in the materials’ pressures at a timestep. Before we consider different kinds of material

viscosities, let us note that the cell-average value of viscosity is determined using Eq. (23), i.e.,

q ¼
X

ψξqξ, ψξ ¼ βξλξ, where λξ is a normalizing factor (see Section 3), which imposes a

constraint on the closure methods (all the procedures described below have been studied using

EGAK on methods 5–7 and ACM-1).

In accordance with the difference scheme of EGAK, the viscosity-related change in the mate-

rials’ specific internal energy over a timestep is given by the formula

Δeξ ¼ −
qnξ
ρn
ξ

� λn
ξ � τ � ð∇ � unþ1=2Þ: (96)

The viscosity-related change in the materials’ pressure at a timestep can be obtained as follows.

For adiabatic flows, it holds true that

Δp ≈
∂p

∂ρ

� �

S

� Δρ ≈ −ρ � c2 � τ � ∇ � u: (97)

considering that Δρ≈−ρ � ∇ � u � τ.

Using the EOS p = P(r,e), the total pressure change at a timestep in the general case can be

represented as

Δp ≈
∂p

∂ρ

� �

e

Δρþ
∂p

∂e

� �

ρ

Δe: (98)

For adiabatic flows, the energy increment is calculated by the formula

Δe ¼ −
p

ρ
� τ � ∇ � u: (99)

Substituting this expression into Eq. (98) and comparing it with Eq. (96), considering Eq. (97),

we obtain
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∂p

∂ρ

� �

e

þ
∂p

∂e

� �

ρ

�
p

ρ2
¼ c2: (100)

On shock propagation, the energy increment is calculated by the formula

Δe ¼ −
pþ q

ρ
� τ � ∇ � u: (101)

Using Eq. (100) from Eq. (98), we obtain the total pressure increment in the form of

Δp≈− ρ � c2 þ
∂p

∂e

� �

ρ

�
q

ρ

" #

τ � ∇ � u: (102)

It follows from Eq. (102) that the materials’ viscosity-related pressure increment at a timestep

equals

Δpqξ≈−
∂pξ
∂eξ

� �

ρ

�
qnξ
ρn
ξ

� λn
ξ � τ � ð∇ � u

nþ1=2
ξ Þ: (103)

Now, let us consider models to material viscosity definition. Six models have been explored.

Table 1 provides their descriptions and formulas and changes in specific energy and pressure

in accordance with Eqs. (96) and (103).

Thus, in these six models to the materials’ viscosity definition, distribution of dissipated

energy to the materials is differently dependent on their density, speed of sound, and diver-

gence. The choice of one model or another depends both on the closure method, and on the

modeled problem. Based on the test calculations in [36], the best performance was demon-

strated by model 3.

Description of the approach to calculating qξ
Formula Δeξ Δpξ

1 Equal to the cell-average viscosity qξ ¼ q λξ=ρξ
∂pξ
∂eξ

� �

ρ
� λξ

ρξ

2 Viscosity with its quantities ρξ , hξ ¼ βξh,∇ � uξ qξ ¼ q
ρξβ

2
ξλ

2
ξ

X

ρkβ
3
kλ

3
k

β2ξλ
3
ξ

∂pξ
∂eξ

� �

ρ
β2ξξ

3
ξ

3 Proportional to material densities qξ ∼ ρξ qξ ¼ q
ρξ

X

ρkβkξk
λξ

∂pξ
∂eξ

� �

ρ
λξ

4 Same energy increment Δeξ ¼ Δeζ qξ ¼ q
ρξ
ρλξ

Δeξ ¼ Δeς ∂pξ
∂eξ

� �

ρ

5 Same increment ΔpξΔpξ ¼ Δpζ qξ ¼ q
ρξ

λξ
∂pξ
∂eξ

� �

ρ

X βkρk
ð∂pk=∂ekÞρ

1
ð∂pξ=∂eξÞρ

Δpξ ¼ Δpς

6 Proportional to Δpξ in adiabatic

approximation qξ ∼△pξ

A ·ρξc
2
ξ ¼ ð∂pξ=∂eξÞρqξ=ρξ , where A is the

proportionality factor

λξρξc
2
ξ

ð∂pξ=∂eξÞρ

λξρξc
2
ξ

Table 1. Models to calculate the viscosity and specific energy and pressure increments of the materials.

Closure Models for Lagrangian Gas Dynamics and Elastoplasticity Equations in Multimaterial Cells
http://dx.doi.org/10.5772/66858

93



5. Method for calculating mixed cells with vacuum

One of the materials available in EGAK is a zero-pressure “vacuum.” For the case of vacuum, a

special algorithm has been developed, which is the same for closure methods 1 and 5–7. The

development of this algorithm was motivated by the fact that the pressure for vacuum is

specified rather than controlled by the closure method.

In a mixed cell with vacuum, two cases are possible: ∇ � u > 0 and ∇ � u ≤ 0.

The case of ∇ � u > 0. In this case, it is assumed that

∇ � uξ ¼ ∇ � u: (104)

The case of ∇ � u ≤ 0. In this case, the cell volume is assumed to decrease only due to a decrease

in the vacuum volume, while the volumes of the other materials change only after the vacuum

gets closed. This can be represented by the following formula:

∇ � uξ ¼ −

2ðρnþ1
ξ −ρn

ξÞ

ðρnþ1
ξ þ ρn

ξÞτ
,

ρnþ1
ξ ¼

Vnβnξρ
n
ξ

Vnþ1βnþ1
ξ

,

βnþ1
ξ ¼

βnξð1−β
nþ1
vac Þ

ð1−βnvacÞ
,

βnþ1
vac ¼

βnvacV
n
−minfΔV; βnvacV

ng

Vnþ1
:

(105)

The following is proposed for the anisotropic methods ACM-1 and ACM-2: we represent the

total divergence, like in Eq. (88), as a sum of two items, ∇ � uτ and ∇ � un. If the cell expands, i.

e., if ∇ � u≥0, then ∇ � uξ ¼ ∇ � u.

When the cell contracts, i.e., when ∇ � u < 0:

- if ∇ � un < 0, then ∇ � uξ ¼ ∇ � uξτ, ∇ � uvac ¼ ∇ � u−βξ � ∇ � uξ=βvac;

- if ∇ � un ≥ 0, then ∇ � uξ ¼ ∇ � u.

Let us consider the cases illustrated in Figure 4. Suppose the cell is contracting. Then, if the

velocity is normal to the interface (Figure 4a), we have ∇ � un ¼ ∇ � u, ∇ � uτ ¼ 0, and as

∇ � un < 0, we obtain ∇ � uvacuum ¼ ∇ � u, i.e., only the vacuum is contracting. If the velocity is

directed along the interface (Figure 4b), ∇ � un ¼ 0 and ∇ � uξ ¼ ∇ � u.

6. Test problems and results

The author does not have results of testing all of the above closure methods on the

problems modeled in the section, so below he basically presents the results for methods 1
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(P), 5(∇ � u), 6(Δ p), 7(Δ u), and, correspondingly, for the methods ∇ � u-PR, Δ p-PR, Δ u-PR,

and ACM-1 and ACM-2, which have been developed with his direct participation. These

methods have been tested on numerous problems, including those not included in this

work (see [40, 41]). It does not seem possible to present results of all such calculations, so

the author confines himself to three one-dimensional and one two-dimensional problem

having analytical solutions. All the 1D calculations were done in Lagrangian variables, and

the 2D one in Eulerian.

The following unified types of data processing are provided for all the calculations.

• Tables with quantities characterizing the order of convergence of the integral error of basic

quantities in the calculations in the L1 norm at a reference time.

• Tabulated values of basic quantities in mixed cells at a reference time.

The error is calculated by formula (106):

δy ¼‖ycomp−yexact‖1 ¼ Ahσ, (106)

where h is the initial mesh spacing and ycomp and yexact are the calculated and the exact value of

the quantity at the cell center, respectively.

In EGAK calculations, mixed cells were of the same size as pure cells in pure-cell calcula-

tions. In the mixed cell calculations, domain coordinates were shifted to the right at a

distance of δx = h/2, where h is the mesh spacing in the corresponding calculation. In other

studies, the size of mixed cells was doubled, but their number was less than one cell.

In addition, a two-dimensional problem of elastic wave propagation in a thin plate is discussed,

for which only EGAK results are presented and the analytical solution is given in [42]. For this

problem, we have calculated the velocity of a longitudinal elastic wave in a plate. In [42], we

have also solved this problem numerically using EGAK in the absence of mixed cells, which

demonstrated good accuracy of the calculations in this setup. In [34], this problem has been

solved numerically in the setup, in which interfaces are misaligned with grid lines thus produc-

ing mixed cells.

6.1. The water-air shock tube problem

Setup. The problem has the following initial conditions [43]:

ðγ, p
∞
,ρ, e, p,uÞ ¼

ð4:4; 6 � 108; 103; 1:07 � 106; 109; 0Þ; if 0 ≤ x ≤ 0:7;

ð1:4; 0; 50; 5 � 104; 106; 0Þ; if 0:7 < x ≤ 1:

(

(107)

The EOS of water is p ¼ ðγ−1Þρe−γp
∞
, for which the squared speed of sound is calculated by

the formula c2 ¼ γðγ−1Þðe−p
∞
=ρÞ ¼ γðpþ p

∞
Þ=ρ.

The final time of the calculation is t = 2.2 � 10-4. The exact solution to the problem has been

obtained in [44]. The calculations were carried out on meshes having 250, 500, and 1000 cells.
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Results. Table 2 presents the values of the factor A and the order of convergence of the integral

error in the basic quantities at t = 2.2 � 10-4, and Table 3 shows the exact and calculated values

of the basic quantities for the closure methods, for which data are available in publications.

Figure 5 shows the L1 norm of the absolute error as a function of h.

Method

p ( · 10−6) ρ e (· 10−3) u

A (· 10−2) σ A ( · 10−2) σ A ( · 10−2) σ A ( · 10−2) σ

Pure (EGAK) 5.13 0.84 1.92 0.86 1.3 0.84 6.0 0.91

∇ � u 4 0.79 12.4 1.10 14.5 1.16 3.56 0.79

p 4.43 0.80 2.5 0.89 1.14 0.81 1.8 0.71

Δ p 8.2 0.83 5.08 0.93 5.18 0.96 3.62 0.79

Δ u 8.29 0.84 16.2 0.96 9.41 0.90 15.1 0.92

∇ � u-PR 4.1 0.79 2.28 0.89 1.03 0.80 1.57 0.70

Δ p-PR 7.11 0.87 4.20 0.88 5.78 0.92 6.97 0.88

Δ u-PR 6.26 0.85 2.49 0.83 2.04 0.83 4.27 0.84

Pure (Delov) 4.96 0.97 2.15 0.94 1.06 0.87 3.73 0.91

Delov 7.42 0.94 8.45 0.96 18.4 0.98 22.1 1.03

Pure (K&S, Tipton) 7.65 0.99 2.18 0.97 0.7 0.90 4.12 0.92

K&S 6.95 0.99 3.63 1.01 3.09 1.01 7.98 1.03

Tipton 4 0.79 12.4 1.10 14.5 1.16 3.56 0.79

Table 2. Factor A and the rate of convergence σ with mesh refinement.

Method p1 ( + 10-7) p2 ( + 10-7) ρ1 ( + 10-2) ρ2 ( + 10-2) e1 ( + 10-5) e2 ( + 10-5)

Exact 1.599 1.599 8.050 2.204 9.704 1.813

Pure (EGAK) 1.599 1.599 7.993 1.535 9.773 2.605

p 1.595 1.595 7.764 1.377 10.062 2.896

∇ � u 3.111 0.078 8.030 0.401 9.784 0.484

Δ p 99.034 1.351 9.972 4.606 10.707 7.332

Δ u 39.664 0.065 8.931 0.174 10.001 0.931

∇ � u-PR 1.594 1.594 7.579 1.504 10.306 2.650

Δ p-PR 1.599 1.599 7.455 0.471 10.477 8.479

Δ u-PR 1.599 1.599 7.395 1.104 10.562 3.620

Pure (Delov) 1.599 1.599 8.113 1.409 9.629 2.835

Delov 1.595 1.594 8.044 0.249 9.711 16.015

Pure (K&S, Tipton) 1.599 1.599 7.983 1.669 9.785 2.394

K&S 1.599 1.599 7.352 1.364 10.625 2.930

Tipton 1.599 1.599 7.315 0.591 10.680 6.765

Table 3. Exact and calculated values of the basic quantities in mixed cells on a mesh having 1000 cells at t = 2.2 + 10
-4.
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6.2. The mixed-material shock transition problem

Setup: The problem has been proposed in [18]. The domain −2 < x < 1 contains a mixture of

two ideal gases having the following parameters: ρ0
1 ¼ 1; e01 ¼ 0; γ1 ¼ 3; β01 ¼ 0:5 (material 1)

and ρ0
2 ¼ 1; e02 ¼ 0; γ2 ¼ 1:2; β02 ¼ 0:5 (material 2). A constant velocity of u = 2 is given at the

Figure 5. L1 norm of the absolute error as a function of h.
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left boundary. Due to the specified boundary condition, a strong shock starts moving across

the mixture. The problem has an analytical solution obtained in [20] assuming that the mate-

rials’ pressures are equal.

The values of densities are determined based on the condition that the shock is strong for each

of the materials: ρξ ¼ ðγξ þ 1Þ=ðγξ−1Þρ
0
ξ. It is implicitly supposed here that only one shock

travels across the gases (additional waves reverberating between the interfaces are ignored).

The volumes occupied by the materials behind the shock equal Vξ ¼ V0
ξρ

0
ξ=ρξ. The average

density behind the shock front then equals

ρ ¼

X
MξX
Vξ

¼

X
V0

ξρ
0
ξX

Vξ

¼

X
V0

ξX
Vξðγξ−1Þ=ðγξ þ 1Þ

ρ0: (108)

The laws of conservation of mass, momentum, and total energy for the shock (the Rankine-

Hugoniot relations) traveling across each of the materials make it possible to find the param-

eters of the gases behind the shock front:

D ¼ ρ=ðρ−ρ0Þu, (109)

u2 ¼ pð1=ρ0
−1=ρÞ, (110)

e ¼ 0:5pð1=ρ0
−1=ρÞ: (111)

Using Eq. (109), we obtain the shock velocity, using Eq. (110), the average pressure, and using

Eq. (111), the average energy of the mixture. The pressures of the materials are equal to the

average pressure due to the assumption we made, and the energies of the materials can be

obtained from the corresponding EOS.

This problem was calculated on a mesh having 600 cells. This problem is also of interest in

terms of examining the effect of the approach to calculate the artificial viscosity for the

materials.

Results: This problem differs from the two problems discussed above. First, there are no pure

cells, so pure-cell calculations are inapplicable in this case. Second, only some of the above

dependences can be obtained for this problem, and these are presented below. In particular, it

has almost no sense to perform convergence calculations for this problem, because the steady-

state solution in the mixed cells does not depend on the mesh spacing. Table 4 presents the

values of the parameters in the mixed cell with x = 0.2 at t = 2 for the materials behind the shock

obtained using Eqs. (109)–(111) and in the calculations (for thematerials’ viscosities by approach 3).

Table 4 shows the results obtained with different viscosities for the method∇ � u-PR.

6.3. 2D problem of elastic wave propagation in a plate

Next, we consider a 2D problem, in which a longitudinal elastic wave propagates in a thin

plate and the wave velocity for which has been obtained analytically in [42]. The problem has
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been calculated using EGAK in the absence of mixed cells in [42] and with mixed cells in [34].

As a surrounding medium in the problem, we used air or vacuum.

Setup: In the calculations, a titanium projectile of length L = 10 cm flying at a velocity of v0 =

0.01 km/s surrounded by air or vacuum hits a “rigid” wall. This produces an elastic wave in

the projectile traveling toward its rear surface. Figure 6 shows a schematic drawing of the

initial problem geometry; H = 1 is the thickness of the wall. The calculations were carried out

on a fixed mesh having a mesh spacing of h = 0.2 cm. The parameters of the EOS and the model

of matter for the materials are shown in Tables 5 and 6.

The mesh was constructed in such a way that the projectile was initially surrounded by mixed

cells containing titanium and vacuum (air) with a ratio β = 0.5. We also carried out calculations

on an oblique mesh with a varied volume fraction. The field of volume fractions of titanium

and a mesh fragment for this simulation are shown in Figure 7.

Method D p1 p2 ρ1 ρ2 e1 e2

Exact 2.839 5.677 5.677 2.0 11 1.419 2.581

p 2.997 5.992 5.992 1.694 13.422 1.769 2.232

∇ � u 3.456 13.219 0.581 2.379 2.379 2.778 1.222

Δ p 2.830 5.753 5.477 2.032 10.596 1.416 2.584

Δ u 2.827 5.886 5.324 2.053 10.372 1.434 2.567

∇ � u-PR 2.859 5.715 5.715 1.956 11.253 1.461 2.539

Δ p-PR 2.837 5.668 5.668 2.011 10.939 1.409 2.591

Model 1 2.916 5.820 5.820 1.844 12.013 1.578 2.422

Model 2 2.965 5.909 5.909 1.762 12.720 1.677 2.323

Model 3 2.817 5.640 5.640 2.047 10.754 1.378 2.622

Model 4 2.859 5.715 5.715 1.956 11.253 1.461 2.539

Model 5 2.535 5.049 5.049 3.503 7.697 0.720 3.279

Model 6 3.11 6.207 6.207 1.545 15.587 1.991 3.110

Table 4. Exact and calculated values of the basic quantities in the cell with + = 0.2 at t = 2 on a mesh having 600 cells (model 1 is

the way of cell viscosity distribution to the materials for the closure method Δ u-PR).

Figure 6. Geometry of the problem of elastic wave propagation in a plate.
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Results: In this problem, there is certain difficulty determining the longitudinal wave velocity.

To address this difficulty, the following approach has been proposed in [42]. Suppose the

elastic wave front does not “smear” as it propagates in the material. As the projectile hits the

“rigid” wall, the velocity of the projectile material behind the wave should be zero. Therefore,

the rate of deceleration of the projectile's center of mass can be related to the elastic wave

velocity. Figure 8 shows the time-history plots for the velocity of the projectile's center of mass

for three simulations. The plots demonstrate that these dependences are nicely approximated

by a linear function (v = v0 - At). The time it takes the step-like elastic wave to travel all the way

along the projectile is T = v0/A. Here, T is the time, at which v = 0, which corresponds to the

time of wave traveling all the way along the projectile. The longitudinal wave velocity is then

defined as cw = L/A. The error associated with the displacement of the projectile's rear end as

the wave travels all the way along the projectile can be neglected, because the material's

velocity is small compared to the wave velocity. Table 7 shows the values of longitudinal wave

velocities for all simulations.

The calculations of this 2D problem demonstrated that, for both of the anisotropic closure

methods, the difference between the calculated elastic wave velocity and the exact solution is

∼4%, whereas for the method Δ u-PR it is ∼10%. No comparison with other methods was

made, because the Δ u-PR method proved to be the most versatile among all the methods in

EGAK as applied to a wide range of different problems.

ρ0 (g/cm
3) c0 (km/s) n Γ

4.5 4.842 3.4243 1.18

Table 5. Mie-Grüneisen EOS parameters.

b (GPa) k c m Cv (kJ/(g +K)) Tm (K) G (GPa) ν

1.098 1.092 0.93 0.014 1.1 580 + 10-6 1878 43 0.32

Table 6. Johnson-Cook model parameters.

Figure 7. Distribution of volume fractions in the simulation on a fragment of the oblique mesh.
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6.4 Discussion of results and conclusions

The calculated data presented here and not included in this work demonstrate that all the

methods under consideration have good convergence (the order of convergence is ∼1) to

the exact solution with mesh refinement as applied to all 1D problems with interfaces.

When comparing the methods, one should note that the order of convergence of calcula-

tions with closure methods is mostly governed by the order of convergence of the basic

difference scheme. As for the error of the closure methods themselves, it is basically con-

trolled by the value of the factor A in formula (106). The reader himself can choose the

method he likes. However, two circumstances need to be mentioned, which are important

when choosing the method. First, the methods differ in the amount of calculations. Second,

the methods differ in the complications in program implementation associated with limita-

tions in their applicability.

Closure method Surrounding medium c
w
(km/s)

Exact 5.3

Pure cells Air 5.2

Δ u-PR Vacuum 4.8

ACM-1 Vacuum 5.1

ACM-2 Vacuum 5.1

ACM-1 (oblique mesh) Vacuum 5.1

Δ u-PR Air 4.7

ACM-1 Air 5.1

Table 7. Theoretical and calculated values of longitudinal elastic wave velocity in a plate.

Figure 8. Velocity of the plate's center of mass as a function of time in calculations with different closure conditions for

mixed cells (simulations with air).
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As for the 2D problem, the anisotropic methods have no alternative. They possess the

same accuracy as the basic methods on the 1D problems, because they rest upon the

same closure models, and are more accurate as applied to the 2D problem. Of the two

anisotropic methods, it is worth giving preference to ACM-1, because it is easier to

implement.
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