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Abstract

Synaptic plasticity is a process by which neurons adapt or alter the strength of informa-
tion transfer, and it is known to play a role in memory formation, learning, and recovery 
after injury. In this chapter, we describe how ischemic insults alter neuronal intracellular 
mechanisms and signaling pathways, and we discuss how, after neuronal injury, syn-
aptic plasticity is regulated prior to and during death or rehabilitation and recovery. In 
addition, recently described regulators of synaptic plasticity will be introduced.

Keywords: ischemia, mitochondrial metabolism, neuroprotection, Bcl-xL, ATP synthase

1. Cellular mechanisms after cerebral ischemia

Cerebral ischemia occurs as a result of a lack of, or insufficiency of, blood supply to the brain, 
which results in the failure to meet neuronal metabolic demands. Thrombotic or embolic 

stroke (focal), and cardiac arrest or cardiac surgery (global) are common causes of cerebral 

ischemia. The loss of oxygen and glucose flow to the brain eventually leads to neuronal 
energy deficits. These energy deficits result in the failure of adenosine triphosphate (ATP)-
dependent ion pumps expressed on the neuronal plasma membrane, permitting an unregu-

lated surge of ion influx into the neuronal cytoplasm [1–3]. Calcium influx induces the release 
of neurotransmitters from presynaptic neurons and activation of postsynaptic glutamate 
receptors such as N-methyl-d-aspartate (NMDA) receptors and α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptors [4–6]. Uncontrolled opening of postsynaptic 

receptors provokes failure of intracellular ion homeostasis, resulting in excessive postsynap-

tic entrance of calcium or sodium through NMDA- or AMPA-regulated channels; this initiates 

signaling pathways.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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Calcium is a trigger for a number of important cell-signaling pathways. Increased levels of intracel-

lular calcium activate phospholipase C, which hydrolyzes phosphatidylinositol 4,5-bisphosphate 
(PIP

2
) and forms diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP

3
) [1]. The hydrophobic 

DAG molecule is expressed on the cell membrane, and recruits protein kinase C (PKC) from the 

cytosol. PKC regulates synaptic function by phosphorylating ion channels [7–9] and glutamate 

receptors [10, 11], and enhancing neuronal outgrowth [12, 13]. On the other hand, hydrophilic IP
3
 

travels into the cytosol and binds with the IP
3 
receptor expressed on the endoplasmic reticulum 

(ER). The ER membrane-embedded IP
3 
receptor releases calcium from the ER to mitochondria, 

depolarizing mitochondrial inner membranes and further compromising ATP production.

Ischemic conditions also activate death receptors (e.g., Fas, tumor necrosis factor (TNF)αR, 
DR) that cause caspase activation and ultimately lead to neuronal apoptosis [14, 15]. Death 

receptor-ligand binding releases caspase 8, which directly cleaves either caspase 3 (which can 

activate downstream death-inducing enzyme pathways) or BH3 interacting-domain death ago-

nist (Bid) to form truncated tBid [16, 17]. tBid translocates to the mitochondria and initiates acti-

vation of the pro-apoptotic proteins Bax and Bak. Oligomerization of Bax on the mitochondrial 

membrane causes cytochrome c release. Cytochrome c forms an apoptosome complex made 

up of cytochrome c, apoptotic protease-activating factor 1 (APAF 1), and caspase 9. Caspase 9 

cleaves and activates effectors such as caspase 3 and caspase 6 which results in neuronal apop-

tosis. Numerous proteins are subjected to caspase-mediated cleavage [18] including regulators 

for synaptic function such as glutamate receptors [19, 20], synaptic adhesion molecules [21], ion 

channels [2], neuronal growth/pruning regulators [22, 23], and inflammatory cytokines [24, 25].

In addition, ischemic stimulation increases the permeability of the blood-brain barrier, and 

activates neuroinflammatory responses in the brain. Inflammatory infiltration such as the 
entrance of leukocytes (e.g. neutrophils, macrophages, and lymphocytes) activates microg-

lia and astrocytes which then release inflammatory regulators, including cytokines (e.g. 
interleukin-1β (IL-1β), IL-6), tumor necrosis factor α, chemokines (e.g. chemokine C-C motif 
ligand 2 (CCL2), CXC-chemokine ligand 1 (CXCL1)), nitric oxide, reactive oxygen species 

(ROS), and growth factors [26–29]. Neuroinflammation is a dual-purpose response that can 
hasten neuronal death or facilitate repair depending on the circumstances. For example, 

TNF-α is one of the most well-studied pro-inflammatory cytokines increased by ischemic 
events; it is clearly responsible in large part for ischemia-induced brain injury [30]. However, 

TNF-α also enhances synaptic strength by increasing the expression of AMPA receptors [31] 

and through the regulation of the transcription factor, NFκB [32], increasing the expression of 

anti-apoptotic proteins (Bcl2, and Bcl-xL) and facilitating the production of neurotrophic fac-

tors such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) [33, 34] 

which play a role in neuroprotection [35]. Taken together, ischemia triggers a multifunctional 

and complex process in the brain that can lead to neuronal death or facilitate the defense sys-

tem to rescue the brain against neurotoxic stimulation.

2. Synaptic plasticity in the ischemic brain

The process of early neuronal growth and neurite elongation is critical for synapse formation 

and neuronal network development. Projection of filopodia, where actin and microtubules 
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become polymerized and attach to substrates, anchors a growth cone and guides a peripheral 
domain within the thin outer edge of the growth cone known as the lamellipodium. After 

the lamellipodium contacts the substrate, the central domain of the growth cone, where actin 

is reorganized and microtubules predominate, moves toward its target [36–38]. These steps 

occur repeatedly during neurite sprouting and branching. When the tip of the axon reaches 

its target (either dendrite, soma, or another axon), it differentiates to become suitable for neu-

rotransmission. Presynaptic terminals contain a high density of mitochondria, presynaptic 

vesicles, and endosomes to enhance communication within the synapse. The target of presyn-

aptic contact is the postsynapse, which matures by the expression of neurotransmitter recep-

tors. Neurexin-neuroligin, N-cadherin, ephrin, and synaptic cell-adhesion molecules play a 

role in the interaction between presynaptic and postsynaptic neurons [37, 39–42].

Neuronal development is far from static in the mature brain. Recent studies have found that 

neurons are capable of plasticity during the entire human lifespan [43–46]. Mature neurons 

have the ability to repair their synaptic network after neurotoxic insults. Stroke induces 

changes in numerous genes including the ones involved in axonal sprouting in both young 

and aged animals [47]. Alteration of neuronal connectivity and degradation of neurites are 

well described after ischemic stroke [47–49], and strategies to strengthen the synaptic net-

work to regain neuronal function and enhance brain repair after episodes of brain injury 

have been reported [47, 50]. Our study demonstrates examples of the dynamic and adaptive 

changes that occur in neurites after glutamate neurotoxic challenge. Neurite branches ini-

tially become fragmented and damaged (Figure 1A and D), but then neurites regain structure 

(Figure 1Band C) over time, or undergo degradation if severely damaged; in some case col-

lateral sprouting occurs to compensate for lost neurites and to regain synaptic connectivity 

with healthy neighboring cells (Figure 1D–F).

Figure 1. Adaptation of neurite sprouting and pruning after glutamate-induced neurotoxicity. Primary hippocampal 

neurons were treated with 20 μM glutamate and then imaged at days 1, 5 and 7 after introduction of the insult. Bar, 
20 μm. (A) Damaged and fragmented neurite at 1 day after insult (white arrows). (B) Early recovery of injured neurite 

at day 5 (white arrows). (C) Thickening of recovering neurite at day 7 (white arrows). (D) Fragmented and damaged 
neurites at day 1 (white arrows) are cleared at day 5 (E, white arrows), but strengthening of collateral branches was 
found at day 7 (F, yellow arrows) to supplement synaptic networking.
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Numerous studies have reported the modification of synaptic plasticity during or after ischemic 
events. Some studies describe synaptic modification as a part of death signaling; on the other 
hand, other studies suggest changes in synaptic function as a mechanism of protection or reha-

bilitation. Synaptic plasticity plays a role in the decision for the neuron to live or die. Synaptic 

transmission demands high levels of energy production [51]. Failure to control neurotransmit-

ter release [6, 52], and abnormalities of synaptic transmitter release due to lack of energy supply 
after ischemic insult are well described previously [53]. Regulation of the postsynaptic recep-

tor is critical to control synaptic plasticity [54, 55], and studies have reported that NMDAR or 

AMPAR are subject to alterations after ischemic events. Earlier studies have shown that brains 

of animals undergoing four vessel occlusion (4VO)-induced global ischemia show impaired 

voltage-dependent NMDAR responses, display NMDA-mediated hyperexcitability and loss of 

long-term potentiation (LTP), and manifest morphological changes of pyramidal neurons prior 

to the onset of delayed death in the CA1 region of hippocampus [56, 57]. Recent studies expand 

on these mechanisms and distinguish roles for individual ion channel subunits [58–61]. Studies 

have reported that ischemia is responsible for the alteration of AMPA receptor expression, 

especially the GluR2 subunit, transforming a non-calcium permeable into a calcium-permeable 

AMPA receptor, thereby further mediating calcium entry into CA1 neurons after global isch-

emia. Although this role contributes to delayed neuronal death in the globally ischemic rodent 

brain [62–65], these changes may also occur during normal events in synaptic plasticity [54, 66]. 

Despite the close relationship between ischemia-induced neuronal death and NMDA receptor 

activation, the application of NMDAR antagonists fails to prevent stroke-related brain injury 

in clinical trials [67] perhaps indicating involvement of NMDAR in neuronal survival. Indeed, 

functioning NMDARs are required for synaptogenesis, and the NMDAR plays a neuroprotec-

tive role against apoptotic stimulation and oxidative stress [61, 68–70]. In summary, synaptic 

changes that occur during ischemia may be protective or detrimental depending on the severity 

and temporal sequence of ischemic events.

2.1. Synaptic failure may lead to ischemic death

Structural damage including degradation of axons or dendrites, and loss of synaptic con-

nectivity associated with synaptic dysfunction are described in various cerebral ischemic 

models [53, 71]. Animals undergoing ischemic surgery exhibit a reduction of the total neu-

ronal population and an increased appearance of degenerating neurons and apoptotic cells 

[72–76]. Shy of frank cell demise, axonal morphological changes after brain ischemia have 

been reported within a variety of brain regions including cortex, striatum, and hippocam-

pus. Degenerating axons exhibit swelling and the appearance of varicosities in both an acute 

and chronic manner; changes are observed over a period between 6 h and 4 weeks after 

ischemia reperfusion [49]. Cerebral ischemic insults also lead to cytoskeletal disruption in 

neurites such as a reduction in the amount of microtubule-associated protein (MAP2), an 

enhancement in neurofilament proteolysis and an alteration of tau in some neurons [77–79]. 

Ischemia causes an increase in intracellular calcium levels and ROS production [15] and trig-

gers neuronal death by mechanisms such as enhancing mitochondrial permeability which 

can facilitate both apoptotic and necrotic death and neuritic degeneration [80]. Therefore, 
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ischemia is one of the major causes of structural and functional failure of both somata and 

neuronal processes during stroke.

2.2. Synaptic repair after ischemic events

Although ischemic stroke induces neuronal death that leads to functional disability, studies 

have reported evidence for synaptic plasticity contributing to recovery after stroke [81]. Rats 

undergoing neocortical ischemia had induction of the growth-associated protein 43 (GAP-43) 

which is enriched in the growth cone, promoting synaptogenesis and behavioral recovery [82, 

83]. Axonal sprouting and plasticity in the intracortical circuitry was observed in post-isch-

emic brain regions [84, 85]. Plasticity was not limited to neurons but also occurred in other cells 

including reorganization of vascular structures. Enhancement of the dendritic network such 

as increased dendritic density has been reported in post-ischemic brain [86, 87]. Moreover, 

the brain is capable of generating new neurons. The subventricular zone (SVZ) of the lateral 

ventricles and the subgranular zone (SGZ) of the dentate gyrus are reported to be the site of 

neurogenesis, exhibiting therapeutic potential for the treatment of brain diseases [88]. In par-

ticular, studies have shown that stroke increases neuronal progenitor cell populations in the 

brain [89, 90], and enhances cell proliferation in the SVZ [91] and in the ischemic penumbra of 

stroke patients [92]. These studies indicate that ischemia-induced signaling, even denervation 

itself, may act as a stimulus for the functional and structural recovery of synapses.

2.3. Preconditioning in synaptic potentiation

Despite the possibility of severe ischemia to trigger adaptive responses on its own, studies 

have also reported that non-noxious, lower levels of injury (preconditioning) may augment 

ischemic tolerance. Moderate levels of neurotoxic stimuli such as glutamate, ROS, or inflam-

mation initiate survival mechanisms without impairing brain function. Thus, preconditioning 

builds a latent neuroprotective environment in the brain and provides for a reprogrammed 

defense response when the truly injurious stimulation occurs [93, 94].

Zukin’s group has reported that ischemic preconditioning downregulates AMPA receptors, 

and blocks mitochondrial release of death molecules such as Smac and DIABLO without 

altering the pro-survival inhibitor of apoptosis (IAP) family, therefore attenuating ischemia-
induced damage in rodent hippocampal neurons [95, 96]. Neuroprotective mechanisms of 

preconditioning are further evidenced as a change in dynamics of mitochondrial proteins. 

Preconditioning prevents translocation of the pro-apoptotic protein Bad, enhances the avail-

ability of the pro-survival protein Bcl-xL, blocks activation of caspase 3, decreases release 

of Smac, DIABLO, and cytochrome c, and prevents large conductance mitochondrial chan-

nel activity, eventually rescuing hippocampal neurons after ischemic insult [72]. In addition, 

mitochondrial Bcl2 protein family [97–99], redox regulators [100, 101], and transcription fac-

tors such as hypoxia-inducible factor (HIF) [102, 103], NFκB [104, 105], c-Fos [106], CREB [97, 

105], Nrf2 [101, 107], and AP1 [108] are involved in gene regulation after preconditioning, 

further modifying neuronal functions such as neurotransmitter release, channel activity, and 
synaptic networking by regulating the expression of new proteins.
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3. Regulators of mitochondrial function and synaptic plasticity

Ischemic insults damage the mitochondrial electron transport chain, decrease mitochon-

drial ATP production, impair ATP-dependent transporters, and allow intracellular calcium 

entrance that triggers opening of the mitochondrial permeability transition pore (mPTP) 

[80, 109, 110]. Ischemia also impairs electron transfer and causes ROS generation from mito-

chondrial proteins such as complex I and III [111]; ROS greatly contributes to mPT-mediated 

responses in the mitochondrial membrane [112]. On the other hand, ischemia alters proteins 

that resides in the mitochondria, and changes levels of transcription factors that target the 

promoter regions of mitochondrial and nuclear genes. Thus, mitochondria are an essential 

organelle in ischemia-mediated neuronal responses. There are several regulators that modify 

mitochondrial function and plasticity to either enhance synaptic recovery after injury or sig-

nal for synaptic decline prior to neuronal death. We describe these individually and then 

show how they work together to support synaptic function during stress.

3.1. Mitochondrial reactive oxygen species

Oxidative phosphorylation is the metabolic process that produces ATP, but it is also the main 

source of production of superoxide in the mitochondria that can be converted into hydro-

gen peroxide. Due to the high metabolic rate of neurons, ROS is highly produced in the 

brain. However, the brain is also more vulnerable than other organs to ROS-induced dam-

age, because it is rich in polyunsaturated fatty acids, and lacking in catalase activity [113, 

114]. Indeed, ROS is one of the main causes of mPTP opening, release of mitochondrial death 

molecules and cell death in ischemic brain [15]. Although numerous studies have reported 

that an ischemia-induced surge of ROS causes functional and structural injury to neurons, 

ROS plays multifunctional roles. Physiological levels of ROS regulate synaptic signaling. 

Approaches that block production or enhance clearance of superoxide using depletion of 

NADPH oxidase, or overexpression of superoxide dismutase (SOD), respectively, failed to 

allow for LTP in hippocampal slice [115–117]. Moreover, SOD-overexpressing mice demon-

strate defective hippocampal memory formation as measured by water maze learning and 

fear conditioning [117, 118].

Nitric oxide synthase (NOS) is an enzyme that generates nitric oxide (NO) gas from arginine. 

NO is considered to be a ROS, due to its ability to generate highly reactive peroxynitrite [119]. 

Indeed, 4VO-induced global ischemia causes induction of NO in various regions of the brain 

including hippocampus, cortex, striatum, and cerebellum [120]. Excessive NO production is 

reported to be neurotoxic as it damages mitochondria, and exacerbates excitotoxicity [121–

123]. However, NO is also required for synaptic transmission and synaptic plasticity [124, 

125]. NADPH oxidase (NOX) is a cell membrane-bound enzymatic complex that generates 

superoxide from NADPH, and it also expresses in the mitochondria [126]. NOX contributes to 

ROS-induced neuroinflammation and apoptosis [127, 128]. Studies reported an upregulation 

of NOX mRNA and protein level in response to experimental stroke [129, 130]. Inhibition of 

NOX using the pharmacological inhibitor apocynin improved ischemia-induced brain dam-

age and mortality [131, 132]. However, mice lacking NOX subunits had impaired long-term 
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potentiation and manifested hippocampus-mediated memory deficits, indicating that a phys-

iological level of NOX and ROS may be required for synaptic plasticity and memory forma-

tion [114, 115].

3.2. Mitochondrial permeability transition pore (mPTP) and ATP synthase

Ischemia-induced death signaling opens a calcium-sensitive inner mitochondrial membrane 

pore called mPTP, causing permeabilization of the mitochondrial inner membrane [80, 109, 

110]. Loss of mitochondrial inner membrane integrity leads to leakage of intermembrane 

molecules such as cytochrome c, Smac, and DIABLO into the cytoplasmic space, facilitates 

death-signaling cascades, and results in the impairment of mitochondrial outer membrane 

structure and cell death. Thus, mPTP is recognized as an important target for neuroprotec-

tion; inhibition of mPTP opening may delay or prevent mitochondrial-mediated cell death. 

Since the discovery of the calcium-induced mitochondrial membrane permeability transi-

tion (PT) [133, 134], several molecular participants in mPTP structure or formation have been 

reported. However, the identification of mPTP is still under investigation.

Cyclophilin D (Cyp D) is a peptidyl-prolyl cis/trans isomerase that is localized to the mito-

chondrial matrix. Cyp D has been considered as a main element of mPTP. However, recent 

studies have reported that depletion of Cyp D did not eliminate mPTP [135–137] indicating 

it may not be the critical component of pore opening. One target of Cyp D is a complex of 

proteins that includes the voltage-dependent anion channel (VDAC), localized to the mito-

chondrial outer membrane, and the adenine nucleotide translocase (ANT), an ADP/ATP 

translocator localized to the mitochondrial inner membrane. Therefore, this protein complex 

was widely studied for its possible role in forming mPTP [138]. Studies showed that mito-

chondrial swelling after stimulation facilitates the formation of VDAC and ANT complexes 

along with Cyp D binding, leading to opening of pores in the mitochondrial inner and outer 

membranes [139–143]. Studies have continuously reported new participants of Cyp D-ANT-

VDAC complex: the mitochondrial phosphate carrier binds to Cyp D and ANT [144], spastic 

paraplegia 7 forms a heterooligomeric complex with VDAC [145], and hexokinase binds to 

VDAC [146, 147]. However, a recent study revealed that animals lacking VDAC genes did 

not show improvement of mPTP-mediated mitochondrial stress. They exhibited equivalent 

levels of cytochrome c release, caspase activation, and cell death compared to control animals 

[135]. In addition, mitochondria from mice lacking ANT also displayed mPT and cytochrome 

c release at similar rates compared to wild-type controls [148]. These studies indicate that 

further investigations are required to clarify the roles of VDAC and ANT in mPTP activation.

In contrast to the studies of VDAC and ANT, knockdown of the membrane-embedded por-

tion (c-subunit) of the F
1
F

0
 ATP synthase does regulate the ability of mitochondria to undergo 

PT. Several recent studies have reported that F
1
F

0
 ATP synthase is an important candidate to 

form mPTP [149–157]. F
1
F

0
 ATP synthase is localized in the mitochondrial inner membrane 

(F
0
 unit) and matrix (F

1
 unit), and produces ATP by using the potential energy of the hydro-

gen ion gradient. F
1
F

0
 ATP synthase gained attention as a putative candidate for mPTP when 

it was found that it binds CypD [152] and when it was reported to regulate the efficiency of 
mitochondrial energy metabolism via controlling an inner mitochondrial membrane ion leak 
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[158]; the c-subunit of the ATP synthase was found to be required for mPTP [149]; the c-sub-

unit of ATP synthase was revealed to form a voltage-sensitive channel, the opening of which 

is correlated with PT and neuronal death [155]. Bonora and Alavian also showed that shRNA-

mediated c-subunit depletion protects neurons from PT-induced cell death, such as excito-

toxic and oxidative stress. Together, the findings suggest that the c-subunit forms the pore 
component of mPTP [155]. Moreover, the depletion of c-subunit of F

1
F

0
 ATP synthase causes 

resistance to calcium-induced mPTP opening, while overexpression of c-subunit accelerates 

calcium-mediated responses, decreases mitochondrial potential, and promotes mitochondrial 

fragmentation [149, 155]. In addition to the role of the ATP synthase monomer, dimerization 

of F
1
F

0
 ATP synthase in mPTP has been correlated with the onset of mPT [151, 159–161].

3.3. B-cell lymphoma-extra large (Bcl-xL) and other Bcl2 family proteins regulate the 

synapse

Bcl-xL is a member of the Bcl-2 family of proteins. It is traditionally known for anti-apoptotic 

properties through its role to inhibit the activation/oligomerization of pro-apoptotic Bax and 

Bak on mitochondrial membranes [162, 163], and its ability to block mitochondria-mediated 

cytochrome c release and cell death [164]. However, recent studies have reported multifunc-

tional roles of Bcl-xL in the brain. Bcl-xL facilitates reorganization and biogenesis of mitochon-

dria by regulation of fission and fusion [165–167]. Inhibition of Bcl-xL decreases neuronal ATP 

levels but increases oxygen flux, indicating that Bcl-xL enhances the efficiency of mitochondrial 
metabolism by preventing the wasteful leak of H+ ions through the inner membrane [158, 168]. 

Inefficient leakage of H+ through a mitochondrial inner membrane pore prevents ATP pro-

duction. These latter studies provided the first evidence for a functional role for Bcl-xL at the 
mitochondrial inner membrane and F

1
F

0 
ATP synthase. Bcl-xL interacts with α- and β-subunits 

[158, 169] of F
1
F

0 
ATP synthase in the mitochondrial matrix. These protein-protein interactions 

may cause conformational changes of the Bcl-xL-F
1
F

0 
ATP synthase complex, favoring closure 

of the c-subunit channel (putative mPTP), enhanced mitochondrial energy metabolism, and 

increased ATP production with minimal oxygen use (decreased inner membrane uncoupling).

It is therefore not surprising that Bcl-xL is an important player in energy-demanding pro-

cesses such as neuronal outgrowth [74, 170] and synapse formation [167, 171]. Depletion of 

Bcl-xL in primary hippocampal neurons impairs neuronal branching and elongation [74]. 

Abnormalities of neurite sprouting caused by Bcl-xL depletion do not induce immediate 

cytotoxicity, but cause delayed neuronal death, presumably as more synapses fail. Despite 

their low propensity toward death in the absence of stress, neurons depleted of Bcl-xL 

are significantly vulnerable to hypoxic insult compared with control neurons, presumably 
due to failure of synaptic connections and impaired metabolism. In contrast to depletion, 

Bcl-xL overexpression increases levels of pre- and postsynaptic markers on axons and on 

the opposing dendrites and enhances the number of mitochondria and synaptic vesicles in 

the presynaptic bouton [167]. Bcl-xL also enhances synaptic vesicle recycling during pre-

synaptic plasticity, by forming a complex of clathrin, Bcl-Xl, and Drp1 which is necessary 

for normal or enhanced endocytosis [171]. In addition, Bcl-xL is reported to have multiple 

binding partners besides those of traditional Bcl2 family proteins that regulate apoptotic 

pathways (Table 1); thus, additional functions of Bcl-xL in synaptic plasticity need to be 

further investigated.
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In contrast to its neuroprotective properties, Bcl-xL is also capable of decreasing synaptic strength 

[172, 173] and inducing neurotoxicity [73, 174]. Bcl-xL is subject to caspase-mediated fragmen-

tation [174–176], and forms N-terminus truncated ΔN-Bcl-xL. The N-terminally localized BH4 
region has been reported as the functional domain that carries out the anti-apoptotic role of 

Bcl-xL [177, 178], and cleavage of Bcl-xL to remove this domain gives pro-apoptotic characteris-

tics to this molecule. ΔN-Bcl-xL is reported to induce large channel activity in the synaptic mito-

chondria [172], to cause decline of the amplitude of post synaptic potentials [173], and to increase 

cytochrome c release [179]. Studies show that transient global ischemia induces ΔN-Bcl-xL for-

mation prior to delayed neuronal death in the CA1 region of hippocampus [72, 73]. The strategies 

to block ΔN-Bcl-xL formation such as administration of pharmacological inhibitors, or mutation 
of the caspase cleavage site protect rodent brains against ischemic injury [73, 172].

Bcl-2-associated x protein (Bax) is a pro-apoptotic member of the Bcl2 family containing 

BH1, BH2, and BH3 domains but lacking the BH4 domain found in many anti-apoptotic 

Protein Roles References

Bcl2 family protein

Bak Regulates apoptosis [163, 208]

Bax Regulates apoptosis [209–211]

Beclin 1 Prevents autophage [212]

Bad Regulates apoptosis and cell cycle [213–215]

Bim Regulates apoptosis [216, 217]

Bid Regulates apoptosis [217]

PUMA Regulates apoptosis [209, 218]

Non-Bcl2 family proteins

Apoptotic protease-activating factor 1 

(Apaf-1)

Regulates caspase 9-mediated apoptosis [219, 220]

Apoptosis regulatory protein Siva 

(Siva-1)

Sequestrates Bcl-xL and induces apoptosis [221]

F
1
F

0
 ATP synthase Regulates mitochondrial energy metabolism [158, 169]

Aven Stabilizes Bcl-xL and regulates caspase-dependent apoptosis [222, 223]

Dynamin-related protein 1 (Drp1) Regulates synaptic vesicle endocytosis [165, 167, 171]

IP3 receptor Regulates calcium signaling and apoptosis [224, 225]

Phosphoglycerate mutase family 5 
(PGAM5)

Enhances Keap1-dependent degradation [226, 227]

PTEN-induced putative kinase 1 

(PINK1)

Regulates phosphorylation of Bcl-xL to prevent its cleavage [228]

Voltage-dependent anion channel 

(VDAC)

Regulates mitochondrial calcium, cytochrome c release, ATP 

release

[164, 229, 230]

Tumor protein p53 Regulates cytochrome c release and apoptosis [231, 232]

Table 1. List of proteins that bind to Bcl-xL.
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family members. Bax forms channel activity in lipid bilayers [180], induces cytochrome c 

release [162, 181], and cooperates with mPTP candidates such as ANT and VDAC [138, 164]. 

Interestingly, although it is mostly known as a pro-apoptotic protein, it also has important 

functions in healthy synapses undergoing plasticity. Injection of Bax protein into the presyn-

aptic terminal induces enhanced neurotransmitter release, similarly to effects of pro-survival 
Bcl-xL, indicating that Bax is capable of supporting normal synaptic plasticity in unstressed 

neurons [182]. In healthy hippocampal neurons, Bax is necessary for the formation of synap-

tic plasticity known as NMDA receptor-dependent LTD. Despite comparable expression of 

NMDA receptors in Bax knockout animals, these animals fail to demonstrate hippocampal 

LTD induction [183].

Bid is a pro-apoptotic BH3 only protein. Bid is normally expressed in the cytoplasm, but dur-

ing cytotoxic stimulation, caspase cleaves Bid into truncated Bid (tBid) which activates other 

members of the pro-apoptotic Bcl2 family [184] or antagonizes anti-apoptotic Bcl2 proteins 

[17]. tBid contributes to the mobilization of cytochrome c by Bax and alters mitochondrial 

cristae independent of its function to activate Bax, and it opens mitochondrial intermembrane 

spaces [185]. Bid enhances mitochondrial membrane permeabilization, cooperates with mPT 

or Bax, and mediates large-channel conductances [186]. Studies show that Bid is an important 

activator in ischemia-induced brain injury [187, 188]. Cleavage of Bid was also found after 

middle cerebral artery occlusion (MCAO)-induced stroke in mouse. Bid knockout animals 

show decreased levels of cytochrome c release and infarct volume [187, 188].

3.4. Hypoxia-inducible factor 1 (HIF1-α)

HIF1-α is a transcriptional factor activated in response to hypoxia. In normoxic conditions, 
HIF1-α is generally degraded by prolyl hydroxylases (PHD)-mediated ubiquitination, but 
hypoxia inhibits PHD activity and leads to stabilization of HIF1-α which then is translocated 
to the nucleus and regulates gene expression. Although HIF1-α is not generally considered as 
a mitochondrial protein, HIF1-α is reported as an important player in mitochondrial function 
[189–191]. HIF1-α directly binds with the promoter region of Bcl-xL [192] and targets the expres-

sion of BNIP3, a BH3-only protein member of the Bcl2 family that mediates hypoxia-induced 

mitochondrial autophagy [193–195]. HIF1- α regulates a subunit of cytochrome c oxidase [196] 

which is an essential member in the mitochondrial electron transport chain. In addition, a recent 

study showed localization of HIF1-α to both the nucleus and mitochondria after hypoxia [197].

Since ischemia is closely related to hypoxic stimulation, there are studies reporting functions 

of HIF1-α in models of cerebral ischemia. HIF1-α is enhanced by MCAO-induced stroke in 
rodent brains, and co-regulated with death-signaling molecules such as caspases, inflam-

matory cytokines, and apoptotic molecules [198–202]. On the other hand, the neuroprotec-

tive role of HIF1-α has been studied by several groups during the past decade [203–205]. 

Impairment of dopaminergic differentiation and reduction of vascular endothelial growth 
factor are reported in a HIF-1α knockout model [206]. Tomita et al. reported that neuron-

specific-HIF1-α knockout mice have reduced numbers of neurons and impaired spatial mem-

ory [207]. Therefore, understanding both physiological and pathological roles of HIF-1α and 
its targets is important to understand synaptic plasticity in cerebral ischemia.
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4. Conclusion

Mitochondria are the center of intracellular energy production, and the executor of cellular 

fate. Ischemic injury triggers or is caused by mitochondria-mediated signaling pathways. We 

have discussed in this chapter the intracellular signals activated during and after episodes 

of ischemia, the alteration in the dynamics of structural components of the synapse, and 

how these elements play a role in attenuation of synaptic plasticity or recovery of synaptic 
responses. Since after ischemia, increased energy demands are inherent in the formation of 

new synapses and repair of the normal operation of existing synapses, we are particularly 

focused on mitochondrial components that regulate mPTP and neuronal energy metabolism. 

Although details of the structure of mPTP are still in question, it is clear that prevention of 

mPT and conservation of energy are critical in management of ischemia-induced damage in 

the brain. We have also highlighted non-canonical roles of mitochondrial Bcl2 family proteins 

in the synapse besides their known functions in apoptosis; these roles should be further stud-

ied to elucidate the crucial functions of mitochondria in synaptic plasticity.
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