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Abstract

In this chapter, there is a description of hematopoietic stem cells, maturation curve and 
their differentiation into myeloid cells, including phenotypes and transcription factors 
involved in this process. Further, we discuss myeloid maturation curve from myeloid 
precursor, monoblast, premonocyte to monocytes, and also monocytes subsets regarding 
their CD14 and CD16 expressions and related functions in health and disease. In addi-
tion, we reason about the differentiation from monocytes either in dendritic cells or in 
macrophages in vitro using differential growth factors; these cells are differentiated from 
those found in vivo being named as monocyte-derived cells. Furthermore, we explore dis-
tinguished phenotype of monocytes, macrophages, and dendritic cells monocyte-derived 
in vitro, using confocal microscopy and flow cytometry, in order to display morphologi-
cal and phenotypic differences among them.
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1. Introduction

All the cellular elements of blood derive ultimately from the hematopoietic stem cells in the 
bone marrow. Thus, the blood cells are derived from the common lymphoid progenitor and 
the myeloid progenitor, apart from the megakaryocytes and red blood cells that are derived 
from specific progenitors. Particularly, the lymphoid progenitor gives rise to natural killer 
(NK) cells, T and B lineage cells of the human immune system, while the myeloid progenitor 
is the precursor of the granulocytes, monocytes, macrophages, and dendritic cells (Figure 1).

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Myeloid cells represent the major leukocyte population in the peripheral blood. Phylogenically, 
these cells are the oldest ones found in primitive invertebrates and, in vertebrates, sum to lym-

phoid cells to constantly supply to all tissues via peripheral blood circulation [1].

The myeloid precursor gives rise to granulocytes and monocytes. Granulocytes are comprised 
of neutrophils, eosinophils, and basophils. Neutrophils are known as the key effector cells 
in innate immunity against bacteria and are the first cells to be recruited into local sites on 
pathogen invasion, providing an immediate defense against infection in tissues. The main 
role of neutrophils is to isolate, engulf, and kill pathogens using oxidative and nonoxidative 
mechanisms [1, 2].

Myelomonocytic cells give rise to mature monocytes that are present in circulation and were 
believed to mature terminally into macrophages in various tissues, where they may display a 
unique, tissue-dependent morphology and specific functions such as Kupffer cells in the liver or 
microglia in the brain. Monocytes may also differentiate into dendritic cells in lymphoid organs 
and Langerhans cells in skin, where they function as professional antigen presenting cells [2].

Monocytes, dendritic cells, and macrophages are the bridge between innate and adaptive 
immunity, they are a group of cells that are vital for the control of pathogens and for orches-

tration of a complete immune response, as well as for backing up tissue functions. These 

 Figure 1. Hematopoiesis—General representation of hematopoiesis with focus on myelomonocitic differentiation [1, 2].
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properties make them interesting targets for immune therapy, vaccination, and treatment of 
autoimmune and inflammatory diseases [3, 4].

However, exactly how many cell types exist in the mononuclear phagocyte system, or whether 
they establish a family, has been a matter of discussion for many years. Historically, cells of 
the mononuclear phagocyte system have been referred to as erythrophagocytes, adventitia 
cells, histiocytes, and several other terminologies until their current terminology was estab-

lished in 1972 by a bulletin published by the World Health Organization (WHO) [5]. The dis-

covery of a new cell type termed dendritic cells in the 1970s by the Nobel Prize winner Ralph 
Steinman that was distinct from macrophages added more complexity to the mononuclear 
phagocyte system classification [6].

Accordingly, it took a while before dendritic cells were fully accepted as a true member of the 
mononuclear phagocyte system. Over time, there was appreciation that there were not just 
one but multiple dendritic cells subtypes, each with a specialized role [7]. Nowadays, there 
are several discussions about macrophages and dendritic cells nomenclature, subsets, and 
their in vivo origin, and how much they are related to macrophages or monocytes.

Thus in this chapter, the principles of hematopoiesis, phenotype, and transcription factors in 
myelomonocytic lineage will be highlighted, as well as their maturation and differentiation. 
The contribution of different cytokine environments modulating the monocytic lineage dif-
ferentiation into subtypes of macrophages or dendritic cells will also be discussed.

2. Hematopoiesis, phenotype, and lineage transcription factors

Blood development in vertebrates includes two hematopoiesis waves: primitive and defini-
tive ones [8]. The primitive wave involves an erythroid progenitor and gives rise to eryth-

rocytes and macrophages during the early embryonic development [9]. The purpose of the 

primitive wave is to produce red blood cells in order to oxygenate the embryo tissues that 
experience a fast growth [10]. In mammals, these erythroid progenitor cells first appear 
in blood islands in the extra-embryonic yolk sac early in development [11]. The primitive 

wave is transitory, and these erythroid progenitors are not pluripotent and do not have self-
renewal ability.

Instead, definitive hematopoiesis occurs later in development, markedly at different periods 
in different species. Definitive hematopoiesis involves hematopoietic stem cells, which are 
multipotent cells that can generate all blood lineages of an adult organism. In vertebrates, 
hematopoietic stem cells are born in the aorta-gonad-mesonephros region of the developing 
embryo. They migrate to the fetal liver and then to the bone marrow, which is the final site for 
hematopoietic stem cells in adults [12].

Usually, in order to characterize and quantify hematopoietic stem cells, flow cytometry tech-

niques are commonly used. The immunophenotypic markers CD34 and CD38 are used to 
characterize and enumerate hematopoietic stem cell (HSC) and progenitors (HPC) as shown 
in Figures 1 and 2 [13]. Hematopoietic stem cells are a small population characterized by the 
expression of CD34+CD38−, and progenitors are recognized by the expression of CD34+CD38+ 
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(Figure 2A). HSCs are also CD117−, and during differentiation toward common myeloid and 
lymphoid progenitors (CMP and CLP), they acquire CD117 and Human Leukocyte Antigen–
DR (HLA-DR) expression; and later, as per their lineage commitment, they can or not pre-

serve these markers (Figure 2B).

After hematopoiesis initiation, several decision steps are necessary for HSC pluripotency and 
quiescence maintenance or specification of lineage commitment [14]. One important check-

point is the preservation of pluripotency by the combined action of Notch-1, GATA-2, HoxB4, 
and Ikaros transcription factors. Furthermore, the cell cycle inhibitor p21 is essential to keep 
a fraction of stem cells in quiescence [15].

During lineage commitment, transcription factors play critical roles at distinct differentiation 
branches. Concerning the myeloid-lineage commitment, PU.1, an Ets family of transcription 
factor, seems to play a key role [16]. PU.1-deficient mice lack monocytes and B cells with a 
greatly reduced number of granulocytes, while overexpression of PU.1 enhances the develop-

ment of myeloid cells. Consequently, the enhanced expression of PU.1 favors myeloid com-

mitment, while low-to-intermediate expression of PU.1 together with GATA-3 and Ikaros 
transcription factors commit HSC toward lymphoid lineage [17].

Once the myeloid dominance has been established through increased PU.1 or GATA-1 expres-

sion, further transcriptional control determines the commitment along erythroid/megakaryo-

cytic (GATA-1/2 dominance) or myelomonocytic (PU.1 dominance) lineages, while mafB 
together with PU.1 also play an essential role in monocyte/macrophage differentiation [18]. 

MafB, c-Maf, and Egr-1 are suggested to promote monocytic differentiation at the cost of 
granulopoiesis [19].

Figure 2. Hematopoietic stem cells differentiation curve—(A) Hematopoietic progenitors CD34+CD38+, hematopoietic stem 
cells CD34+CD38− (red). (B) Common myeloid and lymphoid progenitors (CMP and CLP) are CD34+CD38+CD117+HLA- 
DR+ (black) (Infinicyt software was used for this analysis, Cytognos).
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In addition, the induction of C/EBPα or C/EBPβ modulates the fate of myeloid-committed 
cells toward granulocytic branches since CCAAT/Enhancer Binding Protein (C/EBP), a 
basic region leucine zipper DNA-binding protein, is responsible for the transactivation of 
Granulocyte-Colony Stimulating Factor  Receptor (G-CSFR) gene and retinoic acid receptors 
(RARs) [14]. It has been shown that C/EBP-deficient mice selectively lacks granulocytes and 
RAR-deficient mice shows a granulocyte differentiation arrested at the myelocyte stage.

Myelomonocytic cells are usually classified based on surface markers and biological responses. 
The common myeloid progenitor (CMP) is characterized by markers such as CD34 and CD117. 
These immature cells are able to differentiate into neutrophils, monocytes, macrophages, den-

dritic cells (DCs), and under pathological conditions or induced by proinflammatory cyto-

kines these cells can also generate a population known as myeloid-derived suppressor cells.

Myeloid-derived suppressor cells are part of the myeloid-cell lineage and a heterogeneous 
population that is comprised by myeloid-progenitors and precursors cells. In healthy individ-

uals, immature myeloid cells rapidly differentiate toward mature granulocytes, macrophages, 
or dendritic cells. However, in pathological conditions such as cancer, infectious diseases, 
trauma, or some autoimmune disorders, a partial impairment in the immature myeloid cells 
differentiation result in the expansion of this population. Importantly, the activation of these 
cells in pathological conditions results in an upregulated expression of immune suppressive 
factors such as arginase, inducible nitric oxide synthase (iNOS), and reactive oxygen species 
(ROS) increased production. Together, these alterations results in the expansion of immature 
myeloid cells that possess suppressive activity [20].

3. Monocytes maturation curve and subsets

Regarding phenotypes, monocyte maturation curve can be performed by flow cytometry and 
can display the differentiation of CD34+/CD117+/CD64−/CD14− myeloid precursor into mono-

blast CD64+ and further into promonocyte by increased expression of CD14lo/int. Additionally, 
these cells will become full mature monocytes by CD14hi expression (Figures 1 and 3A). During 
monocyte maturation, upregulation of CD64 is followed not only by CD14 but also increased 
levels of CD33, CD36, and CD300e expression toward mature monocytes (Figures 1 and 3A).

In addition, the differences in monocytes and granulocytes maturation curve can be seen 
using a combination of CD11b and HLA-DR markers. Granulocytes arise from a precursor 
that do express HLA-DR and downregulated its expression during maturation, while mono-

cytes arise from a precursor with high expression of HLA-DR and preserve the HLA-DR 
expression to maturation, while both cells’ subsets have an increased expression of CD11b 

toward maturation (Figures 1 and 3B).

Monocytes were originally classified by their physical characteristics, but after flow cytometry 
advent, monocytes became also recognized by CD14 and CD16 expressions (Figures 1 and 4A). 

Classical monocytes CD14hi/CD16− (Figures 1 and 4B) are approximately 80% of all monocytes 
and considered to be better at secreting proinflammatory cytokines, phagocytosis, and ROS pro-

duction [21]. The nonclassical CD14+/CD16+ cells resemble “resident” tissue macrophages with 
higher Major Histocompatibility Complex - Class II (MHC-II) expression. CD16+ monocytes 
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Figure 3. Monocyte and granulocyte maturation curve—(A) Monocyte maturation: this dot plot displays a 
combination of previously three-gated population and shows myeloid progenitors CD34+/CD117+/CD64−/CD14− 
(black), monoblast CD64+CD14− and promonocytes CD64+CD14lo/int (light green), mature monocyte CD64+CD14hi 

(dark green). (B) Monocyte and granulocyte maturation: this dot plot displays a combination of previously four-
gated population and shows myeloid progenitors CD34+/CD117+/HLA-DR+ (black), monoblast HLADR+CD14− and 
promonocytes HLA-DRlo/int (light green), mature monocyte HLA-DR+CD14hi (dark green), immature granulocytes 
HLA-DR−/CD11blo, and mature granulocytes HLA-DR−/CD11bhi (red) (Kalusa software was used for this analysis, 
Beckman Coulter).

Biology of Myelomonocytic Cells8



are subdivided into CD14hi/CD16+ and CD14lo/CD16+ (Figures 1 and 4B). CD14hi/CD16+ mono-

cytes express highest levels of phagocytosis; MHC-II and accessory molecule expression are also 
higher compared with CD14lo/CD16+ (Figures 1 and 4C) [21]. Functional data and gene arrays 
suggest that CD14hi/CD16+ monocytes share more common pattern with CD14hi/CD16− mono-

cytes than with CD14lo/CD16+ [22].

These monocyte characteristics subsets have recently been reported as a signature diagnos-

tic for chronic myelomonocytic leukemia (CMML). Researchers compared the population of 
monocytes among healthy bone marrow donors, patients with reactive monocytosis, another 
hematologic malignancy, and CMML patients, which demonstrate a characteristic increase in 
the fraction of CD14+/CD16− cells compared with the other samples [23].

In addition, the development and biological significance of monocyte subsets remain a matter 
of active investigation, as well as their respective functions and developmental relationships. 
CD161 is another important marker that also defines monocytes subsets. These CD161 subsets 
seem to be expanded in a variety of clinical situations, including autoimmune diseases, bacte-

rial and viral infections, asthma, stroke, and coronary artery disease [24–29]. In addition, there 

is a new emerging technology known as tissue macrophage scanning (TiMaScan), which is a 
sensitive intra-tissue total body scanning. This new technology promises to accurately detect 
and define monocyte and macrophage subsets in blood and tissues not only in homeostatic or 
traumatic injuries but also in cancer [30, 31].

Monocytes, macrophages, and myeloid DCs are members of the mononuclear phagocyte 
system that exhibit several functions during immune responses. Historically, these cells 
have been grouped together because although monocytes have their unique functions as 
 mononuclear phagocytic cells, they were also considered as precursors of macrophages and 
myeloid DCs [32].

Monocytes and macrophages are critical effectors and regulators of inflammation involved in 
innate immune response, the immune system for immediate support. On the other hand, DCs 

Figure 4. Monocytes (CD14+) sorted from human peripheral blood—(A) SSC vs CD45. (B) Monocytes subpopulations 
(a) CD14lo/CD16+ (b) CD14lo/CD16− (c) CD14hi/CD16+ and (d) CD14hi/CD16−. (C) CD14hi (c+d)/CD16+ are HLA-DRhi 

(FlowJo software was used for this analysis, TreeStar).
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are a bridge between innate and adaptive immunity, because they initiate and regulate the 
highly pathogen-specific adaptive immune responses and play a central role in the develop-

ment of immunological memory and tolerance. These cells can display significant heterogene-

ity in phenotype and function according to the tissue of residence. Dendritic cells are described 
as distinct lineage specialized in antigen presentation, initiation, and control of immunity, con-

tributing to development of the immune response to pathogens, vaccines, and tumors [33].

Human dendritic cells subsets found in vivo are described in the literature as two main groups, 
plasmacytoid DCs (pDCs) and classical or myeloid DCs. Classical or myeloid DCs have been 
further subdivided into two subsets on the basis of their CD141 expression (also known as 
BDCA3) and CD1c (also known as BDCA1) [34, 35]. It has been shown that the gene-expres-

sion profiles and functions of human CD141+ DCs and CD1c+ DCs resemble those of mouse 
cDC1s and cDC2s, respectively [36].

Regarding transcription factors that regulate monocytes and DCs differentiation, there are 
several differences between mice and humans, but also similarities, which should be taken 
into consideration [37]. A straight comparison between human and mouse can be made due to 
the presence of Interferon Regulatory Factor 8 (IRF8) deficiency in both species. While human 
biallelic IRF8 mutation leads to complete loss of blood and skin DCs and monocytes derived 
cells, the autosomal dominant IRF8 mutation results in absence of CD1c expression and pres-

ence of a population CD11c+CD1c− not seen in a healthy control blood [37, 38]. In mice, IRF8 is 
required for the development of CD8+CD103+ DCs and plays a role in monocyte development 
through Interferon Regulatory Factor (IRF) interaction with  Krüppel-like Factor 4 (KLF4) [39].

In contrast, human macrophages are found throughout body tissues [40]. During HSC 
transplantation, dermal macrophages in the recipient show prolonged survival and delayed 
replacement compared with dermal DCs, which is consistent with the impression that mac-

rophages are also self-maintaining in humans. Furthermore, patients carrying a mutation in 
GATA-2 lack blood monocytes and all conventional DCs subsets, yet they have normal num-

bers of Langerhans cells and macrophages in skin and lungs, respectively, suggesting that 
these populations development may also occur independent of monocytes and DCs [41].

Another important characteristic of macrophages, which should be mentioned, is their 
polarization in two phenotypes M1 and M2, inflammatory macrophages are called M1, 
whereas those that decrease inflammation and favor tissue repair are called M2 macro-

phages. Later, findings regarding granulocyte macrophage colony-stimulating factor 
(GM-CSF) and macrophage colony-stimulating factor (M-CSF) effects in macrophages led 
to the independent inclusion of these as M1 and M2 stimuli, respectively. The polarized M2 
phenotype, in a tumor microenvironment, has been named tumor-associated macrophages 
(TAMs) and is associated to tumor progression and to a poor prognosis [42].

4. Cytokines, growth factors, and in vitro models of monocyte 

differentiation into dendritic cells and macrophages

It is possible to differentiate either dendritic cells or macrophages in vitro from monocytes using 
differential growth factors, and these cells are differentiated from those found in vivo by being 
named as monocyte-derived cells. A number of growth factors have been shown to influence 
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monocyte development and differentiation into macrophages, and the best- recognized growth 
factor is the macrophage colony-stimulating factor (M-CSF). Its  significance involves the obser-

vation that circulating monocytes express the M-CSF receptor [43, 44] and administration of 

M-CSF drives monocytosis [45–47].

Moreover, mice deficient either in the production of Macrophage-Colony Stimulating Factor 
(M-CSF) or in the  Macrophage-Colony Stimulating Factor Receptor (M-CSFR) have been 
reported to have decreased numbers of monocytes in the bone marrow and/or in circulation 
[48]. Homeostatic control of monocyte/macrophage development has been proposed to result 
from the modulation of M-CSF levels by differentiated cells of the mononuclear phagocyte 
system, mature mononuclear phagocytes express high levels of the M-CSFR, and M-CSF is 
produced continuously by stromal cells, and the addition of IL-3 to cultured bone marrow 
cells enhances the activity of M-CSF [49].

Additional growth factors, including granulocyte-macrophage colony-stimulating factor 
(GM-CSF) and IL-4, are able to influence monocyte development and differentiation during 
inflammation. In vitro GM-CSF supports monocyte expansion and differentiation [50, 51]. 

Unexpectedly, GM-CSF deficient mice show minimal perturbation of hematopoiesis and no 
decrease in circulating monocyte numbers compared with the control [52]. However, in vivo, 

GM-CSF is not produced at high levels under homeostatic conditions; instead, it is upregu-

lated during inflammation [50, 51]. This suggests that, in contrast to M-CSF, GM-CSF primar-

ily contributes to monopoiesis during inflammatory states. Accordingly, M-CSF and GM-CSF 
drive different differentiation platforms, with M-CSF stimulation leading to a homeostatic 
phenotype, and GM-CSF stimulation leading to monocytes with an inflammatory phenotype. 
In addition, GM-CSF was the first growth factor shown to efficiently promote dendritic cells 
development in vitro and has been used to induce dendritic cell differentiation from human 
monocytes, as well as human and mouse hematopoietic progenitor cells [53, 54].

IL-4 has been argued to drive both tissue-resident macrophage [55, 56] and monocyte [57] 

expansion during type 2 inflammation. IL-4 in combination with GM-CSF drives inflammatory 
dendritic cells in vitro [53]. Studies in both Signal Transducer and Activator of Transcription 
6 (STAT6) [57] and IL-4R [55] deficient mice indicate that IL-4-dependent signaling does not 
contribute to monocyte development during homeostasis.

The two main colony-stimulating factors involved in monopoiesis, M-CSF and GM-CSF, have 
opposing polarizing properties. In vitro, M-CSF supports the development of cells with anti-

inflammatory profile that is characterized by production of IL-10 and CCL2 but not IL-12 or 
IL-23 [58]. On the other hand, culture of either bone marrow or purified monocytes with GM-CSF 
leads to upregulation of MHC class II as well as induction of IL-12 and IL-23, but minimal IL-10 
production [59]. Based on these data, it has been discussed that M-CSF stimulation represents a 

homeostatic/M2 pathway for monocyte development [60]. In vivo, GM-CSF has been shown to 
induce an inflammatory DC/M1-like phenotype in monocytes in a variety of models [61].

Macrophages in vitro monocyte-derived, using M-CSF, are distinguished as larger and vac-

uolar cells, been very effective at apoptotic cells, cellular debris and pathogens clearance, 
and can be differentiated from DCs, monocytes-derived with GM-CSF in combination with 
IL-4 in vitro by the CD14 expression and from monocytes by CD209 (DC-SIGN) expression. 
By contrast, DCs are defined with stellate morphology that can efficiently present antigens 
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Figure 5. Monocytes, dendritic cells, and macrophages morphology and phenotype—To confocal microscopy analysis, all cells 
were stained with pan-actin (green) in order to show differences in morphology and cytoskeleton, and the nucleus were stained with 
DAPI (blue): (A) monocytes CD14+/CD209−, (B) dendritic cells CD14−/CD209hi, (C) macrophages CD14+/CD209int (FlowJo software 

was used for this analysis, TreeStar).
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through MHC molecules and activate naïve T cells. DCs derived from monocytes lack CD14 
and acquire CD209 expression (Figures 1 and 5).

Regarding phagocytosis, monocytes and macrophages are highly phagocytic cells, in con-

trast to DCs that according to maturation status lose their phagocytic ability and become the 
most efficient antigen-presenting cells. Differences in expression related to functional status 

Figure 6. Monocytes, dendritic cells, and macrophages expression of HLA-DR, CD80, and CD86—(A) HLA-DR, (B) 
CD86, (C) CD80 increasing expression in media fluorescence intensity (MFI) (FlowJo software was used for this analysis, 
TreeStar).
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of these cells are shown in Figures 5 and 6. DCs have increased expression in HLA-DR, CD80 
and CD86 (molecules related to antigen presentation efficiency) compared with macrophages 
and monocytes (Figure 6).

5. Concluding remarks

Herein, we have presented the principles of hematopoiesis, transcription factors in myelo-

monocytic lineage phenotype, as well as their maturation and differentiation, and these topics 
have been the target of several studies for over a century using a variety of model systems. 
The human hematopoiesis understanding it is very important; this fundamental knowledge 
allowed scientists and physicians to identify diseases and their causes, leading to the develop-

ment of new therapies.

In addition, we have discussed the contribution of different cytokine/growth factors’ envi-
ronment, modulating the monocytic lineage differentiation into subtypes of macrophages 
or dendritic cells and their development in vitro. Similarities and differences between cells 
found in vivo with the ones generated in vitro are very important for the development 
of new study models. Furthermore, the comprehension about growth factors and how 
to use them to modulate cells can favor their application in developmental hematology 
and immunology. These topics are very important for the continuous development of 
knowledge.
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