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Abstract

Parasitic diseases affect low-income nations with health consequences that affect 
the economy of these countries. Research aimed at understanding their biology and 
identification of potential targets for drug development is of the highest priority. 
Inhibitors of channels formed by proteins of the gap junction family such as sur-
amin and probenecid are currently used for treatment of parasitic diseases caused 
by pathogenic protozoan. Gap junction proteins are present in both vertebrates and 
invertebrates permitting direct and indirect cellular communication. These cellular 
specializations are formed by two protein families corresponding to connexins (ver-
tebrates) and innexins (invertebrates). In addition, a third protein family composed 
by proteins denominated pannexins is present in vertebrates and shows primary 
sequence homology to innexins. Channels formed by these proteins are essential in 
many biological processes. Recent evidences suggest that gap junction proteins play a 
critical role in bacterial and viral infections. Nonetheless, little is known about the role 
of these channels in parasitic infections. In this chapter, we summarized the current 
knowledge about the role of gap junction family proteins and channels in parasitic 
infections.

Keywords: connexins, pannexins, innexins, cellular communication, parasites

1. Introduction

The gap junction protein families include connexin, pannexin, and innexin proteins [1]. Connexin 
and innexin proteins form gap junction channels, which connect the cytoplasm of neighbour-
ing cells, or connexin, pannexin and innexin proteins form channels (a half of gap junction 
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channel) that connect the intra- and extracellular milieu [1]. In humans, connexins and pan-
nexins are encoded by 21 and 3 genes, respectively [1]. Moreover, it has been identified 25 and 
8 innexin genes in Caenorhabditis elegans and Drosophila melanogaster, respectively [2, 3]. It is 

known that Panx1 channels participate in response to bacterial and viral infections; however, 
little is known about the role of Panx1 channels and gap junction channels in infections caused 
by parasites [4–7] (Table 1). For example, Shigella flexneri, which is a causative agent of bacil-
lary dysentery, causes opening of hemichannels formed by connexin 26 [4], which favours its 
spread and invasion [4]. Also, blockade of Panx1 channels has been shown to inhibit HIV rep-
lication in CD4(+) T lymphocytes [6]. In this chapter, we summarized the current knowledge 
about how the parasite infections modulate channels formed by gap junction proteins in host 
cells and the cellular pathways involved in this phenomenon. We also comment on channel 
blockers currently used in medicine for treatment of parasitic diseases caused by pathogenic 
protozoan (Table 2).

Gap junction proteins Parasite Cell type Effects References

Cx43 Trypanosoma cruzi Cardiomyocytes Downregulated [43]

Astrocytes Downregulated [44]

Leptomeningeal cells Downregulated [44]

Cardiomyocytes Downregulated [48]

Cardiomyocytes Downregulated [51]

Cardiomyocytes and  
heart human biopsies

Downregulated [50]

Toxoplasma gondii Astrocytes Downregulated [44]

Leptomeningeal cells Downregulated [44]

Cx26 Toxoplasma gondii Astrocytes Downregulated [44]

Cx37 Trypanosoma cruzi Heart from chagasic  
mouse

Upregulated [52]

Cx40 Trypanosoma cruzi Heart from chagasic  
mouse

Not change [52]

Cx45 Trypanosoma cruzi Heart from chagasic  
mouse

Not change [52]

Trypanosoma cruzi Cardiomyocytes Upregulated [51]

Panx1 Plasmodium falciparum Human erythrocytes Increased ATP release [54]

Entamoeba histolytica Human monocytic  
cells

Increased ATP release [60]

AGAP001476 Plasmodium falciparum Midgut tissues from  
Anopheles gambiae

Upregulated [61]

Plasmodium berghei Midgut tissues from  
Anopheles gambiae

Upregulated [61]

Table 1. Summary of published works on the effect of parasite infections on the gap junction proteins.
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2. The family of gap junction proteins

Gap junction proteins are present in both vertebrates and invertebrates from mesozoa to 
mammals [8]. In chordate animals, gap junction channels are encoded by a family of genes 
called connexins (Cxs) [9] (Table 3). In addition, gap junction communication of invertebrate 
is mediated via another family of proteins called innexins (Inxs) [8]. Inx homologues have 
been identified in vertebrates and were termed pannexins (Panxs) [10]. Members of the same 
protein family oligomerize in hexamers forming channels, which are inserted into the plasma 
membrane connecting the intra- and extracellular milieu [8]. Whereas, docking of two chan-
nels forms intercellular channels (gap junction channels) that connect the cytoplasm of two 
cells [8]. It has been proposed that Panx-based channels do not form gap junction channels 
due to their post-translational glycosylation [11]. However, this theoretical prediction might be 
proved wrong because in exogenous cells systems forms functional gap junctions. In support 
to this possibility is the fact that Panx1 expressed in exogenous cell systems forms functional 
gap junctions [12, 13].

2.1. Genes

The first Cx gene was cloned in 1986, and there are at least 21 Cx isoforms in the human 
genome [8, 14]. Most Cx genes have a first exon containing only 5′-untranslated region (UTR) 
sequences and a large second exon containing the complete coding region sequence (CDS) 
as well as all remaining untranslated sequences [8]. Exceptions to this gene structure are the 
Cx32, Cx36, and Cx45 genes [8]. Panx are termed as Panx1, Panx2, and Panx3 and are present 
both in invertebrate and chordate genomes [15, 16]. The human and mouse genome contain 
three Panx-encoding genes [10]. The genomic sequence revealed that human Panx1 contains 
five exons with four introns [10]. Moreover, Panx2 and Panx3 contain four exons [10]. The first 
Inx gene was identified in 1998 as a result of genome sequencing of nematode C. elegans [17]. 
Actually, 25 and 8 Inx genes in C. elegans and D. melanogaster have been identified, respectively 
[2, 3]. Usually, Inx genes are encoded on multiple exons and have the potential to produce 
more than one protein by differential splicing [18]. Recently, viral homologs of Panxs/Inxs 
were identified in Polydnaviruses and denominated vinnexins (Vinx) [19].

Drug Commercial name Presentation and 

quantity

Company Country production

Probenecid Probalan Tablets 500 mg Lannett USA

Probenecid Probenecid & 
Colchicine

Tablets 500 mg Watson INDIA

Probenecid Probenecid Tablets 500 mg Mylan USA

Probenecid Probenecid & 
Colchicine

Tablets 500 mg Ingenus USA

Suramin Germanin Vial 1 g Bayer Germany

Table 2. Commercial drugs.
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2.2. Secondary structure

Cx, Inx, and Panx proteins share the same membrane topology, characterized by four trans-
membrane domains connected by two extracellular loops and a single cytoplasmic loop [20]. 
These extracellular loops contain 2 (for Panxs and Inxs) or 3 (for Cxs) highly conserved cyste-
ine residues [21]. Moreover, the intracellular loop is highly variable [21]. The four transmem-
brane domains are well-conserved among members of the same family of proteins and form 
alpha-helical sheets that contribute to the wall of the HC and line its central hydrophilic space 
[21]. All members of the 3 families have their NH2- and COOH-terminal region within the 
cytoplasm [21]. The COOH-terminal region differs in length and sequence in all gap junction 
proteins [21]. Inx proteins have a highly conserved pentapeptide YYQWV close to, or at, the 
beginning of the second transmembrane domain [22].

2.3. Gap junctional channels

Gap junctions are specialized cell-to-cell junctions that mediate direct intercellular commu-
nication between cells [8]. Depending on whether the two interacting channels are made of 
the same or different Cxs, gap junction plaques are formed by homo- and heterotypic chan-
nels, respectively, with distinct biophysical characteristics [21]. These intercellular channels 
are essential in several Physiologic tissue functions such as electrical conduction between 
cardiomyocytes [23], development and regeneration of skeletal muscle [24], endocrine gland 
secretion [25], and ovarian folliculogenesis [26]. They are also implicated in pathophysiologi-
cal conditions including hereditary deafness [27], cataract [28], ectodermal dysplasias [29], 
tumorigenesis [30], and neuroinflammatory responses [31].

Abbreviations Definitions

ATP Adenosine triphosphate

cAMP Cyclic adenosine monophosphate

CDS Coding region sequence

Cx Connexin

DCSF Divalent cation solution free

HC Hemichannel

Inx Innexin

Panx Pannexin

P.Falciparum Plasmodium falciparum

PMA Phorbol 12-myristate 13-acetate

T. cruzi Trypanosoma cruzi

UTR Untranslated region

Vinx Vinnexin

Table 3. Abbreviations.

Natural Remedies in the Fight Against Parasites142



2.4. Hemichannels (HCs)

Several studies have shown that HCs allow the bidirectional passage of ions and cytosolic 
signaling molecules, such adenosine triphosphate (ATP), nicotinamide adenine dinucleotide 
(NAD+), glutamate, glutathione, and prostaglandins [32]. Under physiological conditions, 
HCs are involved in the regulation of cell volume [33], vascular tone [34], hemostasis [35], 
and neuroglia paracrine interactions [36], among others. However, HCs have been the focus 
of interest because of their relevance in pathological conditions, including metabolic inhibi-
tion [37], stroke [38], myocardial infarction [39, 40], ischemic neuronal death [41], spinal cord 
injury [42], diarrhoea during infectious enteric disease [5], and keratitis-ichthyosis-deafness 
syndrome [43].

The presence and functional HCs in the plasma membrane have been determined through 
several techniques such as electrophysiology, uptake of fluorescent dyes, and release of ade-
nosine triphosphate (ATP) [44]. Due to the existence of non-selective channels in the plasma 
membrane, there are significant considerations for studying HCs [45]. These criteria are as 
follows: (i) cell expression of at least one Cx/Panx isoform at the plasma membrane, (ii) the 
ability of the cells to incorporate or release molecules, (iii) to mediate membrane currents with 
conductance associated to Cx/Panx HCs, (iv) the abolishment of HC function using a phar-
macologic approach (e.g. La3+, probenecid, or carbenoxolone) or mimetic peptide blockers 
(Gap19, Gap26, Gap27 for specific Cx HCs or 10Panx1 for Panx1 HCs), and (v) to demonstrate 
that blockade of HCs affect physiological responses [44, 45].

3. Gap junction proteins in parasitic infections

3.1. Connexins (Cxs)

3.1.1. Functional studies

Pioneering studies in the 1990s by de Carvalho et al., 1992 showed that Trypanosoma cruzi 

induces a gap junction alteration in cardiac myocytes [46] (Table 1). They showed that T. cruzi 

infection reduces the junctional conductance and Lucifer yellow transfer in cardiomyocytes, 
revealing that this parasite infection reduces the channel function of host cells [46]. The same 
researchers also showed that infection caused by Toxoplasma gondii reduces intercellular com-
munication in astrocytes and leptomeningeal cells [47]. Recently, we demonstrated that T. cruzi 

increases dye uptake via HCs in non-confluent Cx43-HeLa cells [7]. Suramin, an anti-protozoa 
drug, inhibits the activity of HCs [48]. Suramin causes a concentration-dependent inhibition 
of a divalent cation-free solution (DCSF)-induced dye uptake in a rat kidney epithelial cell line 
[48]. Also, suramin blocks the DCSF-induced ATP release in a rat kidney epithelial cell line 
[48]. Interestingly, the suppressive effect of suramin on the influx of dye and efflux of ATP was 
not reproduced by PPADS, a broad-spectrum antagonist of P2 receptors, suggesting that the 
action of suramin on HCs is independent of its action on P2 purine receptors [48]. Also, sura-
min (300 μM for 12 h) did not affect the total Cx43 level [48]. Moreover, prolonged incubation 
of T. cruzi-infected LLC-MK2 cells in the presence of suramin (500 μM) causes morphological 
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changes on trypomastigote forms characterized by an accentuated decrease on parasite motil-
ity [49]. In trypomastigotes, suramin causes a decrease in ~5% in cell length and an increase in 
~43% in cell width [49]. Also, it was observed that 95% of trypomastigotes exposed to suramin 
present a partial or even total detachment of the flagellum from the cell body [49].

3.1.2. Protein expression alterations

At the protein level, T. cruzi reduces Cx43 levels at junctional membrane regions in neona-
tal rat cardiomyocytes [46, 47]. Other studies in mouse cardiomyocytes showed that T. cruzi 

reduces Cx43 levels at 24-h post-infections [50]. Interestingly, cardiomyocytes with pro-
nounced decrease in Cx43 protein levels showed an increased number of intracellular amasti-
gotes, suggesting a direct relationship between host cell parasitism and Cx43 downregulation 
in vitro [50]. Also, it has been described that infection with T. cruzi or T. gondii reduces the 
levels of Cx43 and Cx26 protein in astrocytes or leptomeningeal cells [47]. In vivo model of T. 

cruzi infection showed a significant reduction in myocardial Cx43 protein levels [50]. Swiss 

Webster mice infected with T. cruzi showed a reduction in Cx43 levels in atrium and ventricles 

at 11- or 30-day post-infection, respectively [50]. Moreover, brain slices prepared from mice 
infected with T. gondii showed complete absence of Cx43 immunoreactivity within the cysts 
and marked reduction in the surroundin tissue [47]. The same study described a reduction of 
Cx43 protein levels in whole brains of T. cruzi-infected mice [47]. In monkeys, T. cruzi infection 
causes significant Cx43 loss in the cardiac tissue [51]. Clinical studies described that samples 
from chagasic patients showed alterations of cardiac Cx levels [52]. Immunohistochemical 
analysis of left ventricle biopsies from subjects with chronic chagasic disease showed reduc-
tion in both mean number (<20%) and size (<2.2 fold) of Cx43 plaques [52].

3.1.3. Gene expression regulation

Gene profiling of T. cruzi-infected cardiomyocytes revealed downregulation at 48 h after infection 
of GJA1 and GJC1 genes, which encode for Cx43 and Cx45, respectively [53]. Upregulation of GJA4 

gene encoding Cx37, a major endothelial cell Cx, was also described [54].

3.1.4. Cx knock-out mice and parasitic infections

Hepatic granulomas induced by Schistosoma mansoni infection in Cx43 deficient mice showed a 
higher degree of fibrosis and a reduced index of cell proliferation at 8 and 12 weeks after infec-
tion [55]. However, no differences in the average area of granulomas or number of cells per 
granuloma were observed [55]. The authors of the above mention work suggested that deletion 
of one allele of Cx43 gene could be the cause of reduced gap junction channels that modifies the 
interactions between granuloma cells, thereby modifying the characteristics of granuloma [55].

3.2. Pannexins (Panxs)

It has been demonstrated that Plasmodium falciparum infection induces ATP release via Panx1 
channels in human erythrocytes [56]. A mixture of isoproterenol (β-adrenergic agonist),  
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forskolin (adenylate kinase activator), and papaverine (phosphodiesterase inhibitor) induce 
cyclic adenosine monophosphate (cAMP)-dependent ATP release in human erythrocytes, 
and this effect was 3.8-fold higher in trophozoite-infected erythrocytes compared to unin-
fected erythrocytes [56]. Interestingly, this effect was reduced by 100 μM carbenoxolone 
or 100 nM mefloquine, two Panx1 channel blockers [54]. These authors suggest that the 
increased ATP release from infected red cells could be mediated by by Panx1 channels [56]. 
Several studies have shown that probenecid has a marked antimalarial effect [57–59]. The 
incubation of P. falciparum with probenecid shows antimalarial activity at concentrations 
>150 μM at day 2 of treatment [57]. However, probenecid at concentration <150 μM increases 
the P. falciparum sensitivity to antifolate drugs [57]. For example, in the presence of 50 μM 
probenecid, the IC50 (nM) was reduced from 1.42 ± 0.52 to 0.52 ± 0.36, from 215 ± 150 to 
36.50 ± 26.80 and from 33.53 ± 12.30 to 1.77 ± 2.70 for pyrimethamine, sulfadoxine, and dap-
sone, respectively [57]. Probenecid also reverses the chloroquine resistance of P. falciparum 

and increases piperaquine activity in vitro [57]. Also, probenecid chemosensitize a multi-
drug-resistant strain V1S of P. falciparum to piperaquine [59]. Moreover, antimalarial drugs 
such as artemisinin and artesunate also inhibit Panx1 channel [60]. For example, artesunate 
causes a concentration-dependent inhibition of membrane current mediated by Panx1 chan-
nels with an IC50 of 450 μM, while 200 μM artemisinin causes a membrane current reduc-
tion of about 20% in Xenopus oocytes [60]. Moreover, artemisinin also inhibits dye uptake 
with an IC50 of 0.14 μM in frog erythrocytes [60]. Moreover, 100 nM mefloquine signifi-
cantly reduces voltage-activated Panx1 channel currents in astrocytes from Cx43-null mice 
[61]. Also, mefloquine blocks dye uptake induced by ATP in astrocytes from Cx43-null mice 
[61]. In addition, it has been described that Entamoeba histolytica induces ATP release into 
the extracellular space through opening of Panx1 channels in macrophages [62]. Incubation 
with 500 μM 10Panx1, a mimetic blocking peptide of Panx1 channels, abolished ATP release 
in response to E. histolytica in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 
human monocytic cells [62]. The same results were observed with 100 μM carbenoxolone or 
250 μM probenecid [62].

3.3. Innexins (Inxs)

It has been demonstrated that Inx proteins have a critical role for mediating anti-Plas-
modium responses in Anopheles gambiae [63]. It has been shown that AGAP001476 
mRNA levels were induced during Plasmodium infection in Anopheles midguts [63]. The 
carbenoxolone-treated mosquitoes showed an increase in both Plasmodium oocyst number 
and infection rate [63].

4. Possible role of gap junction proteins in parasite infections

Although the role of gap junction proteins in parasitic infections has not been fully elucidated, 
they could participate in responses that include changes in plasma membrane permeability, 
signalling, and inflammasome activation.
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4.1. Alteration of the host cell membrane permeability

A common condition and often necessary for infection is the alteration of the host cell 
membrane permeability [64, 65], and hemichannel activity can considerably affect the per-
meability of the cell membrane in mammalian cells [66]. For example, T. cruzi alters the 
plasma membrane permeability in host cells during different stages of the disease [65, 67–

69]. Another parasite that alters the plasma membrane permeability is P. falciparum. This 
parasite invades and replicates asexually within human erythrocytes and enhances plasma 
membrane permeability in different stages of the disease [70, 71]. The apicomplexan Babesia 

divergens also increases the membrane permeability of erythrocyte [64]. The mechanism for 
such erythrocyte permeabilization is different in transport rates, solutes selectivity, and 
temperature dependence compared with the alteration induced by P. falciparum [64].

4.2. Intracellular Ca2+ mobilization

Gap junction proteins participate in Ca2+ signalling, and they constitute one pathway for inter-
cellular Ca2+ wave propagation in cardiomyocytes, astrocytes, and osteocytes, among other cell 
types [72]. In addition, Cx26, Cx32 and Cx43 HCs are permeable to Ca2+ [73–76] and might be 
involved in initiation of intracellular rise in Ca2+ signals. In protozoan infections, a key process 
in early stages of invasion is the rise in cytosolic Ca2+ concentration [77]. For example, when 
T. cruzi comes into contact with the host cell, triggers a transient increase in cytosolic Ca2+ con-
centration that induces lysosome exocytosis in host cells [65, 77]. This process is required for 
cell invasion, because chelating the intracellular Ca2+ transients in host cells reduces the entry 
of the parasite into the cell [78]. Figure 1 shows a model of the possible participation of pan-
nexin channel in intracellular Ca2+ mobilization during the invasion by T. cruzi.

Figure 1. Model of the possible participation of gap junction proteins in the invasion of host cells by Trypanosoma cruzi. 
Parasites release a virulence factor, which opens Pannexin 1 channels allowing the release of ATP to the extracellular 
milieu. The ATP activates P2Y

1
 receptors and promotes Ca2+ release from intracellular stores generating intracellular Ca2+ 

transients, which induces the opening of new hemichannels formed by connexin or pannexins. These effects promote 
the Trypanosoma cruzi invasion.
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4.3. Activation of the inflammasome

The inflammasome activation triggers innate immune defence by inducing the processing 
of pro inflammatory cytokines, such as IL-1, in a caspase 1-dependent manner [79]. Panx1 
channels play a key role in inflammasome activation [79]. It has been proposed that small 
pathogen-associated molecule patterns (PAMPs) can gain cytosolic access via the P2X

7
 recep-

tor/Panx1 (P2X
7
R/Panx1) complex and activate the inflammasome [79].

5. Conclusions

Parasitic infections affect predominantly underprivileged areas of the world and represent serious 
life-threatening conditions in high-risk groups such as young children, elderly, and immune defi-
cient subjects. Also, therapeutic options include a wide variety of compounds with considerable 
toxic and undesirable side effects. The introduction of knockout animals and specific inhibitors 
has increased our understanding about the role of Cx, Panx, and Inx proteins in the pathophysi-
ology of many infectious conditions. However, their participation in infections caused by para-
sites is not completely elucidated. A variety of methods have been used to evaluate changes in 
gap junction protein expression during parasite infections. These methods include Western blot, 
immunofluorescence, or functional studies such dye uptake, dye coupling, or current measure-
ments with electrophysiological techniques. In summary, the available data suggest that the 
parasite infections modulate gap junction proteins in host cells. In this context, characterization 
of gap junction proteins and their functions in protozoan parasites might facilitate the design of 
effective new therapies to fight protozoan infections such as malaria and Chagas disease.
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