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Abstract

The ruminant mammary gland (MG) is an important organ charged with the production 
of milk for young and human nourishment. Many factors influence MG productivity, 
including nutrition, genetics, breed, epigenetics (including non-coding RNA [ncRNA]), 
disease pathogens and other environmental factors. In recent years, increasing research 
is beginning to determine the role of non-coding RNA in MG functions. Non-coding 
RNAs (small interfering RNA [siRNA], microRNA [miRNA], PIWI-interacting RNA 
[piRNA], small nucleolar RNA [snoRNA] and long non-coding RNA [lncRNA]) are a 
class of untranslated RNA molecules that function to regulate gene expression, associ-
ated biochemical pathways and cellular functions and are involved in many biological 
processes. This chapter presents a review of the current state of knowledge on the role of 
ncRNAs (particularly miRNAs and lncRNAs) in the MG and lactation processes, lacta-
tion signalling pathways, lipid metabolism, MG health of ruminants as well as miRNA 
roles in milk recipients. Finally, the potential application of new genome editing technol-
ogy for ncRNA studies in MG development, the lactation process and milk components 
is presented.

Keywords: non-coding RNA, microRNA, long non-coding RNA, mammary gland, 
lactation, genome editing, signalling pathways

1. Introduction

As one of the remarkable products of evolution, lactation is a very dynamic and complex 
process. The process of lactation involves the development of the mammary gland (MG) 
and the synthesis and secretion of milk. The lactation process is affected by many factors, 
including genetics, epigenetics, non-genetics and environmental factors. The knowledge of 
lactation regulation is not only important for improvement of milk production and quality 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



but also provides a model for basic cellular processes (proliferation, differentiation, survival 
and death) [1], which may have important implications for productivity (milk yield) and 
disease status (e.g. breast cancer, mastitis, etc.). The endocrine regulation and physiological 
processes as well as the signalling pathways involved in these processes are fairly understood 
[1, 2]. Facilitated by the release of the whole genome sequences of cattle, sheep and goat [3–6] 
as well as availability of single nucleotide polymorphism (SNP) genotyping chips [7–11], 
the genetic mechanisms of ruminant lactation have been extensively explored (Figure 1).  

As a consequence, many quantitative trait loci (QTL) and genetic markers for lactation-
related traits (for instance, milk yield, milk components, lactation persistency, etc.) have 
been detected and catalogued in the animal QTL database (http://www.animalgenome.org/
cgi-bin/QTLdb/index).

Transcriptomics research by both microarray and RNA sequencing methods has allowed for 
a better understanding of the genes and regulatory networks of complex traits in animals 
[12], such as the biosynthesis of major milk components (reviewed in Refs. [13, 14]). Emerging 
studies now suggest that non-coding RNAs (ncRNAs) are key regulators of mammary gland 
development and lactation processes [15–17]. The results from the ENCODE (ENCyclopedia 
of DNA elements) project [18, 19] indicate that only a small portion of the genome, about 

Figure 1. Growing research by year in the field of cattle genomics and transcriptomics (including non-coding RNA) from 
January 2000 to August 2016.

Current Topics in Lactation56



1.5%, codes for proteins while most of the genome is transcribed into non-coding regulatory 
elements or ncRNA. This indicates that ncRNAs play significant regulatory roles in com-
plex animal traits. A similar project to functionally annotate regulatory elements in animal 
genomes (FAANG project, www.faang.org) started in 2014 [20] and will generate data that 
will foster understanding of how the genome is read and translated into complex animal traits 
of economic importance. Indeed, the recent explosion of data on the regulatory functions 
of ncRNAs proves their importance in the regulation of multiple/major biological processes 
impacting development, differentiation and metabolism. This chapter explores recent devel-
opments on the expression, regulation and functions of ncRNAs, in particular microRNA 
(miRNA) and long non-coding RNA (lncRNA), in ruminant (cattle, sheep and goat) mam-
mary gland development and the lactation process, as well as illustrate our own studies on 
the roles of ncRNAs in these processes.

2. Non-coding RNAs: biosynthesis and classification

Non-coding RNAs are transcribed RNA molecules that are not translated into proteins. They 
play a remarkable variety of biological functions by engaging target transcripts through 
sequence-specific interactions. They regulate many biological processes, including gene 
expression (transcription, RNA processing and translation), protect genomes from  foreign 
nucleic acids and can guide DNA synthesis or genome rearrangement [21]. In general, 
ncRNAs are classified according to size or function. According to size, ncRNAs are classified 
as (1) small or short ncRNA: <200 nucleotides in their mature forms (e.g. miRNA, PIWI-
interacting RNA [piRNA], small nuclear RNA [snRNA], small nucleolar RNA [snoRNA] and 
endogenous small interfering RNA [siRNA]) and (2) long ncRNA: >200 nucleotides long 
(e.g. lncRNA). According to function, ncRNAs are classified as (1) housekeeping or trans-
lation-related ncRNAs: they are constitutively expressed and crucial for normal cellular 
function and viability and include tRNA, rRNA and snoRNA and (2) regulatory ncRNAs 
and include miRNA, lncRNA, siRNA and piRNA [22, 23]. The biogenesis of these various 
types of ncRNAs has been discussed extensively [23–26]. This chapter focuses  particularly 
on the involvement of miRNA and lncRNA in ruminant mammary gland development and 
lactation.

2.1. MicroRNAs

MiRNAs are an abundant class of short ncRNAs of about 22 nucleotides long. They regu-
late a variety of cellular processes through post-transcriptional repression of gene expression. 
MiRNAs consequently control the activities of about 60% of all protein-coding genes and par-
ticipate in the regulation of almost every cellular process investigated in mammals [25]. Mature 
miRNAs are generated from a series of biochemical events beginning in the nucleus and culmi-
nating in the cytoplasm [24, 27, 28]. Briefly, these events occur in several main steps as follows: 
(1) nuclear processing of primary miRNA transcripts (pri-miRNAs) into precursor miRNAs 
(pre-miRNAs) by the DiGeorge Syndrome Critical Region Gene 8 (DGCR8)/Drosha complex, 
(2) cytoplasmic processing of pre-miRNAs into imperfectly paired miRNA duplexes by dicer, 
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and (3) preferential incorporation of one strand (the ‘guide’ miRNA strand) onto the RNA-
induced silencing complex (RISC) [25]. Most miRNA genes located in introns of protein-coding 
genes share the promoter of the host gene [29]. MiRNAs often have multiple transcription start 
sites and regulate gene expression through inhibition of translation initiation or elongation, co-
translational protein degradation and premature termination of translation [25, 30].

Since the discovery of the first miRNA, lin-4, in 1993 [31] and aided by deep sequencing 
technologies and developments in bioinformatics processing of deep sequence data, thou-
sands of miRNAs have been detected in humans, mouse, farm animal species and plants and 
deposited in the miRNA data base (Table 1). Due to the crucial regulatory roles of miRNAs 
in many biological processes across species, they are being considered as candidate biomark-
ers of various human diseases, such as autoimmune [32], metabolic [33] and cardiovascular 
diseases [34], and various types of cancers [35–37].

2.2. Long non-coding RNAs

Long non-coding RNAs are a diverse collection of non-coding RNAs with emerging regula-
tory roles in many biological processes in every branch of life [26, 40–42]. LncRNA transcripts 
are >200 nucleotides long and constitute the largest portion of the mammalian non-coding 
RNA transcriptome [40]. LncRNA closely resembles mRNA than other classes of ncRNA in 
terms of their biogenesis pathways and form. Most lncRNAs are transcribed by the activities 
of RNA polymerase II, have a 5′ terminal methylguanosine cap and are often spliced and 
polyadenylated [41]. Some non-polyadenylated lncRNAs arise through alternative pathways 
probably expressed from RNA polymerase III promoters [43, 44] or arise during splicing and 
small nucleolar RNA production [45]. Furthermore, some lncRNAs are regulated in different 
ways at different stages of their biogenesis, maturation and decay [26]. Thousands of genes 
encoding lncRNAs have been identified in mammalian genomes (including livestock species), 

Species MiRNA lncRNA

Precursor Mature Transcripts Genes

Cattle 808 793 22,386 23,696

Sheep 106 153 –

Goat 267 436 –

Pig 382 411 –

Chicken 740 994 13,085 9681

Human 1881 2588 141,353 90,062

Mouse 1193 1915 117,405 79,940

Table 1. Number of detected miRNAs and lncRNAs in farm animal species, mouse and human*.

*Data source: MiRBase release 21 (http://www.mirbase.org/[38], and NONCODE database (www.noncode.org, Noncode 
2016 [39]).
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birds and plants studied so far and deposited in the NONECODE database (www.nonecode.
org [39], Table 1).

3. MicroRNA in mammary gland development and lactation biology

3.1. Occurrence of microRNA in ruminant mammary gland and in milk

The regulatory roles of miRNAs in livestock species have emerged and are growing 

quickly [46, 47]. The most recent release of miRBase (release 21, http://www.mirbase.org/, 
[38]) contains 793 mature miRNAs for cattle, 436 for goat and 153 for sheep [38] (Table 1). 

However, with the increase in the application of RNA sequencing in expression profiling of 
miRNAs in different livestock species, the number of novel livestock miRNAs is expected 
to increase.

3.1.1. Cattle

The profiles of miRNAs in bovine MG tissue or milk have been investigated using different 
approaches, such as microarray [48, 49], genome sequencing [4] and RNA sequencing [50–

57]. A total of 496 miRNA genes were identified following sequencing of the cattle genome 
of which 135 were novel [4].The expression profiles of miRNAs in MG tissues and cells 
facilitate discovery of novel miRNAs and also identification of candidate miRNAs for differ-
ent cell types, lactation stages, periods, disease response and so on. Before the release of the 
bovine genome sequence, Gu et al. [49] pioneered miRNA discovery in the bovine MG by 
cloning and sequencing small RNAs from MG tissue followed by identification of 59 distinct 
bovine miRNAs. Using next-generation sequencing techniques, Chen et al. [58] identified 
230 and 213 known miRNAs in cow colostrum and mature milk, respectively. The authors 
also observed that 108 and 8 miRNAs were upregulated and downregulated, respectively, in 
colostrum compared to mature milk [58]. Using microarray, Izumi et al. [59] identified 100 
and 53 known miRNAs in colostrum and mature milk, respectively. Using Solexa sequenc-
ing method, Li et al. [60] reported 884 unique miRNAs sequences in the bovine MG (283 
known, 505 novel and 96 conserved miRNAs). Le Guillou et al. [61] identify 167 novel miR-
NAs in the bovine MG, many of which were also detected in mouse MG. Analysing three 
milk fractions (fat, whey and cells) and mammary gland tissues, we reported 210, 200 and 
249 known and 33, 31 and 36 novel miRNAs in milk fat, whey and cells, respectively, and 
321 known and 176 novel miRNAs in mammary gland tissues [62]. Deep sequencing the 
milk fat across the lactation curve, we also identified a total of 475 known and 238 novel 
miRNAs [63].

3.1.2. Goat

A total of 487 miRNAs were identified when the goat genome was sequenced and the largest 
miRNA clusters were found on chromosome 21 [6]. Using the Illumina-Solexa high-through-
put sequencing technology to analyse goat MG tissues during early lactation, Ji et al. [64] 
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reported 131 novel and 300 conserved miRNAs. Using the same method (Illumina-Solexa 
sequencing), Li et al. [65] reported 346 conserved and 95 novel miRNAs in goat MG tissues 
from dry off and peak lactation does.

3.1.3. Sheep

Most miRNAs identified in sheep come from tissues other than the MG. For example, 
Caiment et al. [66] identified 747 miRNAs from the skeletal muscle through deep sequenc-
ing, whereas McBride et al. [67] reported 212 miRNAs from sheep ovarian follicles and 
corpus lutea at various reproductive stages. In the MG, Galio et al. [68] showed the presence 
of three known miRNAs including miR-21, miR-205 and miR-200 family in pregnant and 
lactating sheep.

3.2. MicroRNA function in ruminant mammary gland and milk synthesis

3.2.1. Expression patterns of microRNAs in lactation stages

3.2.1.1. Temporal and spatial expression of microRNAs

Indication of involvement of miRNAs in MG functions was gained through observation of 
differences in type and expression levels of miRNAs between lactation stages, under differ-
ent nutritional regimes and presence of disease pathogens. Li et al. [50] identified 56 miRNAs 
that were significantly differentially expressed between lactation and non-lactation periods. 
Similarly, Wang et al. [48] detected 12 downregulated miRNAs (miR-10a, miR-15b, miR-16, 
miR-21, miR-33b, miR-145, miR-146b, miR-155, miR-181a, miR-205, miR-221 and miR-223) 
in the dry period (30 days prepartum) compared to early lactation period (7 days postpar-
tum) and one upregulated miRNA (miR-31) in early lactation compared to the dry period. 
Previously, we examined miRNA expression pattern during a lactation cycle to explore it 
regulatory mechanisms during lactation using milk fat as input tissue for sampling [63]. In a 
previous investigation, we have shown that milk fat miRNA transcriptome closely resemble 
the miRNome of MG tissue [62]. We collected samples at the lactogenesis (LAC) (day 1 and 
7), galactopoiesis (GAL) (day 30, 70, 130, 170 and 230) and involution (INV) (day 290 and 
when milk production dropped to 5 kg/day) stages from nine cows for deep sequencing 
[63]. We observed that 15 miRNAs (miR-30a-5p, miR-30d, miR-21-5p, miR-26a, miR-148a, 
let-7a-5p, let-7b, let-7f, let-7g, miR-99a-5p, miR-191, miR-200a, miR-200c, miR-186, miR-92a) 
were highly expressed across lactation stages [63]. MiR-148a and miR-26a were the most 
abundantly expressed accounting for more than 10% of the read counts in each stage of 
lactation. We also performed a differential expression (DE) analysis and detected miR-29b/
miR-363 and miR-874/miR-6254 as important mediators of transition signals from LAC to 
GAL and from GAL to INV stages, respectively [63]. Furthermore, DE analysis indicated 
various patterns of miRNA expression across the lactation curve. For instance, some miR-
NAs were highly expressed during early lactation (lactogenesis) followed by decreased 
expression at later stages, whereas others were slightly expressed during early lactation but 
showed increased expression during mid-lactation and decreased expression during late 
lactation and vice versa [63] (Figure 2).
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The temporal expression pattern of miRNAs has been reported in other ruminant species. 
For example, Galio et al. [68] reported a change in the expression pattern of miR-21, miR-205 
and miR-200 family in MG tissues from pregnant and lactating sheep. From the early, mid-
dle and late stages of pregnancy and during lactation, the expression of miR-21 and miR-25 
decreased, whereas miR-200 family (miR-200a, miR-200b, miR-200c, miR-141 and miR-429) 
showed increased expression [68]. Similarly, investigating the expression pattern of miR-
NAs during early and peak lactation and dry period, Li et al. [65] identified 15 differentially 
expressed miRNAs when comparing peak lactation and dry period including three signifi-
cantly highly expressed miRNAs (miR-2887, miR-451 and miR-2478) during peak lactation 
and 12 significantly highly expressed miRNAs (miR-199b, miR-128, miR-25, miR-145, miR-98, 
miR-222, miR-181b, miR-199a-3p, miR-93, miR-221, let-7b and let-7c) during the dry period.

3.2.1.2. MicroRNAs synergistically regulate lactation control mechanisms

A wealth of evidence indicates that several miRNAs can work together to regulate target genes 
in the same or different biological pathways [69, 70]. We have successfully characterized a 
group of highly interacting miRNAs (modules) using a weighted co-expression network anal-
ysis [71] and correlated important miRNA modules to milk yield and milk components [72]. 

Figure 2. Differential miRNA expression patterns during a bovine lactation curve. (a) Fold change values of six miRNAs 
whose expression patterns changed significantly during each lactation switch and (b) box plots of their normalized 
read count values by lactation day. 1LAC: lactogenesis; GAL: galactopoiesis; INV: involution; 2D: downregulated and 
U: upregulated.
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We identified three consensus (BLUE [62 miRNAs], TURQUOISE [133 miRNAs] and BROWN 
[59 miRNAs]) modules and the GREY module reserved for unclassified genes, throughout lac-
tation stages (Figure 3). Based on module trait relationship, we were able to determine impor-
tant modules (with absolute correlation >0.6) for milk components at each lactation stage. The 
BROWN and BLUE modules were highly related to protein and somatic cell count, respec-
tively, in early lactation, the BLUE module to somatic cells in middle lactation and the BLUE 
module to urea and lactose in late lactation stage. We also found the most important compo-
nent or hub miRNAs, which potentially coordinated miRNA synergetic mechanisms in their 
respective modules. MiR-149-5b and miR-874 were hub miRNAs in the BLUE module for milk 
somatic cells at early and middle lactation, respectively, whereas miR-330 was the hub miRNA 
in the BLUE module for milk urea and lactose at late lactation (Figure 3). Three miRNAs (mir-
149-5b, miR-874 and miR-30) in the BLUE module play important roles in cell cycle [73–77], so 
it could be expected that these miRNAs regulate secretion of somatic cells in milk from MG.

3.2.2. Networks and pathways regulated by microRNAs during a lactation cycle

Through their target genes, miRNAs have been shown to control signal transduction in differ-
ent species [78]. MiRNA roles in important pathways such as transforming growth factor beta 

Figure 3. Important consensus modules and their hub miRNAs for milk component traits in different lactation periods. 
(a) Dynamic cut tree (dendrogram) based on topological overlap distance in gene expression profile; (b) module trait 
relationship in early, middle and late lactation and (c) hub miRNAs in the modules. GREY colour is for genes that do 
not belong to a specific module.
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(TGF-β), prolactin and protein kinase signalling in MG development and lactation have been 
reviewed by several authors [79–83]. MiRNA regulation of three important signalling path-
ways (NOTCH, PTEN and HIPPO) in MG and breast cancer cells was recently reviewed [15]. 
Important miRNAs regulating these pathways include mir-34, mir-29, mir-146, mir-199 and mir-
200 families for NOTCH signalling pathway, miR-21 and miR-155 for PTEN signalling pathway 
and miR-934 for HIPPO pathway. In Canadian Holstein cows, we performed the enrichment of 
differentially expressed miRNA target genes to signalling pathways and noted that relevant sig-
nalling pathways for transition between lactation stages are involved in apoptosis (PTEN and 
SAPK/JNK), intracellular signalling (protein kinase A, TGF-β and ERK5), cell cycle regulation 
(STAT3), cytokines (prolactin), hormone and growth factors (growth hormone and glucocor-
ticoid receptor). PTEN is an important target gene for miR-29b in the regulation of mammary 
gland development [84]. PTEN signalling is crucial for the activities of prolactin autocrine [85]. 
The initiation of lactation is known to require induction of autocrine prolactin, and the level of 
this autocrine is known to be endogenously regulated by the signal of PTEN-PI3K-AKT path-
way [85]. Figure 4 is an illustration of some miRNAs that target genes in relevant signalling 
pathways during lactation [63]. Pathways, such as PTEN and growth hormone signalling, have 
been identified as important for regulatory mechanisms during lactation [85, 86].

Figure 4. Illustration of miRNA-gene-pathway networks obtained from dynamic differentially expressed miRNAs 
during a bovine lactation curve. The outer layer shows miRNAs (blue arrow heads), which targets at least two genes 
(white dots) in significantly enriched pathways (red dots).
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3.2.3. Functional validation of microRNA target genes

Since in vivo experiments for functional validation of MG miRNAs are not feasible, such 
studies have mostly relied on the use of knock-out/mimics and MG-specific cell types. Using 
bovine mammary epithelial cells (BMEC), miR-15a was shown to regulate growth hormone 
receptor, viability of BMEC and the expression of casein genes [86]. MiR-486 regulation of 
lactation by targeting the PTEN gene in cow MGs has been demonstrated [87]. Bian et al. 
[88] recently reported that epigenetic regulation of miR-29s affects the lactation activity of 
BMEC. MiR-181a was shown to regulate the biosynthesis of bovine milk fat through targeting 
acyl-CoA synthetase long-chain family member 1 (ACSL1) [89]. MiR-103 was reported to con-
trol milk fat accumulation in goat MG during lactation [90]. Moreover, miR-27a was shown 
to suppress triglyceride accumulation as well as altered gene expression associated with fat 
metabolism in dairy goat mammary epithelial cells (GMEC) [91]. In another study, miR-135a 
was reported to target and regulate prolactin receptor (PRLR) gene in GMEC [92]. Inhibition 
of the expression of miR-145 in GMEC was shown to increase methylation levels of fatty acid 
synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), peroxisome proliferator-activated recep-
tor gamma (PPARG) and sterol regulatory element binding transcription factor 1 (SREBF1) 

[93]. MiR-24 control of triacylglycerol synthesis in goat mammary epithelial cells by target-
ing FASN gene has been demonstrated [94]. The ability of miR-145 to regulate lipogenesis in 
GMEC through targeting insulin-induced gene 1 (INSIG1) and epigenetic regulation of lipid-
related genes has been demonstrated [93]. MiR-143 was shown to inhibit proliferation as well 
as induce apoptosis of GMEC [95]. MiR130b regulation of PPARγ coactivator-1α suppressed 
fat metabolism in GMEC [96]. In non-ruminant species, many miRNAs, including let-7 family 
members, mir-17/92, miR-30b, miR-93, miR-99a and miR-b, miR-101a, miR-126-3p, miR-138, 
miR-146b, miR-200 family members, mir-203, miR-205, miR-206, miR-210, miR-212/132, miR-
221 and miR-424/50, have been reported to play roles in mammary gland development and 
disease [15]. Some miRNAs with functionally validated targets are summarized in Table 2.

3.3. Nutritional modulation of microRNA expression and function

The miRNA expression profile in response to dietary treatments has been studied in adipose 
tissues of lambs and cattle and bovine mammary gland tissues [56, 100–102]. A change in diet 
that interferes with energy balance has been shown to change miRNA expression pattern in 
cow liver [103]. Wang et al. [104] fed cows with high- and low-quality forage diets (corn stover 
and rice straw) and showed that miR-125b, miR-141, miR-181a, miR-221 and miR-15b changed 
their expression patterns across different tissues including MG. We have examined the expres-
sion pattern of miRNAs following MG adaptation to dietary supplementation with 5% linseed 
oil or 5% safflower oil using miRNA sequencing and identified seven differentially regulated 
miRNAs, including six upregulated (miR-199c, miR-199a-3p, miR-98, miR-378, miR-148b and 
miR-21-5p) and one downregulated (miR-200a) by both linseed and safflower oil. The target 
genes of these seven miRNAs have functions related to gene expression and general cellular 
metabolism and are enriched in four pathways of lipid metabolism (3-phosphoinositide bio-
synthesis, 3-phosphoinositide degradation,  D-myo-inisitol-5-phosphate metabolism and the 
superpathway of inositol phosphate compounds) [51]. The largest number of target genes 
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(39) were associated with two functions (synthesis of lipid and concentration of lipid) related 

with lipogenesis. In goat, Mobuchon et al. [105] detected 30 miRNAs with expression patterns 
potentially modulated by food deprivation (14 and 16 were upregulated and downregulated, 
respectively). Among them, miR-204-5p and miR-223-3p were most remarkably affected by 
food deprivation and potentially played roles in the nutritional regulation of gene expression 
in the MG.

3.4. MicroRNA functions in mammary gland health

MiRNAs have been shown to play roles in bovine infection and immunity in a wide range 
of tissues [54, 106–113]. For mammary gland, Naeem et al. [114] studied the expression of 
14 miRNAs (miR-10a, miR-15b, miR-16a, miR-17, miR-21, miR-31, miR-145, miR-146a, miR-
146b, miR-155, miR-181a, miR-205, miR-221 and miR-223) in MG tissue challenged with 
Streptococcus uberis and identified three downregulated miRNAs (miR-181a, miR-16 and 
miR-31) and one upregulated miRNA (miR-223) in infected versus healthy tissue. Lawless 
et al. [107] showed that 21 miRNAs were differentially expressed upon Streptococcus uberis 

infection of bovine primary epithelial cells. Using BMEC, Jin et al. [108] reported a differen-
tial expression of nine miRNAs (miR-184, miR-24-3p, miR-148, miR-486, let-7a-5p, miR-2339, 
miR-499, miR-23a and miR-99b) upon challenge with heat inactivated Escherichia coli and 

Staphylococcus aureus bacteria. Hou et al. [115] identified three upregulated miRNAs (miR-
296, miR-2430 and miR-671) and one downregulated miRNA (miR-2318) in mastitis affected 
compared with healthy mammary gland tissues. Li et al. [111] sequenced RNA isolated 

MiRNAs Target genes Main consequence Cell References

miR-181 ACSL1 Decrease lipid synthesis BMEC [89]

miR-29 family DNMT3A DNMT3B Decrease global DNA methylation BMEC [88]

miR-152 DNMT1 Decrease global DNA methylation and 
increase expression of Akt and PPARγ

BMEC [97]

miR-486 PTEN Alter expression of downstream genes of 
PTEN (AKT, mTOR pathways)

BMEC [87]

miR-181b IRS2 Wnt signalling pathway in GMEC GMEC [98]

miR-27a PPARγ Decrease triglyceride accumulation GMEC [91]

miR-26a and b INSIG1 Decrease triacylglycerol synthesis GMEC [99]

miR-24 FASN, SREBF1, ACACA Decrease triacylglycerol synthesis GMEC [94]

miR-15a GHR Inhibit viability of mammary epithelial cells BMEC [86]

miR-130b PPARGC1A Repress PPARGC1A expression GMEC [96]

miR-143 BAX and BCL-2 Inhibit proliferation and induce apoptosis GMEC [95]

miR145 INSIG1 Increase fat droplet formation, 
triacylglycerol accumulation and proportion 

of unsaturated fatty acids

GMEC [93]

Table 2. MicroRNAs with functionally validated target genes using ruminant mammary gland cells.
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from S. aureus-induced mastitis and control cows and identified 77 miRNAs with significant 
expression differences between the two groups. Li et al. [116] showed that miR-23 might 
be an important immune miRNA through its target mastitis candidate gene, high mobility 
group box 1 (HMGB1).

3.5. MicroRNA function in milk recipients

Recent evidence suggesting that milk-derived miRNAs may have potential regulatory roles 
in modulating the immune system or metabolic processes of milk recipients still remain 
controversial [117–124]. Currently, there are two hypotheses about miRNA function in 
infants/offspring: the first proposes that milk miRNAs exert physiological regulatory func-
tions after transferring to offspring, and the second assumes that miRNAs do not have any 
function but merely provide nutrition. According to Zhang et al. [117], the rice-derived 
miRNA, miR-168a, can bind to the mRNA of human/mouse low-density lipoprotein recep-
tor adapter protein 1 (LDLRAP1) and inhibit its expression in the liver, and consequently 
decrease LDL removal from mouse plasma. Baier et al. [118] reported that miR-29b-3p and 
miR-200c-3p could be absorbed by humans in biologically meaningful amounts, which 
could affect related gene expression in peripheral blood mononuclear cells while Izumi et 
al. [125] confirmed that whey exosomes containing miRNAs and mRNA could be absorbed 
by human macrophages. These results opened a new aspect of the nutritional control of 
metabolism [119]. However, other studies have not succeeded to validate the hypothesis 
that milk miRNAs exert physiological regulatory functions after transferring to offspring 
[126–129]. For instance, Auerbach et al. [129] observed that drinking bovine milk increased 
circulating levels of miRNAs (miR-29b-3p and miR-200c-3p) but found no evidence that 
they significantly altered miRNA signals after milk ingestion. These authors concluded that 
milk miRNAs likely serve as a source of nutrition but not as post-transcriptional regulators 
in recipients.

4. Long non-coding RNA in mammary gland development and lactation 

biology

4.1. Prolife and expression of long non-coding RNAs

A limited number of studies have examined the occurrence and potential functions of 
lncRNAs in ruminant livestock species [130–132]. A pioneer study screened reconstructed 
transcript assemblies of bovine-specific expressed sequence tags and identified 449 puta-
tive lncRNAs located in 405 intergenic regions [130]. Following this initial study, Weikard 
et al. [131] used RNA sequencing technique and identified 4848 potential lncRNAs, which 
were predominantly intergenic (4365) in bovine skin. In another study, Billerey et al. [132] 
characterized 584 lncRNAs in bovine muscle in addition to significant correlated expression 
between 2083 pairs of lncRNA/protein encoding genes. Koufariotis et al. [133] character-
ized the lncRNA repertoire across 18 bovine tissues including the mammary gland and 
reported 9778 transcripts. Ibeagha-Awemu et al. [134] studied the lncRNA profile of the 
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bovine mammary gland by RNA sequencing and identified 4227 lncRNAs (338 known and 
3889 novel). In goats, Zhan et al. [135] sequenced libraries from developing longissimus 
dorsi fetal (45, 60 and 105 days of gestation) and postnatal (3 days after birth) muscles and 
identified 3981 lncRNA transcripts corresponding to 2739 lncRNA genes. Ren et al. [136] 
identified 1336 specific lncRNAs in fetal skin of Youzhou dark goat (dark skin) and Yudong 
white goat (white skin). Similarly, Chao et al. [137] in a study with aim to identify and clas-
sify new transcripts in Dorper and small-tail Han sheep muscle transcriptomes predicted 
with high confidence 1520 transcripts to be lncRNAs.

4.2. Function of long non-coding RNAs

While the regulatory roles of lncRNAs have been associated with several human disease 
conditions including tumourigenesis, cardiac development, aging and immune system 
development [138–143], little information exist on livestock species. Our previous study 
on bovine mammary gland identified 26 lncRNAs that were significantly differentially 
regulated in response to a diet rich in α-linolenic acid thus suggesting potential regula-
tory roles of lncRNAs in fatty acid synthesis and lipid metabolism [134]. In a study with 
goat fetal muscle tissues at different stages of development, Zhan et al. [135] identified 577 
significantly differentially expressed lncRNA transcripts thus suggesting roles in muscle 
development.

5. Genome editing technology and non-coding RNA

Genome engineering has been considered as the next genomic revolution [144], and it is 
expected to significantly improve livestock production by precision genome editing [145–147] 
favouring markers associated with improved productivity, reproduction and health status. 
The history of genome editing in livestock has been extensively reviewed [145, 148–150]. The 
advent of engineered endonucleases (EENs), including zinc finger nucleases (ZFNs) [151], 
transcription activator-like effector nucleases (TALENs) [152] and clustered regularly inter-
spaced short palindromic repeats (CRISPR/Cas9) [153]), allows to cut a specific position in 
DNA sequence and then use endogenous cellular pathways to direct DNA repair to introduce 
specified alterations to the DNA sequence. Genome-editing approaches have been success-
fully used in different livestock species, such as pig [154, 155], goat [156], cattle [157] and 
sheep [158]. In dairy cows, these technologies have been used to manipulate the genome so 
that they produce specific milk types, such as milk that causes less allergic problems (e.g. 
milk with less β-lactoglobulin protein) [159, 160]. These genome-editing tools also helped 
to improve mammary gland health by generating mastitis-resistant cattle [161, 162]. From 
an animal breeding perspective, a simulation study showed that genomic prediction com-
bined with genome editing could be of benefit [163]. A total of 10,000 additive loci were 
simulated and shown to contribute to the variation in selected traits and benefits could be 
achieved with only 20 of those loci being edited in each selected sire [163]. Similar to other 
genome sequences, miRNA gene sequences within mammalian genomes can be easily edited 
with high efficacy and precision [144]. Targeted miRNA editing will enable revelation of the 
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 complex regulatory circuits governed by miRNAs and realization, in the long term, of their 
full diagnostic and therapeutic potentials. For instance, Chen et al. [164] successfully used 
TALEN to disrupt the function of miR-21 in cancerous cells. A transgenic calf engineered to 
express miRNA-4 and miR-6 showed an absence of β-lactoglobulin and a concurrent increase 
in casein proteins in milk [165].

6. Conclusion and remarks

Up to now, it is well known that the mammalian genome encodes thousands of ncRNAs and 
these ncRNAs play important roles in many processes related to MG development, health 
and disease as well as roles in milk secretion and lactation processes. Regarding animal 
breeding, several ncRNAs target specific processes and their target genes could be impor-
tant biomarkers for specific traits of interest. Therefore, the application of ncRNA to improve 
mammary gland health and milk production as well as enhance milk quality is very promis-
ing. However, the first step is a better understanding of ncRNA function in MG development 
and lactation. In fact, the MG is a complex tissue and lactation is a complicated process, but 
what we known about the regulatory networks underling MG function and the lactation pro-
cess is very limited. For instance, through RNA sequencing, many novel ncRNAs have been 
detected in the MG but knowledge of their actual functions remains elusive. Therefore, inte-
grated ‘omics’ approaches (genomics, transcriptomics, epigenomics and proteomics) should 
be used to identify and explore the potential roles of ncRNAs in mammary gland develop-
ment and lactation biology. Moreover, a miRNA can target hundreds of genes thus making it 
difficult, costly and labour-intensive to functionally validate each miRNA gene target. Thus, 
integrative approaches such as combination of miRNA and mRNA expression in the same 
sample will refine computational predictions and increase our understanding of miRNA 
function and its application.
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