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Abstract

Silicon oxycarbide (SiCxOy) has been extensively investigated due to its wide use in the
Si semiconductor industry in applications that include low-k dielectrics, passivation
layers, and etch-stop layers. Furthermore, SiCxOy research has been exploring its pro-
spective use in numerous other technological usages, such as lighting, energy, and
biological applications. The latter include white light-emitting materials, hydrogen stor-
age materials, gas sensors, anode materials for lithium batteries, and biomedical devices.
SiCxOy materials can intensively luminescence in a broad emission spectral range that
spans the ultraviolet, the visible, and even the near-infrared spectrum, when doped with
erbium. Herein, we present pertinent results on the material behaviors from chemically
synthesized SiCxOy thin films and nanowires. Moreover, their light-emitting properties
and underlying mechanisms for light emission are explored in conjunction with data
from their thin film counterparts, which are also employed as baseline comparison
metric. We further highlight major challenges and promises of such materials.

Keywords: silicon oxycarbide, SiCxOy, Si-O-C, Si-C-O, nanowires, thin films, lumines-
cence, CVD, e-beam lithography, structural properties, optical properties, band tails,
disorder

1. Introduction

In silicon (Si) complementary metal-oxide-semiconductor (CMOS) chip technology, silicon

oxycarbide (SiCxOy) materials have been extensively employed to serve multiple purposes.

For example, SiCxOy materials have been the focus of extensive study due to their applicability

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



as low-k dielectrics, passivation layers, and etch-stop layers to name a few [1, 2]. SiCxOy

materials have also been the focus of studies due to their potential application in a plethora of

other technological applications (e.g. light emission, energy, and bioapplications). In particular,

they have been proposed as candidates for white light-emitting materials [3–5], filters, porous

adsorbents, and catalytic supports [6, 7], as hydrogen storage materials [8], gas sensors [9],

negative electrode materials for lithium batteries [10, 11], and in biomedical devices [12].

Additionally, it has been also shown that SiCxOy can be utilized as a host material to optically

active impurities (rare earth ions). To this end, europium (Eu2+)-doped SiCxOy thin films

synthetized by RF magnetron sputtering [13] as well as erbium (Er3+)-doped SiCxOy thin films

for near-infrared (IR) emission at the commercially useful telecommunication wavelength of

1540 nm have been recently reported [14–16].

The fabrication of luminescent Si-based nanostructured materials for light emission applica-

tions is highly desirable, similarly to how Si-based nanophotonics has undergone great

advancements in recent years [17, 18]. Due to the seamless integration of Si-based materials

with process protocols and technologies developed for semiconductor CMOS technology,

manufacturing costs and process complexity could be also reduced. Furthermore, the extreme

down-scaling methods achieved by CMOS technology offer the opportunity to study new

compelling properties owing to possible confinement effects in one (1D) or two (2D) dimen-

sions (e.g., the reduction of exciton-phonon interactions, the increase of extraction efficiency of

spontaneous emission, and suppression of Auger recombination) [19, 20]. Therefore, the func-

tionality of such nanostructured materials and their devices can be employed in a ubiquitous

way in light emission applications [21]. To this extent, SiCxOy nanowires (NWs) have been

recently shown to exhibit strong room-temperature visible luminescence [22–24].

In parallel, the identification and elimination of potential obstacles that could deteriorate the

luminescence efficiency of such materials (e.g., temperature and excitation power density) needs

to be taken into consideration. Indeed, the luminescence efficiency is known to be influenced by

environmental fluctuations in temperature and pump-power-density changes [25, 26]. These

fluctuations can become critical in luminescence applications such as light-emitting diodes

(LEDs). In these applications, the operating temperature and power density can reach respec-

tively ~150°C and ~200 W/cm2, thus greatly influencing the light output and color chromaticity.

Silicon oxycarbide films have been grown predominantly through low-temperature plasma-

enhanced chemical vapor deposition (PECVD) using an array of silane-based precursors for

the needs of semiconductor industry [27–30]. However, the incorporation of source precursor

fragments and decomposition byproducts in the resulting films has led to the observation of

enhanced stress levels and increased defect density, both of which have detrimental effects on

the optical performance of resulting materials and device structures. Recently, Lin et al. pre-

pared amorphous SiCxOy using a very high-frequency plasma-enhanced chemical vapor depo-

sition (VHF-PECVD) technique [31]. The resulting films exhibited intense room-temperature

blue luminescence, characteristic of Si-related neutral oxygen vacancy defect centers. Ryan

et al. and Vasin et al. showed that a wide variety of SiCxOy with a continuous range of

compositions could be produced by reactive RF-magnetron sputtering [32, 33]. Karakuscu

et al. and Abbass et al. have reported sol-gel-prepared SiCxOy thin films [34, 35], while Vasin

Modern Technologies for Creating the Thin-film Systems and Coatings278



et al. have reported a-SiCxOy:H thin films growth by low-temperature oxidation of carbon-rich

a-SixCy:H thin films [36].

Nevertheless, it is desirable to identify alternative deposition methods, which can inhibit or

minimize processing induced structural and/or compositional damage to SiCxOymaterials due

to phase separation owing to the non-stoichiometric composition. Herein, key findings are

summarized pertaining to the development of a thermal chemical vapor deposition (TCVD)

strategy for the growth of SiCxOy thin films approximating the SiCxO2(1−x) (0 < x < 1) stoichi-

ometry for light emission applications [37, 38]. These studies led to the identification of a

deposition process window for the growth of SiCxOy thin films with strong room-temperature

light emission [3]. Additionally, we present the findings pertaining to room-temperature visi-

ble photoluminescence (PL) from SiCxOy sub-100-nm nanowire materials fabricated by elec-

tron beam lithography (EBL) and reactive ion etching (RIE). These metal-free non-toxic Si-

based nanostructured materials may offer an alternative and environmentally friendly path-

way toward efficient visible light-emitting materials and devices.

2. Synthesis and fabrication of silicon oxycarbide thin films and

nanostructures

2.1. SiCxOy materials grown by thermal chemical vapor deposition: composition control

SiCxOy thin films and their nanostructures are deposited on Si(100) or SiO2 substrates in a hot-

wall quartz tube reactor by thermal CVD at 800°C. A single source oligomer (2,4,6-trimethyl-

2,4,6-trisila-heptane (C7H22Si3)) is utilized as the source precursor for silicon and carbon atoms

and ultra-high purity oxygen (O2) and argon (Ar)/nitrogen (N2) are also employed as co-

reactant and dilution gases. The composition of the resulting amorphous SiCxOy≤1.73 (0.11 < x

< 0.65) thin films is regulated by modifying the oxygen flow rate and, hence, the oxygen partial

pressure in the reaction zone. The films are deposited onto three types of substrates: single-

crystal silicon (c-Si) (100), for composition, structural and optical analysis; double-polished

intrinsic Si and high-quality UV transparent fused silica, for infrared and optical studies. A

subset of the as-deposited SiCxOy films was annealed for 1 h in different ambient (e.g., O2, Ar,

N2, or forming gas (FG, 5% H2 and 95% N2)) at temperatures in the range from 500 to 1100°C.

Detailed description of the deposition and annealing processes can be found elsewhere [37,

38]. The resulting samples were subsequently employed in a comparative analysis of as-

deposited and post-annealed films to determine the effects of thermal treatment on film

structural and optical properties as well as their photoluminescence performance.

Rutherford backscattering spectroscopy (RBS) and X-ray photoelectron spectroscopy (XPS) were

employed to determine the Si, C, and O content in the SiCxOy materials and they were separated

in three different classes, defined by their composition: SiC-like ([O] < 5 at.%), Si-C-O, and SiO2-

like ([C] < 5 at.%). The compositional evolution of the SiCxOy thin films was plotted in the Si-C-O

ternary diagram of Figure 1a along with the SiCxO2(1−x) (0 < x < 1) line, with the latter

representing stoichiometric silicon oxycarbide without any excess of carbon. The upper and

lower limits in SiCxO2(1−x) correspond to SiC and SiO2, for, respectively, x = 1 and 0 [39, 40].
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As is shown in Figure 1a, the composition of the thermal CVD-grown SiCxOy was properly

tailored to closely follow the pure stoichiometric oxycarbide formula over the whole range of the

synthesis process parameters. The SiCxO2(1−x) behavior observed in the samples produced herein

suggests the substitution of two divalent oxygen atoms by one tetravalent carbon atom as the C

concentration in the SiCxOymaterials increases. The latter will be further discussed in Section 3.1.

Furthermore, the observed small deviation from the stoichiometric SiCxO2(1−x) trend suggests

that there is much less excess of C compared to non-stoichiometric compositions reported for

SiCxOy with SiC/SiO2 phases and free carbon, as it is shown in Figure 1 of reference [39].

Due to the presence of methyl groups in the CVD reactants, it is expected to have hydrogen

atoms in the grown silicon oxycarbide thin films whose concentration cannot be quantified by

the RBS or XPS techniques. Instead, the nuclear reaction analysis (NRA) was conducted by

using the 15N + 1H ! 12C + 4He + γ-ray resonant nuclear reaction at 6.835 MeV [41]. Figure 1b

shows the NRA-derived hydrogen concentration measurements of the silicon oxycarbide films

as a function of post-deposition annealing temperature Ta [37]. After the 900°C annealing step,

the hydrogen content is significantly reduced to 5, 2.2, and 4.5 at.%, respectively, for the SiC-

like, Si-C-O, and SiO2-like samples. For annealing temperatures above 1000°C, the hydrogen

content was not detectable (>1 at.%) in all three different types of samples.

The mass density ρ (g/cm3) of thin films was calculated using the elemental compositions

determined by RBS and XPS and the thicknesses measured by scanning electron microscope

(SEM) by employing the following equation:

ρ ¼
D · 1015

d
· 1:66· 10−24

ðASi þ xAC þ yAO þ zAHÞ

ð1þ xþ yþ zÞ
ðgr=cm3Þ (1)

where D is the thickness in rump units, which is related to the planar density, d is the film

thickness, ASi, AC, AO, and AH are the atomic weights of Si, C, O, and H, respectively, and x, y,

and z are the normalized fractional contents, respectively, of C, O, and H.

Figure 1. (a) Si-C-O ternary diagram with the compositions of as-deposited (AD) silicon oxycarbide (SiCxOy) materials,

(b) NRA hydrogen depth profiles of the as-deposited SiCxOy and (c) mass density of SiCxOyHz films [22, 37].
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The density of the silicon oxycarbide films was observed to increase with higher annealing

temperature, due at least partly to the reduction in hydrogen concentration, as shown in

Figure 1c. More specifically, the densities of the as-deposited films are 2.8, 2.2, and 2.1 for,

respectively, SiC-like, Si-C-O, and SiO2-like films. After annealing at 1100°C, the densities were

measured to be significantly higher, with values of 3.3, 2.6, and 2.4 g/cm3 for, respectively, SiC-

like, Si-C-O, and SiO2-like films.

2.2. Nanofabrication of silicon oxycarbide nanostructures

SiCxOy nanostructured systems were fabricated by electron beam lithography and reactive ion

etching, namely periodically ordered sub-100-nm nanowire arrays. A representation of the

baseline nanofabrication scheme of the SiCxOyNWarrays is schematically depicted in Figure 2.

Following the synthesis of SiCxOy thin films, negative hydrogen silsesquioxane (HSQ) (6%

HSQ in methyl-isobutyl-ketone solvent) resist is spun onto SiCxOy wafer pieces—deposited on

Si (100)—at 1000 rpm, followed by a bake procedure for 4 min at 80°C. Line patterns are

exposed using electron beam lithography and then the resulting wafer piece is developed in a

chemical solution bath (low concentration (2.38%) of tetramethylammonium hydroxide

(TMAH) developer), yielding 2D-nanowire HSQ patterns. The HSQ patterns then underwent

a hardening annealing process in Ar/N2 ambient at 500°C, followed by a fluorine-based (e.g.,

combination of CHF3 and CF4 gases) anisotropic RIE to transfer the pattern into the SiCxOy

thin films. The HSQ residue is then removed by wet etching in buffered hydrofluoric (BHF)

acid, resulting in periodically well-defined NWs [22].

Pertaining to the NW fabrication, certain samples underwent a sidewall image transfer (SIT)

process which was performed by conformal deposition of a thin silicon carbide (SiC) hard

mask (sidewall layer) on the patterned photoresist followed by anisotropic RIE [23]. This

allowed for a significant reduction of the critical dimensions as, during the SIT process, the

NW width is defined by the thickness of the SiC layer rather than the resolution of the

Figure 2. (a–d) Fabrication steps of the SiCxOy nanowires (NW) using lithography and RIE. The final NW arrays are

shown in SEM image 1 and (e–h) fabrication steps of the SiCxOy nanowire (NW) arrays using the SIT method by SiC

conformal deposition on the resist followed by RIE to open the SiC top layer, wet etch to remove the resist, and RIE. The

final NWarrays made by SIT are shown in SEM image 2.
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lithography step. The SiCxOy NWs underwent different post-fabrication thermal treatments

for up to 2 h at annealing temperatures in the range of 50–700°C in Ar, O2, or forming gas (5%

H2 and 95% N2) atmospheres.

3. Bonding configuration of silicon oxycarbide materials and nanowires

3.1. Fourier transform infrared spectroscopy (FTIR) characterization of silicon oxycarbide

thin films

Figure 3a shows the Fourier transform infrared spectroscopy (FTIR) data of SiCxOy thin

films in the 400–1700-cm−1 range. The spectra are characterized by three absorption bands

and a shoulder assigned to the Si-O-C rocking, Si-C stretching, and Si-O transverse and

longitudinal-stretching vibration modes, centered at, respectively, ~440, ~800, ~1000, and

~1150 cm−1 [22, 37, 38].

More specifically, the Si-O-C vibration mode (~440 cm−1) is caused by the ≡Si-O-Si≡ rocking

mode due to out-of-plane motion of O in O(3−x)Cx≡Si-O-Si≡CyO(3-y) and is unaffected by the Si-

O-Si-bridging bond-angle variation [42–45]. For samples with C content higher than 20 at.%,

the density of ≡Si-O-Si≡-bonding groups decreased significantly, as dictated by the SiCxO2(1−x)

stoichiometry, suggesting that the backbone-bonding network related to the SiO4 tetrahedral

in SiCxOy changed toward SiC-like structures with significant presence of SiC4 tetrahedral. The

replacement of O atoms by C atoms with increasing C content in films is reflected in the

monotonic increase of the bond area ratio of [Si-C] and [Si-O] as clearly depicted in Figure 3b.

Figure 3. (a) The FTIR absorption spectra of the AD SiCxOy and SiO2 control in the 400–1700 cm−1 range. The peak

positions of the AD SiCxOy appear red-shifted compared to the SiO2 control, due to the incorporation of less electroneg-

ative C, (b) the [Si-C]/[Si-O] bond-area ratio plotted as a function of the C/O content ratio showing a linear increase with

increasing C/O and (c) the Si-O-Si bond angle of the bridging O atom in the SiCxOy [22].
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Additionally, incorporation of the less electronegative C atoms leads to a reduced Si-O-Si bond

angle between tetrahedral (see Figure 3c) [30, 44]. As a result, the density of the as-grown films

is expected to increase with increasing C content, which is in agreement with the density

values shown in Section 2.

Figure 4 displays the FTIR spectra collected in the range from 400 to 2300 cm−1 for the three

classes of as-deposited silicon oxycarbide materials and for their annealed counterparts at 900

and 1100°C [37].

Deconvolution of the FTIR spectra reveals several bonding components in the as-deposited

SiCxOy material systems [30, 37, 45, 46]. In particular, the deconvolution of the absorption

bands in the range of 400–1400 cm−1 for the SiC-like film indicates the presence of a weak C-H

mode at ~530 cm−1, a major Si-C-stretching absorption mode at ~764 cm−1, and a shoulder

assigned to the Si-O-stretching mode at ~960 cm−1. The hydrogen-related absorption bands (Si-

H and C-H) are located at ~2100 and 2900 cm−1, respectively. Finally, the absorption observed

at ~1846 cm−1 is attributed to a C-O-stretching mode.

As seen in Figure 4b, the IR spectrum of Si-C-O film has three characteristic absorption band

regions, originating from the Si-C and Si-O functional groups [37]. In comparison to the SiC-

like matrix films, a new absorption peak is seen at ~440 cm−1, attributed to the Si-O-C vibration

mode discussed above. The IR region from 600 to 1300 cm−1 is broader compared to that in the

SiC-like films, and its deconvolution shows the presence of four peaks centered at 663, 816,

1002, and 1114 cm−1 attributed to Si-C-H, Si-C stretching, and to the transverse optical (TO)

and longitudinal optical (LO) asymmetric Si-O-stretching modes, respectively. Compared to

the SiC-like films, the position of the Si-C absorption peak shifted from 764 to 816 cm−1, owing

to the addition of more electronegative O atoms in the network [47].

The FTIR absorption spectrum of the SiO2-like film is characterized by an intense Si-O-Si mode

(rocking), centered at ~440 cm−1: a Si-O mode (bending) located at ~815 cm−1, and an intense Si-

O vibration mode (stretching) at ~1100 cm−1. The hydrogen-related vibration modes for C-H

and O-H are observed at, respectively, ~2900 cm−1 and in the 3100–3700-cm−1 range.

Figure 4. IR absorption spectra for the as-deposited, 900°C-, and 1100°C- annealed (a) SiC-like, (b) Si-C-O, and (c) SiO2-

like samples [37].
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The findings outlined above describe the evolution of the as-deposited films from silicon

carbide-like to silicon dioxide-like films as the amount of C decreases. Regarding the annealed

samples up to 700°C, the IR absorption behavior remains similar to the case of their as-

deposited counterparts, and it is worth mentioning that changes took place at annealing

temperatures beyond 900°C [44−46].

In the case of the SiC-like sample annealed at 900°C (Figure 4a), the Si-C- and Si-O-stretchingmodes

show minor changes. However, both hydrogen-related modes appear with reduced intensities, as

expected from theNRA results shown in Figure 1b. After the 1100°C annealing, the Si-C absorption

band increased drastically in intensity and its line shape changed fromGaussian tomix of Gaussian

andLorentzian, suggesting the presence of longer-range order (Lorentzian). Additionally, all hydro-

gen-related vibrationmodes are no longer present in the films owing to hydrogen desorption.

Similarly, for the 900°C-annealed Si-C-O a small intensity increase of the Si-C-stretching mode

was observed, while further annealing at 1100°C led to an overall absorption intensity increase

accompanied with a blue shift of the Si-O stretching (Figure 4b). Finally, the annealing studies

on the SiO2-like material (Figure 4c) revealed a significant intensity increase of the Si-O-Si-

rocking and the Si-O-stretching modes.

The bond density is directly proportional to the area of the IR band absorption, and can be

estimated as in reference [37] using the inverse absorption cross section found in literature (3 ·

1019 cm−2 for Si-C [48], 1.4 · 1020 cm−2 for Si-H [49], and 1.35 · 1021 cm−2 forC-H [50, 51]). The Si-C

bonddensity for the as-deposited SiC-like sample is ~2.2 · 1023 cm−3while for the as-deposited Si-

C-O sample is ~5.5 · 1022 cm−3. The dependence of Si-C bonddensitywith annealing temperature

for both SiC-like and Si-C-O is presented in Figure 5a. It shows a constant concentration up to 700°

C annealing temperature. At higher temperatures, the Si-C bond concentration increases owing to

the densification of the materials and hydrogen desorption, which contributes to the increased

availability of Si andCatoms formerly bonded to hydrogen. Indeed, as seen inFigure 5b, the bond

density of the Si-H and C-H bonds decreases with annealing temperature Ta ≥ 900°C for both

classes ofmaterials.

As shown in Figure 5c, the total concentration of hydrogen atoms as determined by the NRA

measurements is greater than the total content of hydrogen as calculated by FTIR. Each H-

related bond corresponds to one H atom; therefore, the H-related bond density corresponds to

the H atomic density. The total atomic density is determined by RBS measurements. This

finding suggests that some H atoms are incorporated during CVD growth and are not chem-

ically bound to other elements. These non-bonded H atoms may be present in the form of

molecular hydrogen formed during the decomposition of the precursor [37].

3.2. FTIR characterization of silicon oxycarbide nanowires

Large SiCxOy NW structures were fabricated on intrinsic Si substrates in order to perform

bonding configuration analysis [22]. The normalized absorbance FTIR spectra of both the as-

deposited SiC0.34O1.52 thin film and the as-fabricated NWs are shown in Figure 6. It was found

that the bonding configuration of the SiC0.34O1.52 NW system was maintained after

nanofabrication as the relative intensities of Si-C and Si-O absorption bands remained the
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same with respect to the as-deposited thin film. A slight absorption increase of the Si-O

shoulder at ~1200 cm−1 may be due to surface oxidation induced on the as-synthesized NWs.

3.3. XPS characterization of silicon oxycarbide thin films

The information about the bonding configuration in silicon oxycarbide thin films extracted by

the means of FTIR analysis was also independently assessed by XPS studies [37]. The XPS

analysis focused on examining the electronic environment (chemical bonding) of the Si 2p, C

1s, and O 1s core energy.

Figure 6. FTIR absorbance spectra of SiC0.34O1.52 thin film and its 70-nm-width NWarray counterpart. Upper inset: SEM

image of the NW array used for FTIR measurements (36 blocks of 490 · 490 μm2 NW arrays). Lower inset: The

conservation of the structural characteristics is also observed in the C=O vibration mode at ~1900 cm−1, which remained

unchanged [22].

Figure 5. (a) Bond density of Si-C, Si-H, and C-H bonds as a function of annealing temperature for the SiC-like films, (b)

bond density of Si-C and C-H bonds as a function of annealing temperature for the Si-C-O films and (c) total atomic

concentration of H, as obtained by means of NRA and FTIR for the SiC-like and Si-C-O samples [37].
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In the case of the as-deposited samples, the Si 2p spectrum of the SiC-like matrix (Figure 7) is

composed of a center peak at 100.3 eV assigned to Si-C bonds and two shoulders centered at

99.2 and 101.2 eV assigned to Si-H- and Si-C-O-type bonding [37, 52]. In the case of the Si-C-O

material, the Si 2p peak broadened and shifted to higher binding energies. The peak

deconvolution showed the presence of three components centered at 100.8, 102.1, and 103.2

eV which are attributed to the Si-C, Si-C-O, and Si-O bonds, respectively [37, 46, 52]. This result

agrees with the FTIR findings where, for both Si-C- and Si-O-stretching modes, the vibration

frequencies increased with increasing O content (incorporation of more electronegative atom).

In the case of the as-deposited SiO2-like material, the Si 2p spectrum shifted to even higher

binding energy and yielded two peaks centered at 102.3 and 103.5 eV which are related to two

different Si-O electronic configurations [37, 53, 54].

4. Optical properties of silicon oxycarbide materials

The structural evolution of the as-deposited silicon oxycarbide materials along the SiCxO2(1−x)

stoichiometry was also reflected in their optical properties. The evolution of the index of

refraction and the optical gap as a function of the C content of the materials and upon

annealing treatments will be addressed in the following subsections.

4.1. Refractive index

The refractive index (n) of SiCxOy is found to exhibit a linear relationship with increasing the

[Si-C]/[Si-O] bond area ratio (Figure 8a). The linear increase of n versus [Si-C]/[Si-O] over the

Figure 7. XPS spectra of the Si 2p peaks for the as-deposited SiC-like, Si-C-O and SiO2-like samples [37].
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range analyzed is found to be partly associated with an increase of mass density in SiCxOy

with increasing [Si-C]/[Si-O] [37]. To understand this behavior, someone can correlate the

refractive index (n) or the dielectric constant (ε = n
2) with the structural parameters through

the Lorentz-Lorenz (L-L) equation [55].

The FTIR measurements in Figure 3 show a decrease in the Si-O-Si bond angle with C

addition, which is expected considering the difference in the electronegativity between C

and O. The mass density and Si atomic content (Si atoms possess higher electronic polariz-

ability than O) of samples with higher carbon concentration is larger as opposed to SiO2-like

samples [56]. It is therefore suggested that the increased index of refraction with increasing

[Si-C]/[Si-O] ratio is due to the variations in bond angles, larger mass density, and higher Si

content. Further increase of the refractive index of all three classes of silicon oxycarbide

materials is also observed upon post-deposition annealing beyond 900°C (Figure 8b). This

behavior is expected considering the densification of SiCxOy materials upon annealing as

shown in Figure 1c [22, 37].

4.2. Optical gap

The observed increase in the refractive index n, as C concentration increases along the SiCxO2(1−x)

stoichiometry, correlates well with the decrease in the optical gap of the films. For example, the

E04 gap, which corresponds to the energy where the absorption coefficient (α) is equal to 104

cm−1 (α(E04)= 10
4 cm−1), is found to decrease with increasing [Si-C]/[Si-O] ratio (Figure 9a). The

Tauc optical gaps, Eg, were also calculated from the optical absorption measurements using

Tauc’s law, (αhν)1/2 = B
1/2(hv-Eg), where α is the absorption coefficient and hν is the photon

energy [38].

Figure 8. (a) The index of refraction at 800 nm of different SiCxOy given as a function of the [Si-C]/[Si-O] bond-area ratio.

The solid line is the linear fit of the displayed data and (b) plot of index of refraction (n) at 800 nm as a function of

annealing temperature [22, 37].
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Similar to E04, the Eg values decrease with increasing [Si-C]/[Si-O]. This behavior can be
explained by considering the larger splitting energy difference between the bonding and anti-
bonding electronic states in Si-O bonds in comparison to Si-C bonds [22, 38, 57].

In addition, as seen in Figure 9a,E04 values are generally higher than theirEg counterparts, similar
to other hydrogenated disordered systems [58]. This could be explained by taking into account
that Tauc’s optical gap refers to the optical transitions between extended states close to the band
edge, while E04 is related to transitions of the extended states away from the band edge [38, 58].

As seen in Figure 9b, both the E04 and Eg gaps decrease with increasing annealing tempera-
ture. It is worth mentioning that the decrease in the optical gap is more pronounced in the
films with higher O concentration. For example, the decrease of the Tauc gap values between
the as-deposited and post-1100°C annealed films are ~0.5, ~0.6, and ~1.4 eV for, respectively,
the SiC-like, Si-C-O, and SiO2-like classes of SiCxOy. It is suspected that the possible precipita-
tion of carbon in the high O-containing systems could be responsible for this phenomenon at
high annealing temperatures. The Si-C bond length (~1.88 Å) is longer than the Si-O bond
length (~1.63 Å). Consequently, a high degree of strain may accumulate in the Si-C sites within
the SiO2 network (e.g., in the SiO2-like sample with <5 at.% C). Thermal annealing may result
in strain relaxation, with the subsequent structural rearrangements perhaps favoring the
formation of carbon clusters, as reported in a previous study [59]. Their optical gap values
may vary between ~0.6 and 3 eV, depending on the cluster size [58, 60]. Consequently, it would
be expected that the precipitation of carbon in O-rich samples (e.g., SiO2-like) could be rela-
tively facile, with the optical gap in these samples decreasing more rapidly with increased
annealing temperatures.

Furthermore, the decrease in optical gap with increased annealing temperatures seems to corre-
late well with the loss of hydrogen. As seen in Figure 9c, hydrogen reduction is accompanied by

Figure 9. (a) E04 and Eg energy values for different SiCxOy materials versus the [Si-C]/[Si-O] bond-area ratio, (b) E04

(spheres) and Eg (circles) values with annealing temperature and (c) E04 values as a function of H content in the films [22,
37].
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a decrease in the energy band gap in the annealed SiCxOy films. The presence of Si-H bonds

(~2000 cm−1) can be an indication of dangling-bond passivation in the material, while the

presence of other hydrogen-bonding configurations may be responsible for forming recombina-

tion centers and increasing the degree of structural disorder [61, 62].

In the as-deposited high C content samples, the Si-H
n
stretching mode is found at ~2100 cm−1

(insets of Figure 4(a–c)). These peaks are attributed to Si-H-related bonds [63, 64]. Considering

the absence of any Si-H
n
bonding (2000–2200 cm−1) in the Si-C-O- and SiO2-like samples, it is

suggested that any dangling bonds in the films remained unsaturated, resulting in enhanced

structural disorder. Furthermore, hydrogen desorption upon annealing would likely contrib-

ute to the formation of additional dangling bonds and defect states, which lead to the

increased density of localized states below the mobility edge, thereby decreasing the optical

gap. This mechanism seems to be taking place in all thermally grown CVD SiCxOy films in this

study.

4.3. Structural disorder and dangling bonds

Regarding the electronic structure of amorphous materials, it is common to expect the presence

of band-tail states and localized defect states. These states exist due to the structural disorder

in materials and may have a significant effect on the material’s performance even at low

concentrations. Therefore, it is important to elaborate on the degree and impact of structural

disorder in the CVD-grown SiCxOy systems.

As it was discussed earlier, thermal annealing causes lowering of the optical gap owing to the

increased optical absorption observed in the SiCxOy materials grown by CVD. The latter is true

even at photon energies well below the optical gaps. The enhanced sub-band-gap absorption is

a result of an increased density of band-tail states and localized defect states [31]. One of the

proposed mechanisms responsible for the increased density of band-tail states upon annealing

is the annealing-induced enhanced bond-angle disorder due to structural reconfiguration and/

or strain relaxation [65]. In this context, the FTIR full-width half maximum (FWHM) values for

both the Si-O- and Si-C-stretching modes in the TCVD SiCxOy films, with the exception of the

1100°C-annealed SiC-like sample, increased after annealing, suggesting that thermal treat-

ments indeed enhance bond-angle distortion (see Figure 4(b and c)).

In the case of SiC-like material annealed at 1100°C, the FTIR spectrum shown in Figure 4a

suggests that a significant amount of crystallization takes place resulting in the Lorentzian line

shape of the infrared absorption band. This suggests that the bond-angle disorder is dramati-

cally reduced. However, the optical absorption for the SiC-like films annealed at 1100°C is

further increased compared to its as-deposited counterparts [38]. This suggests that, in addi-

tion to bond-angle variation, a different type of disorder is also present. Such behavior is

known for amorphous covalent materials where both topological and compositional disorders

are present simultaneously [66].

Furthermore, the deviation of the CVD-grown SiCxOy films from the purely stoichiometric

SiCxO2(1−x) shown in the ternary diagram of Figure 1 suggests that there is a small excess of

carbon that can form homonuclear bonds upon annealing. Also, this deviation increases for
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high C concentration materials, toward the SiC-like class regime. The electronic states associ-

ated with the homonuclear bonds would exist as localized states within the gap due to their

relatively weak bond strength [67, 68].

In this context, electron paramagnetic resonance (EPR) studies on SiCxOy materials, grown by

CVD, showed the presence of unpaired electrons (dangling bonds) [5]. The same study

proposed that one of the major EPR signals may be originated from (≡Si-)3C
• radicals or

associated defects with different backbone atoms bonded to C atom, such as in C-Si-O

configuration [69]. The SiCxO2(1−x) stoichiometry trend of SiCxOy (SiCxO2(1−x)) suggests that

two divalent oxygen atoms are replaced by one tetravalent C, further supporting the presence

of (≡Si-)3C
• radicals in our films, originating from oxygen incorporation into (≡Si-)4C struc-

tures. Consequently, the density of such radicals is expected to increase following thermal

oxidation of (≡Si-)4−nCHn groups, as it was observed, which have not been completely

dehydrated during the film deposition [70]. Similarly, the oxidation of (≡Si-)4−nCHn groups

with one or two back-bonded C atoms to Si may also lead to an increased density of Si-

dangling bonds in SiCxOy. Such dangling bonds may also contribute to the formation of

band-tail states in SiCxOy [5].

5. Photoluminescence properties of silicon oxycarbide thin films and

nanowires

5.1. Visible luminescence emission from SiCxOy thin films

The room-temperature photoluminescence spectra for SiCxOy samples with different C con-

centrations under excitation at 300 nm are shown in Figure 10a. The spectra are characterized

by a broad emission in the whole visible range (350–800 nm). The photoluminescence excita-

tion (PLE) intensity (Figure 10b) shows the presence of a shoulder at low excitation energies

(<3.5 eV) and a steep increase at high excitation energies (>~3.7 eV). This was fit linearly and

the intercept of the fitted line at the photon energy abscissa was taken as the PLE edge. As

shown in Figure 10c, a strong correlation was observed between the values of E04 and the PLE

edge, suggesting that the PL emission energy in the SiCxOy samples may be related to their

optical gap [5].

Based on optical, FTIR characterizations, passivation experiments and electron paramagnetic

resonance measurements, defect-related mechanisms and small sp2-carbon clusters that

could be attributed to white luminescence from SiCxOy thin films were excluded [3, 5]. For

example, structural defects typical seen with EPR measurements in silicon oxides, which

cannot be explicitly controlled by material processing and are not directly related to the

stoichiometry and material characteristics, such as Si-related neutral oxygen vacancies or

non-bridging oxygen-hole centers, were ruled out. Instead, the observed intense white lumi-

nescence originates from the recombination of photogenerated carriers between the energy

bands and at their tail states associated with the Si-O-C/Si-C bonds, as indicated by the direct

correlation between the integrated luminescence intensity and the Si-O-C bond density (see

Figure 11) [3].
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On this, the integrated red and green PL emission bands were added and their normalized

integrated values were plotted along with the intensity of the red-shifted Si-O-rocking (related

to Si-O-C bond density) mode as a function of C content (Figure 11) [3]. A strong correlation

between the emitted luminescence and the Si-O-C bond density in SiCxOy was revealed. This

suggests that the emitted luminescence can be directly associated with the Si-O-C structure in

the materials [5]. Additionally, the PL/PLE analysis revealed a strong similarity in the PLE

behavior for the green/blue band emissions between the SiC control and SiCxOy, suggesting

Figure 10. (a) PL emission spectra from as-deposited (AD) SiCxOy thin films (4.13 eV excitation, ~300 μW), (b) normalized

PLE spectra of the AD SiCxOy samples at the PL maxima. The linear fits (dashed lines) of the steep increase of the PLE

intensities are shown along with the intercept of these straight lines at the excitation energy (PLE-edge values), and (c) E04

and PLE-edge energy values of SiCxOy thin films versus C [5].

Figure 11. Normalized integrated red and green PL emission bands and the integrated FTIR absorption of Si-O-C

functional group at ~440 cm−1. Inset: FTIR absorptions of the Si-O-C-rocking mode in film [5].
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that C-Si/C-Si-O bonding may be also responsible for the excitation path of the observed

luminescence in SiCxOy.

5.2. Band-tail recombination model

Representative forming gas-annealed SiCxOy samples were additionally studied with means of

PL and PLE analyses as presented in Figure 12 [22].

The evolution of the PL peak position in SiCxOy was supported by the band-tail states recom-

bination model, typical of amorphous materials [71]. Upon excitation, the photogenerated

carriers thermalized to lower energies associated with band edges (hopping edge) before they

recombined radiatively (energy plateau in Figure 12b). The PL peak position increased with

the excitation energy up to the Eexc,on value, as the electron population at high-lying band-tail

levels of the conduction band increasing with higher excitation energy. The red shift of Eexc,on

seen with increasing C content in SiCxOy can be ascribed to the observed linear decrease of the

optical gap (Eg) with increasing [Si-C]/[Si-O] and their values almost coincide with the Eg

values of the films [22].

PL dynamics experiments showed a fast decrease of the PL intensity, suggesting the existence

of fast recombination mechanisms in SiCxOy, and the PL decay spectra followed a stretched

exponential law [23]. These findings further support a band-tail states recombination model,

in which carriers recombine by tunneling between spatially separated conduction and

valence band-tail states. Due to the diffusivity/tunneling of the photogenerated carriers

during thermalization in the band-tail states before they recombine and the inhomogeneous

Figure 12. (a) Steady-state PL of the FG-annealed SiCxOy with 12 at.% C content (SiC0.34O1.52) under varying excitation

photon energies (Eexc). The PL intensity increased monotonically by two orders of magnitude with Eexc, suggesting that

the efficiency of photo-carrier generation increases with Eexc, (b) room-temperature steady-state PL peak position depen-

dence on excitation energy of SiCxOy thin films of varying carbon concentrations. With increase in excitation energy, the

PL peak-emission-position blue-shifts until ~Eexc,on (red-dotted line is used as a guide to the eye). Hopping edges are

indicated by horizontal black dotted lines and (c) Eg calculated from Tauc’s law and Eexc,on values as a function of [Si-C]/

[Si-O] bond ratio [23].
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constitution of the band-tail states related to C-Si/Si-O-C bonding, where each state contrib-

utes with a slightly different PL lifetime, a distribution of lifetimes is expected, hence the

stretched exponential behavior. This is inherent in disordered semiconductors, such as amor-

phous Si:H, C:H, SiCx, and SiNx, due to the broad and variable spatial density of these states

[72–74].

To further elucidate on the band-tail states recombination model in SiCxOy, the PL lumines-

cence decay at different emission energies was additionally investigated. The time evolution of

the PL line shape is presented in Figure 13a. It can be seen that during the first 1 ns of the

luminescence decay, the integrated intensity substantially decreased and a red shift, equal to

ΔE = 0.31 eV, in the PL emission peaks occurs for the SiCxOy thin film with 12 at.% C. This red

shift is found to be less for samples with higher C concentration [23].

Furthermore, the PL lifetimes increased as the emission energy was decreased, in agreement

with electron-hole (e-h) hopping within lower-energy tail states, as the rate of thermalization

decreases significantly due to the rapidly decreasing density of band-tail states [75]. Similar

behavior was observed in amorphous semiconductors where the luminescence lifetime

increase is attributed to e-h hopping [74]. Upon FG annealing, the average lifetimes exhibited

higher values compared to their as-deposited counterparts (Figure 13c). Furthermore, the

integrated PL intensity of the FG-annealed films increased significantly along with a blue shift

in peak position (e.g., six times for the sample with 21 at.% C with 0.2 eV blue shift). This

change in lifetimes and PL intensity can be attributed primarily to the passivation of non-

radiative recombination centers present in lower-energy portion of the band-tail states of the

as-deposited films.

The increase in the luminescence lifetime in SiCxOy with low C content can be attributed to the

decrease of non-radiative recombination paths compared to their high C content counterparts.

As the SiCxOy composition evolves from SiC-like to SiO2-like, a decrease of the local disorder is

Figure 13. (a) Time evolution of PL spectrum of SiC0.34O1.52 (Eexc = 3.06 eV). The number associated with each spectrum

indicates the elapsed time (in nanoseconds) after excitation. (b) Raw data of PL decay transients of SiC0.34O1.52 film at

different emission energies (IRF in black). (c) Average lifetimes of FG-annealed SiCxOy films with different C contents at

different emission energies. The average lifetimes of the as-deposited (AD) SiCxOy films with 12 at.% C and 21 at.% C are

also shown (gray symbols) [23].
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expected. As presented above herein FTIR measurements suggest that the degree of bond-

angle disorder decreases with decreasing C content in the chemically grown SiCxOy films.

Additionally, it is expected that in the case of high C content samples, the density of band-tail

states should increase as indicated by their increased sub-bandgap absorption [15, 76]. There-

fore, for SiCxOy films with higher C content (C >14 at.%), a higher density of band-tail states

and enhanced disorder is expected, which results in faster thermalization of the

photogenerated carriers yielding higher decay rates and a tighter lifetime distribution

(Figure 13b) [23].

5.3. Visible luminescence from SiCxOy nanowires

Figure 14a and b shows the normalized room-temperature PLE and PL emission spectra of

SiC0.34O1.52 nanowire arrays. To better understand the visible light emission in SiCxOy NWs,

their PL and PLE properties were explored in conjunction with data from the thin film of the

same composition. The PL emission spectrum of SiC0.34O1.52 NWs exhibits broadband charac-

teristics ranging from blue to deep red, while the PLE spectrum monitored at the peak

luminescence emission (~550-nm) spans from near-UV to blue/green regions of the spectrum.

PLE analysis suggested that the observed luminescence from SiCxOy NWs is related to radia-

tive recombination of photo-excited carriers in band-tail states associated with C-Si/Si-O-C-

bonding groups [5, 22]. Furthermore, a supplementary mechanism, in addition to the pro-

posed band-tail states recombination process, may be needed in order to take into account the

reduced dimensionality of SiCxOy NW. In the case of the NW structure with spatially confined

volume, the statistics of the lowest energy states due to Si-C bonds may be excluded [77].

Furthermore, by nanostructuring the recombination volume is reduced, thus, the tunneling

Figure 14. (a) Room-temperature PLE spectra of 120-nm-thick SiC0.34O1.52 thin film and its corresponding NWs measured

at its emission peak. Almost identical PLE emission spectra between NWs and thin films were observed, suggesting that

there is no change in the excitation path and emission origin of the observed luminescence in SiC0.34O1.52 nanowires, (b)

ensemble steady-state normalized PL spectrum of the SiCxOy NWs array along with the normalized PL spectrum of its

thin film analog (Eexc = 4.1 eV) and (c) average lifetimes of the SiCxOy NWarray with 12 at.% C and its thin film analog at

different PL emission energies [22, 23].
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probability of a carrier between adjacent states at similar energy is expected to decrease.

Consequently, the carriers will be exposed to a smaller number of non-radiative sites [23, 77,

78], resulting in enhanced PL efficiency, PL blue shift, and faster lifetimes with a tighter

distribution as observed in SiC0.34O1.52 (12 at.% C) (Figure 14c). However, it is important to

emphasize that the effects of NW-related surface recombination and optical scattering may not

be ruled out.

5.4. Photo-stability upon thermal oxidation and excitation power density

In addition to PL and PLE studies, the luminescence performance of the SiC0.34O1.52 NWarrays

was investigated as a function of oxidation temperature and excitation power density [22].

The oxidation treatments up to 250°C (Figure 15a) did not cause any change in the composi-

tion and bonding configuration of the SiC0.34O1.52 material. Consequently, the emission inten-

sity and line shape, from SiC0.34O1.52 nanostructured arrays, did not reveal any changes,

suggesting the absence of luminescence degradation due to thermal oxidation. This stability

can be attributed to the similarity of the oxidation rates and activation energies of SiCxOy

materials to those of SiC [79]. Hence, SiCxOy materials (with higher carbon content) appear to

be significantly more resistant to oxidation annealing, compared to its SiO2-like counterparts

(with very low carbon content) [3].

The excitation power dependence study (Figure 15b) showed a linear behavior in the inte-

grated PL with respect to the power density (up to ~800 W/cm2). Similar to the thermal-

oxidation study, the peak position and the line shape of the PL in the nanowires remained

unchanged, suggesting good emission stability at high excitation intensity [22]. The latter is

more supporting evidence suggesting the absence of defect-related localized emission in the

proposed origin of the visible luminescence from SiCxOy nanowires, as no PL saturation at

high powers was observed (e.g., due to state filling of the localized states) [80, 81].

Figure 15. (a) PL spectra of the AD and 2-h-oxygen-annealed SiC0.34O1.52 NW at various temperatures (excitation

wavelength λexc = 457 nm). The inset shows the integrated PL intensity versus annealing temperature and (b) room-

temperature PL spectra of the 70-nm-width SiC0.34O1.52 NWs for different CWexcitation probing power densities (excited

at the λexc = 457.9 nm of an Ar ion laser). The inset shows the linear behavior of the integrated PL intensity as a function of

the excitation power density [22].
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6. Concluding remarks

The optical and luminescence properties of silicon oxycarbide thin films and nanostructured

(e.g., NW) arrays are correlated to their synthesis routes, structural properties, and bonding

configuration. The composition of the chemically CVD-grown SiCxOy thin films approximate

the SiCxO2(1−x) (0 < x < 1) stoichiometry. The index of refraction increases linearly as the [Si–C]/

[Si–O] bond-area ratio increases, accompanied by a linear decrease of the optical gap. The

white (red, green, and blue) emission can be achieved simultaneously from the same SiCxOy

film following a single-deposition process, without the complications encountered in the case

of using nanocrystals (e.g., Si, SiC). In particular, it was determined that the white PL emission

of SiCxOy thin films is strong enough to be seen with the naked eye under bright room

conditions. Based on the PL, FTIR, and EPR analyses, typical structural defects in oxides were

ruled out as the mechanism for white luminescence from SiCxOy. Instead, the observed intense

visible luminescence originates from the recombination of photo-generated carriers between

the energy bands and at their tail states associated with Si-O-C/Si-C bonds. In this regard, the

potential advantages offered by our proposed approach of SiCxOy thin films and NWs range

from color tunability, thermal/photo-stability to enhanced light extraction efficiency and from

cost reduction to environmental considerations. To this end, these compelling behaviors may

provide a pathway for further controlling and enhancing the thermal stability and PL yield of

white light emission from such films and nanostructured materials through optimal engineer-

ing of Si-O-C/Si-C bonds in the matrix.
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