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Abstract

In modern microwave systems, rectangular microstrip patch antennas (RMPAs) are
probably the most investigated topics among the planar antennas. There are several
methods available in literature, for designing and analyzing such antennas, but most of
them are very complex and give only approximate results. In this chapter, we have
discussed the most accurate and updated computer-aided design (CAD) formulations
related to probe-fed RMPA for computing its fundamental input characteristics (reso-
nant frequency and input impedance) and improving radiation characteristics, i.e. gain
and polarization purity (the parameter that signifies how much an RMPA is free from
spurious modes). These formulations have evolved in the last decades and have been
validated against numerous simulations and measurements. The present CAD formulas
for resonant frequency and input impedance can accurately address a wide range of
RMPA with patch width to patch length ratio (W/L) from 0.5 to 2.0, a substrate having
thickness up to 0.23 λg where λg is the guide wavelength and relative permittivity (εr)
ranging over 2.2–10.8. The role of a finite air gap on resonant frequency and gain of an
RMPA have also been presented. The chapter will be surely useful to antenna designers
to achieve a concrete understanding of the RMPA theory.

Keywords: rectangular microstrip antenna, resonant frequency, input impedance, gain,
polarization purity, grounded microstrip patch
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1. Introduction

‘Microstrip antennas’, the class of antennas which has been capturing the attention of the antenna

research community for the last 63 years, starting from the 3rd Symposium on the US Air Force

Antenna Research andDevelopment Program,was proposed firstly byDeschamp and Sichak [1] in

1953. In [1], they proposed a microstrip feeding network for a waveguide systemwhich comprised

of 300 waveguide horn antennas. But, the ‘microstrip patch’, to which all the researchers

associated to the antenna theory are familiar with, was theoretically analyzed by Howell in [2]

and applied into practical applications by Munson in [3] for the first time. Still, the credit of the

authors of the work [1] was to foster a very much new discipline of antenna engineering, and in

addition to this, they highlighted the related performance superiority of this new antenna over

the other commercially available conventional antenna. From 1972 onwards, researchers started

to understand a microstrip patch in two approaches: (i) treating the patch as a lossy and open

resonator cavity [2] and (ii) as an extended section of a microstrip line [3].

In the last four decades, several books [4–11] and collection of research papers [12, 13] have

been published unfolding rigorous analytical and numerical techniques dealing with

microstrip antennas. The computational methods like FDTD, FEM and MOM are very much

versatile in nature particularly in analyzing irregular-shaped patch geometries with huge

various types of substrates, but any of them give neither any physical insights into the radia-

tion mechanism of the antenna nor any closed-form design formulations which are utmost

necessary to any practicing antenna engineer, researcher, academician or scientist. In this

context, cavity resonator model appears to be more effective than the other available methods

to estimate the fundamental input characteristics (i.e. resonant frequency and input imped-

ance) and to improve the crucial radiation characteristics (i.e. gain and polarization purity) for

commonly available microstrip antennas of regular geometries with thin substrate. This

method not only improvises the design steps of antenna design but also aids in achieving

better performance.

In this chapter, the authors have presented comprehensive electromagnetic analyses on the

fundamental input characteristics (i.e. resonant frequency and input impedance) and radiation

characteristics (i.e. gain and polarization purity) of rectangular microstrip antennas with

conventional and suspended geometries in light of the versatile cavity model method and

discussed some improved and closed-form computer-aided design (CAD) formulas. Unlike

other theories and work, the present CAD formulas can accurately address a wide range of

aspect ratio or patch width to patch length ratio (W/L) from 0.5 to 2.0, a substrate having

thickness up to 0.23 λg where λg is the guide wavelength and relative permittivity (εr) ranging

over 2.2–10.8. (Discuss Novelty) A coaxially fed RMPA with length L and width W on a

substrate (εr) above a variable air-gap over the ground plane is shown in Figure 1.

Air gap over the ground plane is shown in Figure 1. The variable air-gap height h1 can be

decreased to zero to achieve the conventional form. The fringing of the electric fields at the

radiating and non-radiating edges of the rectangular patch is taken into account in terms of ΔL

and ΔW, respectively. The present CAD formulas were introduced firstly in [14] by

Chattopadhyay et al.

Modern Antenna Systems10



2. Input characteristics

2.1. Resonant frequency

After the work of Howell [2], Hammerstad [15] proposed comprehensive CAD formulations on

resonance characteristics of an RMPA using the cavity resonator model (CRM) method. Till now,

several theoretical analyses employingCRMmethod [6, 16–18], transmission-linemethod [19, 20],

methodofmoments [21, 22] and integral equation technique [23] are available in literature. But the

CAD formulas presented in [6, 15] are found to be themost popular for the design purpose.

Nevertheless, a close inspections into these works show that the formulas available in [6, 15]

can provide a reasonably good approximation only when the patches have aspect ratio (W/L)

near to 1.5 and the substrate thickness is lower than 0.02 λg, where λg is the guide wavelength

at the resonant frequency fr. Also, the computed fr values using formulas in [6, 15] show errors

in comparison with the measurements which can be found in [24, 25]. Those works [24, 25]

used around 0.04 λg to 0.23 λg substrate thickness. The use of an air gap in between the

substrate and the ground plane has been found in [26–34] which helps in achieving tunability

of an RMPA and enhancing its impedance bandwidth. Earlier, a cavity model was also

discussed in detail in [5, 11]. In this section, authors have emphasized on a better CAD

formulation as found in an earlier work of one of the present authors in [14] using the well-

known CRM method called quasi-static approach [11] to estimate more accurately the domi-

nant and the higher-order resonances in an RMPAwith and without air gap. Here, ΔL and ΔW

Figure 1. Schematic diagram of a coax-fed rectangular microstrip patch antenna (RMPA).
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have been considered as a function of the aspect ratio. In [14] Chattopadhyay et al. considered

an equivalent circular patch with radius a, effective radius aeff and same resonant frequency as

that of the RMPA. This helps to establish a relationship among the fringing parameters ΔL, ΔW

and aeff by equating the zero-order resonant frequencies of both patches as found in one of the

earlier works of Chattopadhyay in [14, 35].

From [35–38] we can write

f 0, r ¼
c

2L
ffiffiffiffi

εr
p (2.1)

where c is the velocity of light in free space. Following the earlier work of Chattopadhyay in

[14, 35], we can assume that both antennas of same resonant frequencies have same circumfer-

ence. Therefore, we can write

Wþ Lð Þ ¼ πa (2.2)

Lþ 2∆Lð Þ þ Wþ 2∆Wð Þ ¼ πaeff (2.3)

In Eq. (2.3) α is the first zero of the derivative of the Bessel function of order n = 1. Now, aeff is

the effective radius of a circular patch due to fringing electric fields as found in [27]:

aeff ¼ a
ffiffiffiffiffiffiffiffiffiffiffi

1þ q
p

(2.4)

where q is the fringing factor calculated from [27] as

q ¼ uþ vþ uv (2.5)

and

u ¼ 1þ ε
�1
re

� � 4

πa=h
(2.6)

v ¼ 2

3t
·

ln pð Þ
8þ πa=hð Þ þ

1 t= � 1ð Þ
4þ 2:6a h= þ 2:9h a=ð Þ (2.7)

t ¼ 0:37þ 0:63εre (2.8)

p ¼ 1þ 0:8 a
h

� �2 þ 0:31a
h

� �4

1þ 0:9 a
h

(2.9)

u, v, t and p all are dummy variables.

εre ¼
εr 1þ h1

h2

� �

1þ εrh1=h2ð Þ (2.10)

where εre is the equivalent permittivity of the two-layer dielectric medium (Figure 1) having a

total thickness h = (h1+h2).

Modern Antenna Systems12



Solving (2.1)–(2.4) and from one of the previous works of Chattopadhyay in [14, 35], one can

write the following relations:

L ¼ 1:7a (2.11)

W ¼ 1:44a (2.12)

∆Lþ ∆W ¼ πa
ffiffiffiffiffiffiffiffiffiffiffi

1þ q
p

� 1

2
(2.13)

An empirical relation is used to determine ΔW in terms of ΔL for a wide range of W/L values,

2 >W/L> 0.5 as

∆W ¼ ∆L 1:5�W

2L

� �

(2.14)

and ΔL can be written as given in one of the previous works of Chattopadhyay in [14, 35]

∆L ¼ πa
ffiffiffiffiffiffiffiffiffiffiffi

1þ q
p

� 1
	 


2 2:5� 0:5 W
L

� �	 
 (2.15)

Now, using the above Eqs. (2.1)–(2.15) discussed above and as in the previous work of

Chattopadhyay in [14, 35], the resonant frequency of an RMPA with a variable air-gap h1 is

found as

f r,nm ¼ c

2
ffiffiffiffiffiffiffiffiffi

εr, eff
p

n

Lþ 2∆L

� �2

þ m

W þ 2∆W

� �2
" #1=2

(2.16)

where εr,eff is the effective relative permittivity of the medium below the patch [14, 27, 35].

εr,eff ¼
4 εre εr,dyn

ffiffiffiffiffiffi

εre
p þ ffiffiffiffiffiffiffiffiffiffiffi

εr,dyn
p� �2

(2.17)

From Eq. (2.16) we can found the dominant mode of an RMPA is TM10. εre is calculated using

(2.10), and εr,dyn is the dynamic dielectric constant as defined in [17, 28] and can be written as

εr,dyn ¼ Cdyn ε ¼ ε0εreð Þ
Cdyn ε ¼ ε0ð Þ (2.18)

Cdyn ¼ C0,dyn þ Ce,dyn (2.19)

where Cdyn is the total dynamic capacitance of the RMPA and suffixes 0 and e denote the main

and fringing components, respectively. C0,dyn and Ce,dyn are determined as discussed in one of

the previous works of the present authors in [14, 35]:
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C0,dyn ¼ γnC0, stat (2.20)

Ce,dyn ¼

1

δ
Ce, stat (2.21)

The values γn and δ are as follows:

γn ¼ 1:0 for n ¼ 0 (2.22)

¼ 0:3525 forn ¼ 1

¼ 0:2865 forn ¼ 2

¼ 0:2450 forn ¼ 3

δ ¼ 1:0forn ¼ 0 (2.23)

¼ 2:0forn ≠ 0

where C0,stat and Ce,stat are the static main and static fringing capacitances of the disc, and these

are [35]

C0, stat ¼ ε0εre
πa2

h
(2.24)

Ce, stat ¼ C0, statq (2.25)

Figure 2 shows the computed as obtained from the previous work of Chattopadhyay in [14,

35] and measured [24] resonant frequencies of an RMPA as a function of substrate thickness h2.

The three measured values for thin and thick substrates show close agreement with proposed

formulations.

Figure 2. Resonant frequency of the dominant mode as function of substrate thickness of the RMPA, εr = 2.33, L = 11 mm,

W = 17 mm, W/L = 1.54 [35].

Modern Antenna Systems14



In [14], Chattopadhyay et al. have also shown the close agreement between the values

obtained using MOM and their theory.

Figures 3 and 4 show the computed (from the previous work of Chattopadhyay in [14, 35]),

simulated and measured resonant frequencies of an RMPAwith W/L = 1.5 having variable air-

gap heights.

The simulated and measured values ranging from no air gap to an air gap of 4 mm show good

agreement with the present formulations. The tunability of the RMPA as a function of the air

gap height has also been studied. Table 1 compares the resonant frequencies as computed

using the presented formulations (as given in the previous work of Chattopadhyay in [14, 35])

with that of Hammerstad [15], James et al. [6] and Chew and Liu [23] for different sets of

RMPAs with W/L ≈ 1.5 and for electrical thickness ranging from 0.037 to 0.166 λg. The

presented formulations show very close agreement with measured data [24] with an average

percentage error of (1.39%) for the present formulations.

Figure 3. Resonant frequency of RMPA versus air-gap height. εr = 2.2, L = 30 mm, W = 45 mm, W/L = 1.5, substrate

thickness h2 = 1.575 mm [35].

Figure 4. Dominant mode resonant frequency of RMPAversus air-gap height. εr = 2.33, L = 30 mm, W = 45 mm, h2 = 1.575

mm [35].
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Moreover, in [14] Chattopadhyay et al. showed the versatility of these formulations in

accurately predicting the higher-order modes of an RMPA for W/L = 1. In [35],

Chattopadhyay has predicted the higher-order modes of an RMPA for W/L = 0.7, 1.2, 1.5,

1.7 extending the work in [14]. One can refer to Table 1 of one of the previous works of

Chattopadhyay et al. in [14] for a closer look into the topic. It is seen that the significant

higher-order modes of an RMPA are TM01, TM02, TM12, TM20, TM30, TM03, etc. When W/L

= 1, TM10 and TM01 become degenerate modes. The separation between resonant fre-

quency of dominant TM10 mode and that of net higher-order mode TM02 is from 2 to

1.25fr,10 for 0.7 < W/L < 2 as discussed in [35] by Chattopadhyay. The effect of TM02 mode

on the radiation characteristics of an RMPA is very detrimental [11, 14, 35], and the two

newest techniques for mitigating this issue are discussed later in this chapter (see Sec-

tion 4.2).

2.2. Input impedance

An RMPA can be represented as an equivalent R-L-C parallel resonant circuit in order to find

out its input impedance [11]. Near resonance of the dominant mode and its input impedance

can be expressed as [39, 40]

Length,

L (mm)

W/

L

Normalized

thickness

(h2/λd)

Measured

fr (GHz)

[24]

Computed

fr (GHz)

[15]

Computed

fr (GHz)

[6]

Computed

fr (GHz)

[23]

Computed fr (GHz) (from

the earlier work of one of

the present authors in [14, 35])

38 1.5 0.037 2.31 2.38

(3.03%)

2.30 (0.4%) 2.37 (2.6%) 2.32 (0.4%)

30.5 1.49 0.047 2.89 2.90 (0.3%) 2.79 (3.4%) 2.90 (0.3%) 2.83 (2%)

19.5 1.51 0.068 4.24 4.34

(2.35%)

4.11

(3.06%)

4.32

(1.88%)

4.18 (1.4%)

13 1.5 0.094 5.84 6.12

(4.79%)

5.70

(2.39%)

6.07

(3.93%)

5.86 (0.3%)

11 1.54 0.110 6.80 7.01

(3.08%)

6.47

(4.85%)

6.90 (1.5%) 6.65 (2.2%)

9 1.55 0.125 7.70 8.19

(6.36%)

7.46

(3.11%)

7.87 (2.2%) 7.73 (0.38%)

8 1.50 0.141 8.27 9.01

(8.94%)

8.13 (1.7%) 8.39

(1.45%)

8.50 (2.7%)

7 1.50 0.148 9.14 9.97

(9.01%)

8.89

(2.73%)

8.69

(4.92%)

9.3 (1.75%)

6 1.50 0.166 10.25 11.18

(9.07%)

9.82

(4.19%)

10.4 (1.46%)

Average error w.r.t measurement [24] 5.21% 2.87% 2.34% 1.39%

Parameters: εr = 2.33, h2 = 3.175 mm, for W/L = 1.5. Note: here, λd = λg = λ0/√εr and λ0 are wavelengths corresponding to

measured frequency.

Table 1. Comparison of the measured [24] and computed dominant mode resonant frequency of an RMPA.
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Zin f ; x0ð Þ ¼ Rr

1þQ2
T f � f

�1
� �2

þ j Xf �
RrQT f � f

�1
� �

1þQ2
T f � f

�1
� �2

2

6

4

3

7

5
(2.26)

where f ¼ f =f r, fr is the dominant mode resonant frequency and Rr is the input resistance at

resonance as [8].

Rr can be expressed as

Rr ¼
4h

πλ0
μη0QT

Lþ 2∆L

W þ 2∆W

� �

cos 2
π 0:5L� x0ð Þ
Lþ 2∆L

� �

(2.27)

where η0 is the intrinsic impedance of free space where η0 = 377 Ω, x0 is the distance from the

centre of the patch and QT is the total quality factor.

QT can be expressed in terms of the losses due to radiation (Qr), dielectric (Qd) and conductor (Qc)

present in the radiating structure as given in an earlier work of one of the present authors in [40]:

QT ¼ 1

Qr

þ 1

Qd

þ 1

Qc

� ��1

(2.28)

In this context, another parameter εr,n is required to calculate Qr and Qd as found in [39]:

εr,n ¼ εreff þ 1

2
(2.29)

Now, Qr, Qd and Qc can be expressed as given in [36, 39], and an earlier work of one of the

present authors in [40]:

Qr ¼
π

4GrZr
(2.30)

Qd ¼
π εr � 1ð Þ ffiffiffiffiffiffiffiffi

εr,n
p

27:3 εr,n � 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2εr,n � 1
p

1

tanδ
(2.31)

Qc ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffi

πfμ0σ
q

(2.32)

where

Gr ¼
W2

90λ2
0

forW ≤ 0:35λ0 (2.33)

¼ W

120λ0
� 1

60π2
for 0:35λ0 ≤W ≤ 2λ0

¼ W

120λ0
for2λ0 < W

and
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Zr ¼
120π W

h þ 1:393þ 0:667ln W
h þ 1:444

� �	 
�1

ffiffiffiffiffiffiffiffi

εr,n
p (2.34)

The same approach is also valid for circular patches, and a detailed discussion on the resonant

frequency and input impedance of a circular patch can be found in [11]. From [11], one can find

that the dominant mode of a circular patch is TM11. The immediate higher-order modes are

TM21, TM01, TM31, etc. The formulas are found to be very accurate in case of substrate with

thin and moderate height.

Cavity model analysis of the resonant frequency and input impedance for a 60°–60°–60°

equilateral triangular patch is found in [5]. The dominant mode of a triangular patch is TM10

[5]. The immediate higher-order modes are TM11, TM20, TM21, etc.

3. Examples

(a)Find out the resonant frequency of an RMPAwith length (L) 18.2 mm and width (W) 28 mm, etched

on a PTFE substrate of height 1.575 mm with dielectric constant 2.33.

(b)Repeat the problem when 1 mm air gap is introduced between substrate and ground plane.

Solution:

(a) The resonant frequency of the patch can be obtained from Eq. (3.1) as

f r,nm ¼ c

2
ffiffiffiffiffiffiffiffiffi

εr, eff
p

n

Lþ 2∆L

� �2

þ m

W þ 2∆W

� �2
" #1=2

(3.1)

As the dominant mode is TM10, n = 1 and m = 0, and therefore the Eq. (3.1) reduces to

f r,10 ¼
c

2
ffiffiffiffiffiffiffiffiffi

εr, eff
p

1

Lþ 2∆L
(3.2)

The expression for effective relative permittivity of the medium below the patch is

εr, eff ¼
4εreεr,dyn

ffiffiffiffiffiffi

εre
p þ ffiffiffiffiffiffiffiffiffiffiffi

εr,dyn
p� �2

(3.3)

and

εre ¼
εr 1þ h1

h2

� �

1þ εrh1=h2ð Þ (3.4)

As air gap height h2 = 0
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εre ¼ εr ¼ 2:33 (3.5)

Fringing factor q is

q ¼ uþ vþ uv (3.6)

where

u ¼ 1þ ε
�1
re

� � 4
πa
h

¼ 0:147 (3.7)

t ¼ 0:37þ 0:63εre ¼ 1:83 (3.8)

and

p ¼ 1þ 0:8 a
h

� �2 þ 0:31a
h

� �4

1þ 0:9 a
h

¼ 27:86 (3.9)

Hence,

v ¼ 2

3t
·

ln pð Þ
8þ πa=hð Þ þ

1 t= � 1ð Þ
4þ 2:6a h= þ 2:9h a=ð Þ (3.10)

Therefore,

q ¼ uþ vþ uv ¼ 0:162

εr.dyn can be calculated using Eqs. (2.18)–(2.25) and (3.6)–(3.10) as

εr.dyn=1.94

and

εr,eff=2.12.

The fringing length ΔL may be computed as

∆L ¼ πa
ffiffiffiffiffiffiffiffiffiffiffi

1þ q
p

� 1
	 


2 2:5� 0:5 W
L

� �	 
 (3.11)

=1.365.

Therefore, the resonant frequency fr,10 becomes

f r,10 ¼
c

2
ffiffiffiffiffiffiffiffiffi

εr, eff
p

1

Lþ 2∆L
¼ 4:916GHz

(b) Now, if h2 = 1 mm,
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εre ¼
εr 1þ h1

h2

� �

1þ εrh1=h2ð Þ ¼ 1:56

εr.dyn = 1.35

and

εr.eff = 1.43

and

u ¼ 1þ ε
�1
re

� � 4
πa
h

¼ 0:278

t ¼ 0:37þ 0:63εre ¼ 1:337

p ¼ 1þ 0:8 a
h

� �2 þ 0:31a
h

� �4

1þ 0:9 a
h

¼ 9:83

Hence,

v ¼ 2

3t
·

ln pð Þ
8þ πa=hð Þ þ

1 t= � 1ð Þ
4þ 2:6a h= þ 2:9h a=ð Þ ¼ 0:0253

Therefore,

q ¼ uþ vþ uv ¼ 0:310

and hence

∆L ¼ πa
ffiffiffiffiffiffiffiffiffiffiffi

1þ q
p

� 1
	 


2 2:5� 0:5 W
L

� �	 
 ¼ 2:52

Therefore, the resonant frequency fr.10 becomes

f r,10 ¼
c

2
ffiffiffiffiffiffiffiffiffi

εr, eff
p

1

Lþ 2∆L
¼ 5:37GHz

(a) Find out the input resonant resistance at the edge of a square patch with length 30 mm and width 30

mm, etched on a PTFE substrate of height 1.575 mm with dielectric constant 2.33.

(b)Find out the optimum feed position.

Solution:

(a) The input impedance of a patch can be expressed as

Zin f; x0ð Þ ¼ Rr

1þQ2
T f � f

�1
� �2

þ j Xf �
RrQT f � f

�1
� �

1þQ2
T f � f

�1
� �2

2

6

4

3

7

5
(3.12)
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where f ¼ f =f r, fr being the dominant mode resonant frequency and Rr is the input resistance at

resonance at the edge of the patch.

Now, fr can be obtained as done in the earlier example, and it is found to be fr = 3.13 GHz.

Rr can be expressed as

Rr ¼
4h

πλ0
μη0QT

Lþ 2∆L

W þ 2∆W

� �

cos 2
π 0:5L� x0ð Þ
Lþ 2∆L

� �

(3.13)

where η0 = 377 Ω and x0 is the distance from the centre of the patch and QT is the total quality

factor, expressed in terms of the losses due to radiation (Qr), dielectric (Qd) and conductor (Qc)

present in the radiating structure as

QT ¼ 1

Qr

þ 1

Qd

þ 1

Qc

� ��1

(3.14)

Now,

λ0 ¼ c f r= ¼ 95:84mm (3.15)

ΔL can be obtained as done in the earlier example, and it is ΔL = 1.381 mm.

Now,

∆W ¼ ∆L 1:5�W

2L

� �

¼ 1:381mm (3.16)

Now,

Gr ¼
W2

90λ2
0

(3.17)

=0.001 as W = 30 mm which is smaller than 0.35 λ0.

εr,n ¼ εreff þ 1

2
¼ 1:165 (3.18)

and

Zr ¼
120π W

h þ 1:393þ 0:667ln W
h þ 1:444

� �	 
�1

ffiffiffiffiffiffiffiffi

εr,n
p (3.19)

=13.41 Ω.
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Qr, Qd, Qc and QT can be calculated as

Qr ¼
π

4GrZr
¼ 53:76 (3.20)

Qd ¼
π εr � 1ð Þ ffiffiffiffiffiffiffiffi

εr,n
p

27:3 εr,n � 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2εr,n � 1
p

1

tanδ
¼ 232:19 (3.21)

Qc ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffi

πfμ0σ
q

¼ 1333:31 (3.22)

QT ¼ 42:27 (3.23)

Therefore, the resonant resistance at edge (x0 = 0.5 L)

Rr ¼
4h

πλ0
μη0QT

Lþ 2∆L

W þ 2∆W

� �

cos 2
π 0:5L� x0ð Þ
Lþ 2∆L

� �

¼ 333:43Ω:

(b) To obtain the optimum feed point, we need to find the point where input impedance of the

patch becomes 50 Ω. From part (a), we get

L+ 2ΔL = 32.762 mm

W+ 2ΔW = 32.762 mm

QT = 42.27

Rr = 33.43 Ω

λg = 95.84 mm

Putting these in Eq. (3.3), we may write

4h

πλ0
μη0QT

Lþ 2∆L

W þ 2∆W

� �

cos 2
π 0:5L� x0ð Þ
Lþ 2∆L

� �

¼ 50 (3.24)

or, (0.5L − x0) = 12.23

or, x0 = 2.77 mm.

4. Radiation characteristics

4.1. Gain enhancement

Any RMPA has a strong influence of substrate permittivity (εr) on its gain. In general, an

RMPA experiences a decrease in gain with the increase of εr. Normally, an RMPA’s gain is

around 6 dBi when PTFE (εr = 2.33) is used as substrate. Here, we have discussed the role of air

substrate on the gain enhancement issue of a simple RMPA. It is also found in an earlier work

of one of the present authors in [41] that the use of air substrate leads to a symmetrical

radiation pattern of an RMPA in its two principal planes.
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The gain of an RMPA loaded with air substrate is directly related to its effective radiating area

Aeff. Therefore, we can simply compare the change of the gain of an RMPA loaded with air

substrate to a conventional (reference) RMPA loaded with PTFE (Figure 5) as discussed in an

earlier work of one of the present authors in [41]:

ΔGindB ¼ 10log10
Aeff =λ

2
0

� �

air

Aeff =λ
2
0

� �

ref

" #

(4.1)

where λ0 is the operating wavelength. For a rectangular patch, as shown in Figure 5, its effective

radiatingarea(Aeff)maybecalculatedasgiveninanearlierworkofoneofthepresentauthorsin[41]:

Aeff ¼ Lþ 2ΔLð Þ W þ 2ΔWð Þ (4.2)

where L andW are the physical length and width of the corresponding patch, respectively. The

quantities ΔL and ΔW represent the effective increments in respective dimensions caused by

the fringing electric fields (discussed in Section 2.1).

Now, the standard formula of gain (G) of any rectangular aperture is (as given in one of the

earlier works of the authors in [42])

G ¼
4πAeff

λ
2

¼ εap
4πAp

λ
2

(4.3)

where Ap is the physical aperture, respectively, and εap is the aperture efficiency. Following

Eq. (4.3) we can write the expression for gain of an RMPA from our earlier work in [42]

Figure 5. Schematic diagram of a rectangular patch using conventional PTFE (εr = 2.33) or air substrate (εr = 1): top and

cross-sectional views.
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G ¼
4π Lþ 2ΔLð Þ W þ 2ΔWð Þ

λ
2

(4.4)

It is seen that when air substrate is used in lieu of PTFE substrate, the electric field lines along

the patch edges becomes more relaxed or loosely bound resulting in an increase in ΔL and ΔW,

and hence Aeff increases. Therefore, gain increases.

The formulations presented in this section are well validated against simulations and measure-

ments [36, 41]. These formulations are found to be very much accurate for L-Ku band and for

wide range of aspect ratios. Figure 6 shows increase in gain when PTFE substrate is replaced

by air substrate for W/L ratio 1.5.

Theoretically computed, simulated and measurement results show very close agreement

among themselves.

4.2. Polarization purity

In general, a conventional RMPA radiates in the fundamental TM10mode along the broadside of the

element, and the field is primarily linearly polarized, called co-polarized (CO) radiation. However,

some orthogonally polarized, called cross polarized (XP), radiations take place due to weak oscilla-

tions of higher-ordermodes inside anRMPA. TheXP radiation becomes considerably prominent for

probe-fed designs particularlywhen the thicknesses aswell as the dielectric constant of the substrate

increase. Thus, the XP radiation becomes an important issue for investigation formicrostrip antenna

research. The (XP) fields are more significant in H plane than in E plane as obtained in our earlier

work in [45]. Therefore, the polarization purity (CO-XP isolation) deteriorates inHplane (only 9 dB),

and the suppression of XP radiation performance of an RMPA to improve its polarization purity is

the challenging issue for antenna research community. Lower polarization purity also limits the use

of RMPA in different array applications There are several techniques to improve polarization purity

of an RMPA such as the use of defected ground structure (DGS) [11], grounding the non-radiating

Figure 6. Variation of the gain enhancement between the microstrip patches with air and PTFE substrate for different sets

of patches having the most common aspect ratio (W/L = 1.5) for εr = 2.33.
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edges of a patch [43, 45] and defected patch surface [46]. A thorough discussion on DGS-integrated

RMPAs can be found in [11, 42]. However, DGS-integrated RMPAs always possess high back

radiation, and only 15–20 dB of CO-XP isolation in H plane can be obtained from those [11, 42]. The

two later techniques canaddress the limitationsofDGSandminimum25dBofCO-XP isolation from

those, and these are discussed clearly in this section. The two techniques are very simple to under-

stand and very effective to implement over awidemicrowave frequency range (L-Ku band).

An RMPA with three pairs of shorting plates placed at the non-radiating edges is shown in

Figure 7. If the non-radiating edges are grounded using pairs of thin strips, the EM boundary

conditions get altered and result in a significant change in field structure with in the cavity.

Hence, the restructuring of field structure within the patch inevitably modifies the radiation

properties of the RMPA. Some recent work in [43, 44] show the XP radiations are typically from

the non-radiating edges of the RMPA. In fact, the oscillations of electric field beneath the patch

in a direction, orthogonal to E plane, produce higher-order orthogonal resonance (higher-order

orthogonal modes). The XP radiations are typically due to those higher-order orthogonal modes

and the fields of those modes, located near the non-radiating edges of the patch. The electric

field vectors for a grounded patch in TMnpmodemay be obtained from our earlier work in [45] as

Figure 7. Schematic diagram of an RMPAwith shorting strips. (a) Top view and (b) side view (L andW are the length and

width of the patch, l1 and d1 are length and width of the shorting plates, εr is the dielectric constant of the substrate and pc
is the feed position).
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Ex∝ cos
nπ

L
y′

� �
sin

pπ

W
z′

� �
(4.5a)

Hy∝ cos
nπ

L
y′

� �
cos

pπ

W
z′

� �
(4.5b)

Hz∝ cos
nπ

L
y′

� �
sin

pπ

W
z′

� �
(4.5c)

where Ex,Hy andHz are the electric and magnetic field components of the dominant mode. The

number of half-wave variations along the length and width of the patch is denoted by n and p,

respectively.

The electric surface current over the patch surface can be obtained from our earlier work in [45] as

Js ¼ bn ·H (4.6)

The co-sinusoidal variation in Eq. (4.5) shows the variation of Ex along the length (L) of the

patch, while the sinusoidal variation shows the variation of Ex along the orthogonal direction.

Therefore, any higher-order orthogonal resonance (i.e. for any non-zero value of p) leads to

minimum electric field intensity when z approachesW. In fact, the intensity of the electric fields

near the non-radiating edges due to all higher-order orthogonal modes (primarily responsible

for XP radiation) is forced to be minimum in order to mitigate the possibility of XP radiation

from non-radiating edges due to higher-order orthogonal modes [45]. It is also seen that when

the non-radiating edges are grounded with thin metallic strips, the electric fields near the non-

radiating edges have least intensity when compared with the electric field intensity at the

central region, but the dominant mode radiation characteristics remain unaltered. From the

literature it is seen that the XP radiation from RMPA is typically from the non-radiating edges,

and those are due to asymmetric field distribution along the length of the patch [43, 45]. This

asymmetry in the field distribution is mainly due to the placement of feeding probe and is

unavoidable for probe-fed patch. This asymmetry in the field causes asymmetry in the electric

surface current (Js) along the patch length (as discussed in our previous work in [45]). For a

conventional RMPA, the y component of Js does not become maximum at the centre [45]. This y

component of Js attributes for high XP radiation from RMPA. However, in our earlier work in

[45], the use of grounded strips in case of an RMPA shows a change of the field structure

beneath the patch as a result of which the electric surface current at non-radiating edge does

not follow the conventional profile. Therefore, XP radiations are mitigated keeping CO radia-

tion unaltered.

The use of grounded strip loading in a conventional RMPA not only modifies the radiation

property but also regulates the input characteristics of the RMPA [45]. The length (l1) of each

thin grounding strip is essentially same as substrate thickness h, and when it is in the order of

λ/10, one can write as discussed in our previous work in [45]:

l1 ¼ λgr=10 (4.7)

λgr ¼ λr=
ffiffiffiffi
εr

p
(4.8)

Modern Antenna Systems26



λr ¼ c=f r (4.9)

where fr is dominant mode resonant frequency, λgr is the resonant wavelength within dielectric

and εr is the dielectric constant of substrate material.

The width of the strips (d1) is considered to be very thin. Each grounded strip or short dipole

(l1 + d1) produces the reactive impedance [45, 47] as

Xs ¼ 30 2Si kl1ð Þ þ cos kl1ð Þ 2Si kl1ð Þ � Si 2kl1ð Þ½ � � sin kl1ð Þ 2Ci kl1ð Þ � Ci 2kl1ð Þ � Ci
2kd′2

1

l1

 !" #( )

(4.10)

which comes parallel to patch input impedance (Zp). Here, d′2
1 is the equivalent circular radius

of dipole of width d1. For the dipole of noncircular cross section, d′2
1 (as discussed in our

previous work in [45])

d′2
1 ¼ 0:25d1 (4.11)

Therefore, from [45]

kl1 ¼
2π

λg

λgr

10
¼ 0:628

f

f r
(4.12)

and

2kd′2
1

l1
¼

7:85f f rd
2
1εr

c2
(4.13)

The expression for reactive impedance can be written as [45]

Xs ¼ 30 2Si 0:628
f

f r

� �

þ cos 0:628
f

f r

� �

2Si 0:628
f

f r

� �

� Si 2· 0:628
f

f r

� �� �

� sin 0:628
f

f r

� �

2Ci 0:628
f

f r

� �

� Ci 2· 0:628
f

f r

� �

� Ci
7:85f f rd

2
1εr

c2

 !" #

g: (4.14)

The input impedance of conventional probe-fed RMPA can be written as

Zp ¼
1

1 Rr= Þ þ jωCþ 1 jωL
�� �� (4.15)

where Rr is the resonant resistance of the patch at particular feed position. C and L are capaci-

tance and inductance, respectively, and can be obtained from [9]. When this conventional probe-

fed RMPA is loaded with short dipoles, the dipole reactance (Xs) will come in parallel to patch,

and the resultant input impedance of dipole loaded patch can be written as [45, 47]

Recent Computer-Aided Design Techniques for Rectangular Microstrip Antenna
http://dx.doi.org/10.5772/66355

27



Zdp ¼
1

1 Rr= Þ þ jωCþ 1 jωL
�� �

þ jXs

� (4.16)

Putting the values of C and L from [9]

Zdp ¼
1

1 Rr= Þ þ j fQT

f rRr
�

f rQT

f Rr
þ jXs

h i� (4.17)

where QT is the total quality factor.

Hence,

Re Zdp

� �

¼
1=Rr

ð1 Rr= Þ2þ j
fQT

f rRr
�

f rQT

f Rr
þ jXs

h i2
(4.18)

Im Zdp

� �

¼ Xf �

f QT

f rRr
�

f rQT

f Rr
þ jXs

h i

ð1 Rr= Þ2 þ j
fQT

f rRr
�

f rQT

f Rr
þ jXs

h i2
(4.19)

where Xf is the feed reactance and can be obtained from [36].

From our earlier work in [45], it is observed that when grounded strips are placed along the

non-radiating edges, the structure becomes thick dipole loaded (dipole length to diameter ratio

~ 4.2 around resonant frequency), and it prevents the usual sharp variation of input reactance

over the operating bandwidth. It is found from our previous work in [45] that the reactance of

thick dipole slowly varies with the frequency, and as it is in parallel to patch reactance, the

resultant reactance of the proposed patch varies slowly with frequency (Figure 8).

Figure 8. Variations of imaginary part of input impedance (input reactance) as a function of frequency for conventional

and proposed RMPA. (Total quality factor QT = 0.22, resonant resistance Rr = 50 Ω and L = 8 mm, W = 12 mm, h = 1.575

mm, εr = 2.33, feed reactance Xf = 15 Ω). Reproduced with permission of © 2016 FREQUENZ [45].
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The formulations presented in this section were validated in case of an RMPAwith length L =

8 mm and W = 12 mm designed over Taconic’s TLY-3-0620 PTFE material (εr = 2.33) with

thickness h = 1.575 mm [45]. The ground plane dimensions were taken as 80 + 80 mm2.

Three pairs of thin copper strips of thickness 0.1 mm with height of h = l1 = 1.575 mm and

width d1 = 1.5 mm have been placed along the non-radiating edges (Figure 7). Around 25–40

dB of minimum CO-XP isolation in H plane along with input impedance of 1.32 GHz is found

from the patch (see Figure 9) [45].

In E plane, CO-XP isolation is more than 35 dB (Figure 10).

Figure 9. Simulation and measured reflection coefficient profile for conventional and proposed RMPA and simulated and

measured radiation patterns for conventional (f = 10.05 GHz) and proposed RMPA (f = 12.9 GHz) at fundamental resonant

mode in H plane. Reproduced with permission of © 2016 FREQUENZ [45].

Figure 10. Comparison of simulated and measured radiation patterns for conventional (f = 10.05 GHz) and proposed

RMPA (f = 12.9 GHz) at fundamental resonant mode in E plane. Reproduced with permission of © 2016 FREQUENZ [45].
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One can write the field components corresponding to TM02 mode beneath the patch as

discussed in our previous work in] (see Figure 11 for coordinates) [46]:

Ex ¼ C cos
2π

W
z

� �

(4.20)

Hy ¼ C sin
2π

W
z

� �

(4.21)

Eqs. (4.20 and 4.21) show that at z = 0 and at z = W/2, Ex is maximum and is equal to C.

Hence, the null occurs in between these limits, i.e. [46]

Ex ¼ C cos
2π

W
z

� �

¼ 0 for 0 < z < W=2 (4.22)

From Eq. (4.22) one can write that

2π

W
z1 ¼

mπ

2
where m ¼ 1, 3, 5,… (4.23)

Therefore,

z1 ¼
mW

4
¼

W

4
(4.24)

Along the middle section of the patch, i.e. when W ! 0; , 97% of the maximum field exists (as

discussed in our earlier work in [46]) if

Ex ¼ C cos
2π

W
z

� �

¼ 0:97C (4.25)

Hence, from our previous work in [46], we can write

Figure 11. Schematic diagram of an RMPAwith arc-defected patch surface (top view).
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2π

W
z2 ¼ cos �1 0:97ð Þ ¼

2π

25
(4.26)

Therefore,

z2 ¼
W

25
(4.27)

A defect can be incorporated within this region, i.e. from z1 to z2. This in fact will perturb the

fields corresponding to TM02 mode which is mainly responsible for XP radiation.

The electric surface current (Js) on the patch surface corresponding to TM02 mode can be

written as given in our earlier work in [46]:

Js ¼ bn ·H ¼ bax · Hy

�� �� bay (4.28)

Therefore,

Js ¼ Csin
2π

W
z

����

����baz (4.29)

In case of an RMPAwith length L = 8 mm and widthW = 12 mm, the value of z1 and z2 is found

to be 3 mm and 0.5 mm [46]. Based on the formulations described here, an arc-shaped defect

has been cut on patch (L = 8 mm andW = 12 mm) symmetrically along the non-radiating edges

as shown in Figure 11 in our earlier work in [46]. The centre of the arc defect (a) is chosen in

such a way that the defect can be cut through the patch corners. Around 25–35 dB, CO-XP

isolation is reported from such an RMPA in H plane with such arc-shaped defect over the

patch surface in [46]. However, the bandwidth is comparable with that of a conventional

RMPA. Therefore, it can be observed that the effect of TM02 mode can be mitigated to a large

extent by opting either grounding the non-radiating edges of an RMPA or judicious incorpo-

ration of defects over the patch surface. Such types of new antenna structures are surely be

utmost useful for scientific and research community for designing low-profile wireless com-

munication devices where polarization purity is required to establish over the whole operating

band.

5. Conclusion

In this chapter, some recent developments in the CAD techniques have been presented lucidly

but thoroughly for rectangular microstrip antennas. The presented formulations are very

much accurate and are valid for wide range of aspect ratios and substrate thickness compared

to other formulations. It is hoped that the work would be helpful for researchers and engineers

working in the field of microstrip antennas and will help them to gain an insight into the

physics of any RMPA.
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