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Abstract

Size distribution is an important structural aspect in order to rationalize relationship
between structure and property of materials utilizing polydisperse nanoparticles. One
may come to mind the use of dynamic light scattering (DLS) for the characterization of
the size distribution of particles. However, only solution samples can be analyzed and
even for those, the solution should be transparent or translucent because of using visible
light. It is needless to say that solid samples are out of range. Furthermore, the size
distribution only in the range of several tens of nanometers can be characterized, so DLS
is useless for particles in the range of several nanometers. Therefore, the small-angle
X-ray scattering (SAXS) technique is much superior when considering the determination
of the size distribution in several nanometers length scale for opaque solutions and for
solid specimens. Furthermore, the SAXS technique is applicable not only for the spher-
ical particle but also for platelet (lamellar) and rod-like (cylindrical) particles. In this
chapter, we focus on the form factor of a variety of nanostructures (spheres, prolates,
core-shell spheres, core-shell cylinders and lamellae). Also getting started with a mono-
disperse distribution of the size of the nanostructure, to unimodal distribution with a
narrow standard deviation or wide-spreading distribution and finally to the discrete
distribution can be evaluated by the computational parameter fitting to the experimen-
tally obtained SAXS profile. In particular, for systems forming complicated aggrega-
tions, this methodology is useful. Not only the size distribution of ‘a bunch of grapes’
but also the size distribution of all ‘grains of grapes in the bunch’ can be evaluated
according to this methodology. This is very much contrasted to the case of the DLS
technique by which only ‘a bunch of grapes’ is analyzed but ‘grains of grapes in the
bunch’ cannot be. It is because the DLS technique in principle evaluates diffusion
constants of particles and all of the grains in the same bunch of grapes diffuse as a
whole. Thus, the methodology is important to highlight versatility and diversity in real
materials, especially in soft matter, both in the liquid and in the solid states.

Keywords: SAXS, form factor, sphere, cylinder, lamella, prolate, core-shell sphere, core-
shell cylinder, discrete distribution function
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1. Introduction

In recent years, controlling of nanostructures has been more significantly considered in the

field of materials science, especially relating to the soft matter [1]. Versatile properties or

functions can be obtained through designing nanostructures in solid-state materials, as well

as nanomaterials dispersed in liquid-state substance. Even for contradictory properties such as

hard and soft, they may be coexistent in one material when fabricating so-called inclined

nanostructures (for instance, nanoparticle size is gradually changing as a function of the

position in material). This in turn indicates that size distribution of the nanostructures should

be rigorously evaluated for better understanding effects of nanostructure on properties and

functions. For biological systems or supramolecular organizations, situation is very much

contrast to the other ubiquitous materials as described above because they form spontaneously

a regular aggregation. Therefore, the size distribution is narrow and follows a simple mathe-

matical function with a comparatively small standard deviation. By contrast, discrete distribu-

tion of the size is required to determine for the ubiquitous materials. However, even for regular

nanostructures, the determination of the discrete distribution of the nanostructure size is

needed to reveal a transient state upon transition from the state 1 to the state 2, being triggered

by sudden change in temperature, pH, or other external parameters.

It is well known that the size distribution of particles can be evaluated by the use of

dynamic light scattering (DLS). However, only solution samples can be analyzed and even

for those, the solution should be transparent or translucent because of using visible light.

It is needless to say that solid samples are out of range. Furthermore, the size distribution

only in the range of several tens of nanometers can be characterized, so DLS is useless for

particles in the range of several nanometers. Therefore, the small-angle X-ray scattering

(SAXS) technique is much superior when considering the determination of the size distri-

bution in several nanometers length scale for opaque solutions and for solid specimens

[2]. Furthermore, the SAXS technique is applicable, not only for the spherical particle but

also for platelet (lamellar) and rod-like (cylindrical) particles and it enables us to deter-

mine the thickness distribution of lamellae or the cross-sectional radius distribution of

cylinders. Namely, the SAXS technique does not matter types of particle shape even for

hallow cylinders or hollow spheres [3].

The principle is simple. Scattering comprises not only contribution from regularity of

space-filling ordering (the lattice factor) of particles but also from a single particle (the

form factor). The particle scattering can be mathematically formulated depending on the

type of particle shape (lamella, cylinder or sphere). In the block copolymer microdomain

systems, the Gauss distribution of the particle size has been assumed. Only recently, direct

determination of the discrete size distribution has been available by conducting fitting

theoretical scattering function to the experimentally obtained SAXS profile (the plot of the

scattering intensity as a function of the magnitude of the scattering vector, q [= (4π/λ) sin

(Θ/2) with Θ and λ being the scattering angle and the wavelength of X-ray, respectively]

where the abundance of the particle having a given size was treated as a floating param-

eter with a step of 1 nm (the step can be more precise). In this chapter, getting started
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with nanoparticles with a narrow size distribution, we will see characteristic shape of the

form factors for protein self-assembly, block copolymer microdomains and peptide amphi-

phile nanofibers. Then, we shift our target to the evaluation of discrete distribution of size

of nanostructures by SAXS. The examples shown are thickness distribution of the crystal-

line lamellae of polyethylene glycol in polymer blends and thickness distribution of the

hard segment domains for supramolecular elastomers (starblocks of soft polyisobutylene

and hard oligo(β−alanine) segments). Other notable examples are sterically stabilized

polypyrrole-palladium (PPy-Pd) nanocomposite particles, hybrid amphiphilic poly(N-

isopropylacrylamide)/metal cyanide complexes and the cobalt(II) terpyridine complexes

with diblock copolypeptide amphiphiles. For this example, this methodology is useful.

Not only the size distribution of ‘a bunch of grapes’ but also the size distribution of all

‘grains of grapes in the bunch’ can be evaluated according to this methodology. This is

very much contrasted to the case of the DLS technique by which only ‘a bunch of grapes’

is analyzed but ‘grains of grapes in the bunch’ cannot be. It is because the DLS technique

in principle evaluates diffusion constants of particles and all of the grains in the same

bunch of grapes diffuse as a whole. Thus, the methodology is important to highlight

versatility and diversity in real materials, especially in soft matter, both in the liquid and

in the solid states.

2. Nanoparticles with a narrow size distribution

First of all, some typical examples of the experimentally observed form factor are demon-

strated. The samples are self-assembly of proteins, block copolymer microdomains and pep-

tide amphiphiles. Apoferritin is a protein having ability to store iron atoms and it is referred to

as ferritin when iron atoms are bound. Apoferritin forms a spherical shell as a self-assembled

nanostructure with a very uniform size. As indicated in Figure 1 (pH-dependence of SAXS

profiles), its SAXS profiles (apoferritin, 24-mer) exhibit characteristic features with many peaks

due to its uniform shape for pH ≥3.40 [4]. Dramatic change in the SAXS profile is detected

between pH = 1.90 and 3.40. This means that apoferritin is disassembled for acidic condition.

Time-resolved SAXS measurements have been utilized to study disassembling and

reassembling process upon the change in pH [4, 5]. In Figure 1, the curve shows the result of

the SAXS modeling by the scattering program GNOM [6]. Since protein molecules produce the

typical form factor, it is frequently used to obtain commissioning data for newly launched

SAXS beamline or apparatus [7–9].

It is known that block copolymer spontaneously forms a regular nanostructure with a narrow

size distribution. Figure 2 shows examples of the SAXS profiles for sphere-forming block

copolymer (SEBS; polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene triblock

copolymer) having Mn = 6.7 + 104, Mw/Mn = 1.04, PS volume fraction = 0.084) [10], where

Mn and Mw denote number-average and weight-average molecular weights, respectively. In

Figure 2, the solid curve is the results of the model calculation for the spherical particle, but not

only the form factor, but also the lattice factor of BCC (body-centered cubic) is taken into

account. The full equation is as follows [11–14]:
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Figure 1. pH-dependence of SAXS profiles for an apoferritin aqueous solution. The symbols indicate the experimental

data, and the solid lines indicate the fits obtained using the GNOM program. The solid lines without symbols are the

theoretical SAXS curves calculated from the crystal structure of apoferritin and its subunit crystal (PDB code 3F32). For

clarity, each plot is shifted along the log I axis [4].
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Figure 2. SAXS profiles for SEBS-8 specimens (sphere-forming triblock copolymer) annealed at 130 and 150°C for 10 h

[10].

SAXS Evaluation of Size Distribution for Nanoparticles
http://dx.doi.org/10.5772/105981

111



IðqÞ−〈jf 2ðqÞj〉−j〈f ðqÞ〉j2 þ j〈f ðqÞ〉j2ZðqÞ (1)

where <x> is the average of the quantity of x. f(q) and Z(q) are particle and lattice factor,

respectively, designating the scattering amplitude due to the intraparticle interference and the

scattering intensity due to the interparticle interference, respectively. The form factor f(q) for a

spherical particle with its radius, R, can be given as

f ðqÞ ¼ AeΔρ V
3½ sin ðqRÞ−qR cos ðqRÞ�

ðqRÞ3
(2)

where Ae is the scattering amplitude of the Thomson scattering, Δρ is the difference in the

electron density between sphere and matrix, V is the volume of the spheres. Here, the Gauss

distribution is used for R with σR being the standard deviation. On the other hand, the lattice

factor Z(q) is given by Eq. (3) with Eulerian angles, θ and φ, which define orientation of the

unit cell of a given grain with respect to the experimental Cartesian coordinates:

Zðq,θ,φÞ ¼ 1−F2k

1−2Fk cos

ffiffiffi
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(3)

with

Fk ¼ exp −

3

16
g2d2q2ðα2 þ β2 þ γ2Þ

� �

(4)

and g = Δd/ <d> which is the degree of the lattice distortion (Δd denotes the standard deviation

in d due to the paracrystalline distortion). In Eq. (4),

α ¼ sin θ cos φþ sin θ sin φþ cos θ (5)

β ¼ −sin θ cos φ−sin θ sin φþ cos θ (6)

γ ¼ −sin θ cos φþ sin θ sin φ−cos θ (7)

for the bcc lattice and

α ¼ sin θ sin φþ cos θ (8)

β ¼ −sin θ cos φþ cos θ (9)

γ ¼ −sin θ cos φþ sin θ sin φ (10)

for the fcc lattice. In Eqs. (3) and (4), d denotes the Bragg spacing. The spacing for {110} and

{111} planes for the bcc and fcc lattices, respectively, gives rise to the first-order peaks. For
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randomly oriented polygrains in actual samples, the scattering is isotropic. Therefore, Z(q,θ, φ)

is averaged with respect to θ and φ to obtain isotropic Z(q):

ZðqÞ ¼
1

4π

ð2π
0

ðπ
0

Zðq,θ,φÞ sinθdθdφ (11)

As clearly observed in Figure 2, the broad peak around q = 0.71 nm−1 is due to the form

factor. The model curve is the result of calculation with <R> = 7.90 nm for 130°C annealed

specimen and <R> = 8.10 nm for 150°C annealed specimen and the standard deviation of

the size distribution (σR) being 1.09 and 1.10 nm, respectively. Thus, evaluated value of

<R> is consistent with the result of transmission electron microscopic observation (as

shown in Figure 3). Note also here that the order-disorder transition temperature locates

between 130 and 150°C, so that bcc ordering is quite regular for the specimen annealed at

130°C, while it is poor for 150°C annealed specimen. The SAXS profile for the 130°C

annealed specimen displays clear lattice peaks at the relative q values of 1:√2:√3, indicat-

ing high regularity of the bcc ordering. The sphere-forming block copolymers exhibit

mostly the bcc ordering due to the entropic profit [14] and the fcc ordering has been

found for some particular case. Comparison between the results shown in Figures 1 and

2 clearly indicates that many peaks for monodisperse particle are easy to collapse to

become more featureless when the size distribution is incorporated even if it is small.

Nevertheless, it is characteristic for the block copolymer microdomains that one peak can

be discernible for the form factor.

Very recently, it has been found that PS spherical microdomains were deformed upon the

uniaxial stretching of the SEBS-8 film specimens [15]. Since SEBS triblock copolymer with the

glassy PS spherical microdomains can be used as a thermoplastic elastomer (TPE), the film

Figure 3. TEM micrographs for SEBS-8 specimens annealed at (a) 130 and (b) 150°C for 10 h. The polystyrene

microdomains were stained with ruthenium tetroxide [10].
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specimen can be stretched. In Figure 4, 2D-SAXS patterns are displayed to recognize the

deformation of the round shape form factor upon the uniaxial stretching. Figure 4a shows the

2D-SAXS pattern for the SEBS-8 film specimen. Here, it is clearly observed that the round

shape form factor appears at q = 0.77 nm−1. The round peak of the form factor is deformed to

become an ellipsoid in Figure 4b upon uniaxial stretching of the film specimen up to the strain

of 3.65 (stretching ratio is 4.65) at room temperature. The peak position in the q
−direction

parallel to the stretching direction (q//SD) is lower than that in the q
−direction perpendicular

to SD (q⊥SD). This means that the size of the particle in the q// direction is bigger than that in q⊥

direction, which in turn implies deformation of the spherical particles. Therefore, the model

calculation of the form factor, P(q), for prolate was conducted using the mathematical equation

as follows:

PðqÞ ¼

ð2π

0

ðπ=2

0

ð

∞

0

ð

∞

1

f 2ðq, ν,Rmin,φÞ ΩðvÞ ΞðRminÞ ΨφðφÞΨμðμÞ sinφ dv dRmin dφdμ (12)

f ðq, ν,RminÞ ¼ V
3ð sinU−U cosUÞ

U3
(13)

Uðq, ν,Rmin,φÞ ¼ qRmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin 2φþ ν2 cos 2φ
q

f or q==SD (14)

Uðq, ν,Rmin,φ,μÞ ¼ qRmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− sin 2φ cos 2μ
q

þ ν2 sin 2φ cos 2μ

r

for q⊥SD (15)

v ¼
Rmaj

Rmin
> 1 V ¼

4π

3
RmajR

2
min ¼

4π

3
νR3

min and ðvolume of the prolateÞ (16)

Figure 4. 2D-SAXS patterns for SEBS-8 specimens (a) unstretched state and (b) being stretched at the strain of 3.65 at

room temperature [15].
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Here, Rmaj and Rmin stand for the radius of the longer axis and the radius of the shorter axis

of the prolate, respectively (Figure 5) and φ is the angle between the q direction and the long

axis of the prolate. To fit the SAXS profile with the model calculation, the distributions in

Rmin, ν and φ are required. Note here that the distributions in φ and μ define the orienta-

tional distribution function: Ψφ(φ) and Ψμ(μ), respectively. However, for this particular case,

φ can be considered to be zero with no distribution, namely perfect orientation of the pro-

lates with their log axes parallel to SD because the uniaxial stretching prolongs spherical

microdomains to result in prolates with their long axes parallel to SD, which in turn enables

us to set Ψμ(μ) = 1 regardless of μ. Therefore, due to decreased numbers of the parameters,

the situation became easier to evaluate the average values of Rmin and ν with their distribu-

tions (ΞRmin and Ω(ν)).

The results for the 1D-SAXS profiles in q// and in q⊥ directions are shown in Figure 6a and

b, respectively. In the both cases, the 1D-SAXS profile for the unstretched film specimen

(before the stretching) is shown together. It is clearly observed that the peak of the form

factor moved toward lower and higher q range upon the stretching in q// and in q⊥

directions, respectively. Furthermore, both of the SAXS profiles can be fit by the prolate

model, using Eqs. (1), (12)–(16) with the bcc lattice factor. Here, the <Rmin> = 6.44 nm and

<ν> = 1.20 were used for the model calculation. Note that <Rmin> = 6.85 nm for the

unstretched specimen. Moreover, the distributions in Rmin and ν (ΞRmin and Ω(ν)) used

for the calculation are plotted in Figure 7a and b, respectively. Such a mathematical

function for the size distribution is enough to explain the experimentally observed SAXS

profile under the stretched state. However, it should be noted that both of the distribu-

tions were required and otherwise, the model SAXS curve did not fit well the experimen-

tal results for both the q// and q⊥ directions. Figure 6a and b also includes the SAXS

profiles measured after complete removal of the stretching force. At a first glance, the

peak positions of the form factor in Figure 6a and b seem to recover its original position

for the unstretched specimens. However, this does not imply the recovery of the original

spherical shape upon the removal of the load because the deformation of the glassy PS

microdomains is permanent. Then, why did the form factor recover its original peak

position? It may be ascribed to randomization of the prolates orientation upon the

removal of the load. To check this speculation, we conducted the SAXS modeling of the

prolate form factor by setting Ψ(φ) = 1 irrespective of φ but with keeping the size

distribution Rmin and ν (ΞRmin and Ω(ν)) unchanged. The results of the modeling are

shown with the red curves in Figure 6a and b, indicating clearly good agreements with

the experimentally obtained SAXS profiles. This in turn confirms the speculation of ran-

domization of the prolates orientation upon the removal of the load.

Core-shell sphere and cylinder models are significantly important for the amphiphilic self-

assembly. For the core-shell sphere [16, 17], the form factor is formulated as:

PðqÞ ¼ ðρC−ρSÞVC
3½ sin ðqRCÞ−qRC cos ðqRCÞ�

ðqRCÞ
3

þ ðρS−ρ0ÞVS
3½ sin ðqRSÞ−qRS cos ðqRSÞ�

ðqRSÞ
3

( )2

(17)

SAXS Evaluation of Size Distribution for Nanoparticles
http://dx.doi.org/10.5772/105981

115



Figure 5. Prolate model used for the SAXS modeling. Here, Rmaj and Rmin stand for the radius of the longer axis and the

radius of the shorter axes of the prolate, respectively. Eulerian angles, μ and φ, define orientation of the prolate with

respect to the experimental Cartesian coordinates [15].
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Figure 7. Evaluated Ξ(Rmin) and Ω(ν) of the prolate for SEBS-8 specimens stretched at the strain of 3.65. For comparison,

the size distribution function for the radius of sphere is shown together for the unstretched specimen [15].

Figure 6. 1D-SAXS profiles extracted from the SAXS patterns as shown in Figure 5 in (a) q// and in (b) q⊥ directions. Black

dots are for the experimentally obtained SAXS profiles, and red curves are calculated SAXS profiles [15].
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if the homogeneous densities in the core and in the shell can be assumed with ρc and ρs,

respectively. Here, Vc and Vs designate the volume of the core and the shell, respectively.

Moreover, Rc and Rs denote the radii of the core and the shell, respectively. ρ0 is the electron

density of the matrix. On the other hand, when the shell density changes as a function of r

(the core density is homogeneous) as defined with ρs (r), then the form factor is formulated

as [18, 19]:

PðqÞ ¼ ðρC−ρSÞVC
3½ sin ðqRCÞ−qRC cos ðqRCÞ�

ðqRCÞ
3

þ 4π

ðRS

RC

�

ρSðrÞ−ρ0

�

r2
sin ðqrÞ

qr
dr

( )2

(18)

As for core-shell cylinders, the form factor is:

PðqÞ ¼

ðπ=2

0

(

ðρS−ρsolvÞVS

sin
qHS cosθ

2

� �� �

qHS cosθ

2

2J1ðqRS sinθÞ

qRS sinθ
þ

ðρC−ρSÞVC

sin
qHC cosθ

2

� �� �

qHC cosθ

2

2J1ðqRC sinθÞ

qRC sinθ
g

2

sinθdθ (19)

where J1(x) is the first-order Bessel function. θ is defined as the angle between the cylinder

axis and q. RC and RS are the core and shell radii, respectively. HC and HS are the core and

shell lengths, respectively. VC and VS are the core and shell volumes, respectively

(Vx ¼ πR2
xHx; x = C, S, or solv; C: core, S: shell, solv: solvent). ρx is the electron density of the

core, shell, or solvent.

Matson et al. [20] have reported the SAXS modeling of the form factor of the core-shell cylinder

for self-assembling peptide amphiphiles (PAs) as shown in Figure 8A and B. The molecules

self-assembled into the core-shell cylinder are illustrated in Figure 8C. Such cylinders can be

detected with cryogenic TEM as shown in Figure 9. The SAXS profile is shown in Figure 10

with the model curve, where the size distribution in the core radius is modeled using a log-

normal distribution with the polydispersity being around 27–30% (see Table 1 for the struc-

tural parameter determined by the SAXS modeling), while the radial shell thickness is

assumed to be monodisperse. Although the modeling results explain very well the experimen-

tally obtained SAXS profiles, the fact that the radial shell thickness is assumed to be monodis-

perse means it is difficult to determine individually two distributions in inner and outer

radius. For more detailed structure analyses, more experimental variations are required to

gather information from different kinds of aspects, like the example shown in Figure 6a and

b (parallel and perpendicular to SD).
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Figure 8. (A) Chemical structure of self-assembling peptide amphiphiles (PA: E2 C16V2A2E2). (B) The different regions

of the PA are highlighted in a space-filling model. (C) Schematic illustration of a self-assembled PA nanofiber [20].

Figure 9. Cryogenic TEM of (A) PA 5, (B) PA 6, (C) PA 7, and (D) PA 8 as 1: 3 w/w mixtures with E2 PA [20].
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3. Concept of evaluation of discrete distribution by SAXS

In this section, the concept of evaluation of the discrete distribution of the size of the

nanostructure is explained. As an example, the lamellar model calculations are displayed in

Figure 11, for which the mathematical equation is [21]:

PðqÞ ¼ q−2L2½{ sin ðqL=2Þ}=ðqL=2Þ�2 (20)

where L is the lamellar thickness and the prefactor (q−2) is the so-called Lorentz factor which

is required to randomize the orientation of the lamellar particle. Here, it was assumed that

the lamellar particle has infinitely large extent in the direction parallel to the lamellar surface.

Figure 10. I SAXS profiles of PAs 5-8 (A-D) fitted to a polydisperse core-shell cylinder model. The solid red line represents

the best fit to a core-shell cylinder form factor, where the core was allowed to be polydisperse according to a log-normal

distribution. The solid black line represents the portion of the curves where fits were performed [20].

PA 5 6 7 8

Mean core radius (A) 12 12 12 12

Radial shell thickness (A) 29 27 25 25

Total diameter (nm) 8.2 7.8 7.4 7.4

Radial polydispersity (σ) 0.3 2.7 0.3 0.28

NaOH without CaCl2 (from Ref. [20]).

Table 1. Selected SAXS data from PAs 5–8 at 0.25% in 4 mM.
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Figure 11a and b shows the calculated profiles when L was set to 10 and 20 nm, respectively.

It can be seen that the characteristics in the shapes of lamellar form factor are similar to the

case of spherical form factor. As a matter of fact, many peaks appear. Summing up these two

profiles gives the one, which is also shown in Figure 11c. This in turn means that the form

factor is as shown in Figure 11c when the lamellar thickness distribution is as shown in the

inset of Figure 11. It is noteworthy that the characteristic shape of the one shown in

Figure 11c (L = 10 nm + L = 20 nm) is similar to the case of Figure 11a (L = 10 nm). When the

distribution is somewhat modified as indicated in Figure 12b, the form factor is dramatically

altered to the one as shown in Figure 12a. This seems to be no more characteristic form

factor. Thus, the experimentally observed form factor can be a fingerprint and the size

distribution may be evaluated as far as the shape of the nanostructure can be uniquely

assumed.

Figure 12c shows one of the typical results of the SAXS profiles for poly(oxyethylene) (PEG),

which forms lamellar crystallites. The exact sample used for the result of Figure 12c was a

polymer blend of PEG with poly (D, L-lactide) (PDLLA), which is a racemic copolymer and

therefore amorphous. The compositions of PEG/PDLLA were 80/20 (DL20) by weight.

Figure 12c shows the result of the SAXS measurement at 64.0°C in the heating process [22].

Figure 11. Calculated SAXS profiles for lamellar particle with (a) L = 10 nm, (b) L = 20 nm, and (c) L = 10 nm + L = 20 nm.

The inset shows a hypothetical distribution function used for the calculation of the profile shown in Figure 11c.
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At the temperature of 64.0°C slightly below the melting temperature of PEG (64.5°C), the

typical form factor of lamellar particle was observed first time for the crystalline polymer. It

was expected that the thinner lamellar which has a lower melting temperature melted away in

the heating process. The thickest lamellae can only survive at the highest temperature and

therefore, the thickness distribution became sharp. This may be the reason of the observation

of the typical form factor of lamellar particle. As a matter of fact, a very sharp distribution was

evaluated as shown in Figure 12d by the method described below.

Hereafter, the data analysis method for the direct determination of the thickness distribution of

lamellar particle is described. The model particle scattering intensity, I(q), with a distribution of

thicknesses can be given as:

IðqÞ ¼ kΣ½nðLÞPðqÞ� (21)

Figure 12. (a) Calculated SAXS profile for lamellar particle with assuming a hypothetical distribution function as shown

in part (b). (c) One of the typical results of the SAXS profiles for PEG/PDLLA 80/20 blend at 64.0°C in the heating process.

Black dots are for the experimentally obtained SAXS profile, and red curves are the calculated SAXS profile. (d) Evaluated

thickness distribution from the result shown in part (c).
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with P(q) defined by Eq. (20). In Eq. (21), k is a numerical constant and n(L) is the number

fraction of lamella with a thickness of L, providing the thickness distribution of lamellae. A

protocol was employed to directly determine n(L) by fitting the calculated I(q) from Eq. (21) to

the experimentally observed 1D-SAXS profile where the following parameters were being

floated as the fitting parameters: the numerical constant k and n(L = 1 nm), n(L = 2 nm), n(L =

3 nm),…, n(L = 40 nm) which are the abundance number of particles having thickness L in a

step of 1 nm. By this protocol, the best fit was successfully performed, which is shown by the

solid curve on the 1D-SAXS profile in Figure 12c. Although most of the features seem to be

well described by the particle scattering, the first-order peak is not. For some SAXS profiles, the

full calculation including the lattice factor Z(q) and the particle scattering can describe the

SAXS profile well. The mathematical formulation of Z(q) is [23]:

ZðqÞ ¼
1−jFj2

1−2jFj cos ðqDÞ þ jFj2
(22)

jFj ¼ exp −

g2D2q2

2

� �

(23)

Thus, the thickness distribution as shown in Figure 12d was also evaluated. Although such a

sharp distribution around L = 33.5 nm accounts for the particle scattering dominant SAXS

profile, the presence of thinner lamellae is clearly suggested.

4. Widely spread discrete distribution evaluated by SAXS

4.1. Lamellar case

Tien et al. have reported results of comprehensive studies of the higher-order crystalline

structure of PEG in blends with PDLLA [22, 24, 25]. For several blend compositions, they have

discussed the effects of blending PDLLA on the structural formation of PEG. It is remarkable

that they found more regular higher-order structure for PEG 20 wt % composition (DL20) as

compared to the PEG 100% sample in the as-cast blend sample (cast from a dichloromethane

solution). More interestingly, they reported that the 1D-SAXS profile markedly changed from

lattice peak dominant type to particle scattering dominant type when heating the as-cast

sample, as shown in Figure 13. The compositions of PEG/PDLLA were 100/0, 95/5 (DL5), 90/

10 (DL10) and 80/20 (DL20) by weight. Figure 13 shows the results of the SAXS measurements

in the heating process. Based on the results, we have conducted the evaluation of the lamellar

thickness distribution in the heating process from the as-cast state up to 64°C and succeeded in

showing that the distribution became sharper with the average thickness becoming larger, as

shown in Figure 14. That study is the first showing quantitative evidence of the well-known

concept of ‘lamellar thickening’ when a crystalline polymer is thermally annealed just below

its melting temperature. Tien et al. have also conducted the same evaluation under higher

pressure (5 and 50 MPa) [26].
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Figure 13. SAXS profiles for PEG/PDLLA blends with 100/0, 95/5 (DL5), 90/10 (DL10), and 80/20 (DL20) by weight. The

SAXS measurements were conducted in the heating process. Black dots are for the experimentally obtained SAXS profiles,

and red curves are the calculated SAXS profiles [22].
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Jia et al. [27] have recently evaluated thickness distribution of the hard segment domains for

supramolecular elastomers (starblocks of soft polyisobutylene and hard oligo(β−alanine) seg-

ments). Themolecule is a novel type of supramolecule as schematically shown in Figure 15where

the green chains are soft polyisobutylene. Due to the formation of the lamellar crystallites of oligo

(β−alanine) segments, the specimenhas rubber-like elasticity, that is, supramolecular self-assembly

leads the specimen to TPE. Since such lamellar crystallites can be hardly observed by TEM, the

SAXSmeasurementwas conducted. The result is shown in Figure 16with the evaluated thickness

distribution which is shown in the inset. Almost monodispersed distribution was evaluated with

the peak at L = 2.0 nm (inset of Figure 16), which is in good agreement with the size of the oligo

(β−alanine) contour length. This case clearly demonstrates the significance of the SAXS technique.

Figure 14. Evaluated thickness distribution from the result shown in Figure 13 [22].

Figure 15. Schematic illustrations for supramolecular elastomers (starblocks of soft polyisobutylene and hard oligo(β-

alanine) segments) where the green chains are soft polyisobutylene [27].
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4.2. Spherical case

In this subsection, the size distribution of nanoparticles is described. Fujii et al. [28, 29] have

synthesized novel for sterically stabilized polypyrrole-palladium (PPy-Pd) nanocomposite

particles. Such a characteristic particle containing heavy element has recently been attracting

intensively general interests of researchers in many fields under the name of element-blocks

[30]. Figure 17 shows a TEM image of these particles with a schematic of the structure. The

ordinary 1D-SAXS profiles of 1, 2 and 3% aqueous dispersions of the nanocomposite particles

are shown together in Figure 18a as a plot of log[I(q)] versus log q. This plot clearly shows that

the shapes of the profiles are similar. When the curves are vertically shifted, all of the data

collapse onto a single curve (Figure 18b), suggesting that the nanocomposite particles are

dispersed in the aqueous medium without ordering into a lattice, at least up to a particle

concentration of 3%. Thus, the 1D-SAXS profile can be attributed directly to the particle

scattering (the form factor). Although the TEM results revealed that the nanocomposite parti-

cles are not spherical, a mathematical equation describing particle scattering is not available for

such an unusual shape of particles. Therefore, a spherical shape is assumed for simplicity. The

model particle scattering intensity, I(q), with a distribution of thicknesses can be given as:

IðqÞ ¼ kΣ½nðRÞPðqÞ� (24)

The form factor, P(q), for spherical particles is given as:

PðqÞ ¼ ð4πR3=3Þ2½ΦðqÞ�2 (25)

and
ΦðqÞ ¼ 3=ðqRÞ3½ sin ðqRÞ−qR cos ðqRÞ� (26)

Figure 16. SAXS profile for the supramolecular elastomer schematically shown in Figure 15. Black dots are for the

experimentally obtained SAXS profile, and red curve is the calculated SAXS profile. The inset shows the evaluated

thickness distribution [27].
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In Eq. (24), k is a numerical constant and n(R) is the number fraction of spheres with a radius of

R, providing the size distribution of spheres. Attempts to fit a theoretical function given by

Eq. (24) to the measured 1D-SAXS profile assuming a Gauss or Schulz-Zimm-type distribution

for n(R) were unsuccessful. We then employed a protocol in which n(R) was directly determined

by fitting the calculated I(q) from Eq. (24) to the experimentally observed 1D-SAXS profile by the

same method as described above for the lamellar case. The best fit is shown in Figure 18a with

the dotted black curve for the 1D-SAXS profile (3% aqueous solution). The reason of using this

profile is because of being most intense and therefore the most reliable. Thus, the obtained

particle size distribution is shown in Figure 19, where the abundance is shown in the units of

vol%, which was calculated by the following equation from the number fraction n(R):

Figure 17. (a) TEM image of sterically stabilized polypyrrole-palladium (PPy-Pd) nanocomposite particles, and (b) a

schematic of the structure [28].
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abundance ðvol%Þ ¼ nðRÞR3=Σ½nðRÞR3� · 100 (27)

Bimodal size distribution was clearly obtained with two peaks at approximately R = 2.5 and 11.5

nm. It is recognized that smaller particles (assuming n(R) with a single peak at approximatelyR =

2.5 nm) could explain the shape of the SAXS profile in the higher q range (see the broken curve in

Figure 18a), whereas larger ones (assuming n(R) with a single peak at approximately R = 11.5

nm) characterized the SAXS profile in the lower q range (see the dotted and broken curve). This

result does not indicate the real distribution of the PPy-Pd nanocomposite particles themselves,

but the additional abundance of tiny Pd nanoparticles existing in the nanocomposite particles.

These speculations are confirmed by TEM observations (Figure 17), indicating that the average

radius was approximately 16 nm with a unimodal distribution and by close examination of the

high-resolution TEM image (R = 2.7 nm; Figure 17). Thus, it was possible to evaluate not only the

size of ‘a bunch of grapes’ but also the size of all ‘grains of grapes in the bunch.’

Figure 18. (a) SAXS profiles of 1, 2, and 3% aqueous dispersions of the PPy-Pd nanocomposite particles as a plot of log

[I(q)] versus log q. The best-fit curve is shown as a dotted black curve on the 1D-SAXS profile for the 3% aqueous solution

(most intense and therefore most reliable). (b) Master curve for the SAXS profile obtained by vertically shifting the three

1D-SAXS profiles in (a) (not shifted in q-axis direction) [28].
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Kuroiwa et al. [31, 32] have synthesized novel amphiphilic N-isopropylacrylamide (NIPPAm)

oligomers with dodecyl groups and carboxyl groups, as shown in Figure 20a, by the RAFT

polymerization of NIPPAm with S-1-dodecyl-S’-(α,α′-dimethyl-α”- acetic acid) trithiocarbonate

(DTC). It was interestingly found that the DTC-NIPPAm oligomers form network aggregation

upon addition of Cu2+ ion in an aqueous solution, as revealed by TEM (Figure 20b for the dried

specimen from an aqueous solution of DTS-NIPPAm35 with Cu2+ ions). It seems that the

network diameter is somewhat 30 nm or above. There is a possibility to consider that the

constitutive unit of the network should be a micelle as schematically illustrated in Figure 20c.

Since the TEM observation can be only conducted for the dried specimen, the resultant TEM

image might be quite different from the real structure in the aqueous media. In order to reveal

real structure in the aqueous media, the in situ SAXS measurement was performed at room

temperature. Then, the spherical model fitting was applied to the resultant SAXS profile. Fig-

ure 21 shows the SAXS profile with the model form factor. The experimentally obtained SAXS

curve (black curve) is available for q > 0.06 nm−1 and characteristic dent and hump are observed

around q = 0.15 and 0.50 nm−1, respectively. By assuming the spherical model, the calculated

SAXS profile (red curve) can perfectly fit to the experimental one as displayed in Figure 21. Thus,

evaluated discrete distribution of the radius is shown in Figure 22. Here, the main distribution is

found around 2–7 nm, implying the cores of the micelles. Because the core contains sulfur atoms,

the contrast is considered to be highest and therefore, the core can be the most intense scatterer.

This is the reason of observingmajority in 2–7 nm in the distribution. This in turn implies that the

network aggregation comprises micelles, which can never be detected by TEM. Close examina-

tion of the resultant distribution revealed minor abundance around 17 and 21 nm. This agrees

well with the least radius of the network aggregation in the TEM observation, as mentioned

above. The same distribution is shown in the inset of Figure? with the logarithmic axis for the

abundance. Then, it is clear that not only the minor abundance around 17 and 21 nm, but many

Figure 19. Evaluated particle size distribution based on the result shown in Figure 18 [28].
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minor ones are discernible in the wide range from 17 to 58 nm. As a matter of fact, such big

spheres can be occasionally seen in the TEM image (Figure 20b). Thus, once again for this kind of

complicated aggregation, the method of evaluation of the discrete distribution of size from the

SAXS result is approved to be quite effective [33].

5. Concluding remarks

In this chapter, we focused on the form factor of a variety of nanostructures (spheres, prolates,

core-shell spheres, core-shell cylinders and lamellae). Also getting started with a mono-disperse

distribution of the size of the nanostructure, to unimodal distribution with a narrow standard

deviation or wide-spreading distribution and finally to the discrete distribution can be evaluated

by the computational parameter fitting to the experimentally obtained SAXS profile. In particu-

lar, for systems forming complicated aggregations, this methodology is useful. Not only the size

Figure 20. (a) Novel amphiphilicN-isopropylacrylamide (NIPPAm) oligomers with dodecyl groups and carboxyl groups.

(b) TEM micrograph for the dried specimen from an aqueous solution of DTS-NIPPAm35 with Cu2+ ions. (c) Schematic

illustration of the micelle network [31, 32].
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distribution of ‘a bunch of grapes’ but also the size distribution of all ‘grains of grapes in the

bunch’ can be evaluated according to this methodology. This is very much contrasted to the case

of the DLS technique by which only ‘a bunch of grapes’ is analyzed but ‘grains of grapes in the

bunch’ cannot be. It is because the DLS technique in principle evaluates diffusion constants of

particles and all of the grains in the same bunch of grapes diffuse as a whole. Thus, the method-

ology is important to highlight versatility and diversity in real materials, especially in soft matter,

Figure 21. SAXS profile for an aqueous solution of DTS-NIPPAm35 with Cu2+ ions with the model form factor. The black

curve is the experimentally obtained SAXS profile, and the red curve is the calculated SAXS profile [31, 32].

Figure 22. Evaluated size distribution based on the result shown in Figure 21 [31, 32].
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both in the liquid and in the solid states. At present, however, the shape of the nanostructure is

limited in spherical or lamellar. On extending the methodology to the complicated structures

such as cylinder, prolate, oblate, or core-shell type, there are tremendous difficulties. For cylinder,

prolate, or oblate, difference in the degree of orientation of such particles spoils the methodology

such that the size distributions for two principal directions (height and radius for the cylinder

case/long axis radius and short axis radius for the prolate and oblate cases) cannot be uniquely

evaluated. As for core-shell type particles, the inner and outer radii couple to alter its form factor,

so that the size distributions for them cannot be uniquely evaluated either. As a matter of fact, the

size distribution is introduced with keeping constant of the ratio of the inner and outer radii for

the core-shell spheres [16]. Similarly, for the core-shell cylinders [20], the size distribution in the

core radius is incorporated, while the radial shell thickness is assumed to be monodisperse. For

more detailed structure analyses, more experimental variations are required to gather informa-

tion from different kinds of aspects, like the example shown in Figure 6a and b (parallel and

perpendicular to SD). These difficulties should be overcome.
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