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Abstract

The prion hypothesis, once a heretical violation of the central dogma of molecular
biology, has become an accepted mechanism used to explain a host of progressive
neurodegenerative diseases in mammals and heritable phenotypes in yeast. From the
beginning, mathematical models have been an essential tool in studying prion and other
protein misfolding/aggregation processes. In this work, we review some of the major
mathematical studies that have contributed to our understanding of prion disease and
discuss trends in current and future studies.

Keywords: protein misfolding, mathematical modeling, differential equations, aggre-
gation, fragmentation

1. Introduction

In the past century, the use of mathematical models to study biological phenomena has gone

from an occasional dalliance of a theoretical mathematician to an established field of its own.

Today, mathematics has impacted virtually every area in biology—from evolution (e.g., Fish-

er's Fundamental Theorem of Natural Selection) to biochemistry (e.g., Michaelis-Menten Kinet-

ics) [1]. But, the impact of biology on mathematics has been just as transformative and biology

itself has served to motivate the development of novel mathematics [2].

In the latter part of the twentieth century, both biologists and mathematicians worked to identify

and characterize mechanisms to explain a host of fatal neurodegenerative diseases in mammals

ranging from scrapie—an infectious diseases observed in sheep—to fatal familial insomnia—a

genetic disorder in humans. Initially, much of the focus of these studies centered on first the

identification of the infectious agent of these diseases. The discovery of the prion—a proteina-

ceous infectious particle—originally represented a fundamental contradiction in the central

dogma of molecular biology. But today there is increasing acceptance of protein-only-inheritance
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(see Figure 1) not only for mammalian diseases but also for heritable phenotypes in yeast. At

present, mammalian prion diseases are untreatable and continued experimental, mathematical

and interdisciplinary research offers the promise for identification of regulatory mechanisms and

therapeutic targets.

Prion diseases offer a particularly intriguing biological phenomenon for mathematical analysis

because such diseases cover many different systems and time scales. At the level of a popula-

tion, such as a herd of sheep or population of deer, prion disease can be studied as a classical

epidemic model where infections are spread among an initially uninfected (susceptible popu-

lation). Prion disease can also be studied as a genetic disease whose phenotype is caused by a

gain of function mutation in the gene coding for Prp. While the age of disease onset and death

appear to be heritable, linking genotype to phenotype remains challenging [3]. Spontaneous

prion disease is thought to be nucleation limited, with the formation of a stable minimal size

aggregate (nucleus) of misfolded protein serving as the rate-limiting step in the appearance of

prion diseases. All prion diseases are characterized by aggregates of misfolded protein serving

as templates to convert normally folded protein and amplifying through fragmentation. As

such, many mathematical formulations have focused primarily on the dynamics of the aggre-

gates themselves through modeling either discrete or continuous sizes using ordinary differ-

ential equations (ODEs) or partial differential equations (PDEs), respectively. Finally, in order

to model the loss or reversal of the prion phenotype in certain experimental systems, prion

dynamics are modeled as a stochastic process.

This chapter reviews the application of mathematical models to the study of prions. Our goal

is to serve as a tool for both mathematicians and biologists interested in interdisciplinary

Figure 1. Prion and protein-only inheritance. The central dogma of molecular biology stipulated that genotype (DNA)

encodes phenotype (visible traits). However, prion proteins represent an important departure from this rule where

inheritance may arise from proteins alone. Through adopting a stable misfolded conformation (square) a protein can go

from harmless to capable of conferring a number of fatal, progressive neurodegenerative diseases.
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research in prion disease. We first describe the time before the identification of the prion,

when the work of mathematician Griffiths was central to proposing a protein-only disease

process. We next overview mathematical formulations focusing on the dynamics of prion

disease through modeling the kinetics protein misfolding and aggregation as well as the

coagulation and fragmentation dynamics of the misfolded aggregates themselves. We close

by discussing recent advances and ongoing work in mathematical modeling of prions that

are serving to further our understanding and motivate experimental studies and present

some open questions.

2. Mysterious mammalian diseases, heritable yeast phenotypes and the

mathematical origins of the prion hypothesis

No discussion of prion disease would be complete without discussion of the field prior to the

establishment of the prion hypothesis, which stipulates that protein, rather than virus or

bacteria, is the infectious agent of the prion disease. Here we give an overview of historical

observations linking a variety of diseases in mammals, leading to the formulation of the prion

hypothesis by Griffith [4], subsequent experimental validation by Prusiner [5] and discovery of

prions in fungi. (For a more complete history of prion diseases refer to any of these reviews

[6–10].)

Scrapie is likely the first prion disease to be observed with reports dating back to the 1500s [7,

11]. The first publication describing scrapie appeared in 1759 [12] and because scrapie was

reported to be an infectious “distemper” from which sheep could never recover, shepherds of

the time were advised to separate any animal observing symptoms from the rest of the flock.

Publications at this time discussed and debated possible modes of transmission for this dis-

ease; ideas were wide ranging from inbreeding [13], humidity of the sheep pen [14] and even

atmospheric events [15]. By the late nineteenth century, it was strongly believed that scrapie

was a hereditary disease, but some reports noted spontaneous occurrences leading some to

believe there was two forms of scrapie: hereditary and non-hereditary [7].

In 1913, Sir Steward Stockman published “Scrapie: An Obscure Disease of Sheep” [16], which

served as both a historical record of the disease as well as analysis of its symptoms and

progression. In particular, he notes that scrapie has a long incubation time of 2–3 years.

Research on the method of transmission of scrapie continued and by the early 1960s, it had

been established that scrapie could spread through indirect contact between sheep (grazing in

a field that had been occupied by an infected herd) [17], could transmit either as an infectious

or heritable disease [18], could be transmitted through serum as when a vaccine for another

disease (Louping-ill) was prepared from sheep infected with scrapie [19] and could transmit

between species (from sheep to goat [20] and sheep to mouse [21]). In combination, these

observations suggested that scrapie did not behave as any previously observed disease-caus-

ing agent.

Scrapie was not the only prion disease studied in the mid-twentieth century. Around the same

time that cross-species infectivity of scrapie was demonstrated, researchers were studying
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kuru, a progressive neurodegenerative disease that appeared in Papua New Guinea. The

disease was first reported in the scientific literature when anthropologists [22] and pediatri-

cians [23] reported a deadly disease among the Fore people called kuru. The disease had an

unusual distribution by sex and age; among children, both male and female could have the

disease, but among adults incidence was nearly always limited to females [9]. It was also

observed that the pathology of kuru was similar to a Cruzfeld-Jacob disease, a very rare

neurological disorder [24].

Researchers continued to conduct experiments to uncover the method by which scrapie and

kuru were transmitted. In 1959, a critical connection was made between these seemingly

separate disorders; Hadlow, a veterinarian, attended an exhibit at the Wellcome Medical

Museum in London featuring images of neurological tissue from the brains of individuals

who died from kuru. He noted the patterns and appearance of damage was extremely similar

to what he had seen in scrapie. The similar pathology, combined with the apparent ability of

kuru and scrapie diseases to be acquired or hereditary caused him to conjecture that a similar

mechanism could be responsible for both diseases and advised researchers to see experiment

with transmission of kuru from humans to other mammals (as had been done for scrapie) [25].

Indeed, soon after Hadlow's publication it was shown that, like scrapie, kuru could be trans-

mitted to other mammals [26, 27].

While linking diseases such as scrapie, kuru and Cruzfeld-Jacob was significant in formulating

the prion hypothesis, it did not directly address the question of the infectious unit of the

disease. In 1966, Alper and colleagues used radiation and filtration experiments on brains from

mice scrapie and determined the infectious agent of scrapie appeared to be able to self-

replicate but without a nucleic acid code; they conclude by indicating the scrapie agent “is

likely to be of an unusual nature” [28].

In 1967, Griffiths, a mathematician at Bedford College in London took the observations from

Alper [28] and Pattison [29] and suggested the infectious agent of scrapie was “probably a

protein without nucleic acid” [4]. While precise mathematical formulations were not given,

Griffiths used the same type of reasoning that goes into the development of mathematical

models to pose three possible mechanisms by which a host-encoded protein could act as an

infectious agent. Namely, he worked within the known rules of the underlying biological

processes to pose hypotheses, which could then act to motivate further experimental design.

It is precisely this form of interplay between the mathematical and biological sciences that

serve to drive discovery.

It is worth noting that Griffith's proposed mechanisms for a protein infectious unit involved

three distinct biological processes: gene regulation, protein aggregation and immune response.

Because his second mechanism is closest to what we believe to be correct today, we postpone

its discussion. First, he suggested a process by a gene encoding the prion protein was typically

in the “OFF” state. If the prion protein was capable of acting as an inducer to this gene (i.e.,

turning it “ON”), then the introduction of prion protein would act infectiously by turning the

gene “ON” and further production of the protein would maintain the gene in the “ON” state.

As such a prion disease could occur spontaneously if the gene were perturbed to the “ON”

state in an individual or be acquired through consumption of a protein. His third mechanism
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was one where the immune response (antibody) was itself equivalent to the foreign body

(antigen) and thus prion disease could be the hosts immunity backfiring.

Remarkably, his second proposal quite closely depicts the dynamics of protein aggregation and

fragmentation that today we believe was that of protein aggregation and fragmentation. He

posed a simple model where proteins could exist as monomer, dimer, trimer and tetramer.

Increase in size could occur through monomer addition and tetramers could split into two

dimers. If the reaction to create a dimer from two monomers was itself required the catalytic

influence of a dimer, the all-monomer state would persist stably unless a dimer were introduced.

Such a system he noted would be capable of self-propagating as long as there were monomer

(which could be produced by the host) and an initial infectious unit (a dimer, trimer, or tetramer).

Griffith's proposed “protein-only”method of disease transmission spurred further experimen-

tal studies. Finally, in 1982, Prusiner demonstrated through several distinct lines of evidence

(including sensitivity to proteases) that the infectious agent was a protein and coined the term

“prion” to mean proteinaceous infectious particle [5]. Not long after, a team of researchers

discovered the host gene coding for the prion protein, named PrP for prion protein, in mam-

mals [30].

While mammalian disease was the driving force behind the investigations so far discussed,

mammals are not the only organisms that today we know to exhibit protein-only inheritance.

In 1994, Wickner was investigating a heritable phenotype in yeast that did not appear to have a

chromosomal determinant, but was associated with an altered form of a yeast protein Ure2p

[31]; he proposed that this phenotype could be prion based. Thus, the prion hypothesis could

plausibly explain a number of non-Mendialian phenotypes discovered and studied by Cox

[32]. The facility of yeast as an experimental system has spurred the identification of nearly a

dozen prion proteins in yeast each of which is linked with a seemingly harmless phenotype [6,

33]. Thus, this opens the possibility that protein-only inheritance may well have evolved as a

regulatory mechanism.

While today there remain some scientists that reject the notion that a host-encoded protein

could be the infectious agent, increasingly sophisticated experimental studies continue to

support the prion hypothesis. For example, in 2013 Zhang and colleagues demonstrated that

prion diseases could be induced in mammals from recombinant prion protein produced in

bacteria [34]. As such, the prion hypothesis has become the accepted view for both mammalian

prion diseases and heritable yeast phenotypes.

Today we understand that proteins capable of propagating through a protein-only mechanism

do so by adopting an abnormal folded-state (conformation) and forming aggregates each of

which may act as a template to induce further misfolding among normally folded protein.

(Note that we use the term “prion phenotype” to encompass both the concept of mammalian

prion disease and harmless prion phenotypes in yeast.) Indeed, there are multiple possible

prion phenotypes (in mammals these correspond to distinct incubation periods for disease

symptoms) each of which corresponds to a distinct conformation typically called a prion

strain. Finally, while all known mammalian prion phenotypes correspond to the same protein

PrP, in fungi there are a number of prion proteins each linked to distinct phenotypes [6, 33].
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However, as we will detail further, identification of this infectious agent is only the beginning

in characterizing these processes.

3. Establishing a mathematical framework of prion aggregate dynamics

In this section, we discuss contributions of mathematical modeling in understanding the

dynamics associated with prion disease (more generally phenotype). Because prion pheno-

types can be either spontaneous or acquired, a distinction is often made between nucleation,

the spontaneous appearance of an initially infectious unit and propagation of the infectious

unit. However, since both phases involve aggregation of misfolded protein, similar mathemat-

ical formulations have been applied to both processes. Indeed both processes are also funda-

mental to other protein aggregation processes and disorders such as Alzheimer's and

Parkinson's diseases. Because several reviews exist on mathematical models of aggregation in

more general biological processes [35, 36], in this work we focus on mathematical methods of

appearance and propagation as specifically applied to the in vivo dynamics of prion pheno-

types. Although in spontaneous prion disease, nucleation occurs first, we will begin our

discussion with propagation as this step has been better characterized.

Propagation. The first mathematical formulation of the autocatalytic propagation of prion

aggregates was published by Eigen in 1996 [37] where, inspired by the dimerization process

expressed in Griffiths’ third hypothesis [4] and observations from by Prusiner [38] and

Lansbury [39–41], he developed systems of differential equations to analyze two theories on

protein-only amplification. Through his mathematical analysis, Eigen was able to demonstrate

support for the idea that prion aggregates are themselves the infectious agent of prion disease

but, as Eigen writes “aggregation of the prionic form is most probably a necessary, but not

possibly sufficient, prerequisite of infection”.

In Eigen's first model, he explores the possibility suggested by Prusiner [38] that heterodimers act

to template misfolding. He considers a system with two-protein species:A, normal conformation

and B, prion conformation; proteins of type A are capable of forming heterodimers with proteins

of type B and through that interaction are irreversibly converted to type B. The resulting

homodimer of B would then resolve creating two proteins of state B, each of which may then

act to template further conversion events. (Note that in this model the capacity of the system to

convert protein from state A to state B depends linearly on the total concentration of B:)

The mathematical model resulting from these assumptions consists of two coupled differential

equations. Eigen performed steady-state analysis to determine the possible asymptotic con-

centrations of each protein species and how the local stability of each depended on the

underlying kinetic values. He found two types of asymptotic behavior were possible and the

one the system would converge to depended on the ratio of two kinetic parameters: the

catalytic conversion rate and the death/decay rate of the prion conformation of the protein. If

the death rate exceeded the conversion rate, the asymptotic concentration of prion proteins

(type B) approaches 0 and nearly all the protein will be in then normal conformation (type A).

When the conversion rate exceeds the death rate, the reverse happens, namely the amount of

protein in the prion conformation (type B) will grow exponentially and most of the protein
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present is in the prion conformation. Since neither of these possibilities was consistent with the

true behavior of prion disease, namely that the vast majority of individuals have primarily

healthy protein and, even in the few individuals that do have prion diseases, still have

detectable levels of normal protein. As such, Eigen concluded that a model where the conver-

sion capacity was linear with the concentration of misfolded protein was not possible [37].

Eigen's second model, considered two mechanisms where the infectious agents were not

individual misfolded protein monomers: a cooperative auto-catalytic mechanism, which gen-

eralized his first model and aggregates of misfolded protein, in accordance with a proposed

aggregation mechanism from Lansbury [39–41]. These assumptions result in their own—more

complicated—sets of differential equations, but as for the previous model, steady-state analy-

sis revealed important properties of the asymptotic dynamics. Both models exhibited a

“threshold” effect, that is, if the concentration of prion protein were low enough, the healthy

state was maintained but the introduction of prion protein exceeding a threshold would cause

the exponential growth of prion protein. While the results of Eigen's work did not definitively

detail all necessary steps in the propagation of prion phenotypes, nor did he demonstrate

global asymptotic stability of the prion phenotype, his work demonstrated that mathematical

modeling—in particular systems of deterministic ODEs—could be used to theoretically inter-

rogate biological hypotheses on prion dynamics. In particular, Eigen's analysis demonstrated

that “aggregation is necessarily involved” [37] in prion propagation.

In 1998, Nowak and colleagues built upon Eigen's seminal work by incorporating additional

experimental observations, in particular work demonstrating sensitivity of distinct Prp strains to

protease cleavage. Their mathematical framework of prion infection dynamics was based on

having prion aggregates act in two ways; first (as in Eigen's model) they would template

additional misfolding, but now aggregates themselves could increase fragmentation [42].

Because this model forms the basis of most subsequent mathematical models on prion dynamics,

we discuss its formulation in some detail. In this mathematical formulation, the state of the

system at time t, is the concentration of proteins in the normal conformation, xðtÞ and prion

aggregates of every discrete size i, yiðtÞ. They assume protein in the normal conformation is

created at rate λ and decays at rate d, aggregates of all sizes decay at rate a. Conversion occurs

through contact between aggregates and normal conformers at a rate depending on the size of

the aggregate, βi. Finally, the total number of aggregates increases through fragmentation; in

their most general formulation they specify the rate that aggregates of size j fragment to create an

aggregate of size i as bj, i and that during fragmentation nomass is lost (i.e., if an aggregate of size

j is always fragmented into two aggregates of size i and ðj−iÞ). Translating these biochemical

kinetic assumptions into a set of differential equations results in the following infinite system:

dx

dt
¼ λ−dxðtÞ− ∑

∞

i¼1
βixðtÞyiðtÞ, (1)

dyi
dt

¼ βi−1xðtÞyi−1ðtÞ−βixðtÞyiðtÞ−ayiðtÞ þ ∑
∞

j¼iþ1
ðbj, i þ bj, i−jÞyjðtÞ−∑

i−1

j¼1
bi, jyiðtÞ, (2)

for i ¼ 1; 2;…, etc. While the model allows for quite general dynamics, under the simple

assumptions that the conversion rate is independent of aggregate size, that fragmentation
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increases linearly with aggregate size and that fragmentation is equally likely between any two

adjacent monomers in an aggregate, this infinite system of differential equations reduces to the

following three-dimensional system:

dx

dt
¼ λ−dxðtÞ−βxðtÞYðtÞ (3)

dY

dt
¼ bZðtÞ−ðaþ bÞYðtÞ (4)

dZ

dt
¼ βxðtÞYðtÞ−aZðtÞ (5)

where YðtÞ ¼ ∑∞i¼1yiðtÞ represents the total number of aggregates and ZðtÞ ¼ ∑∞i¼1iyiðtÞ is the

total amount of prion protein. We note that mathematically YðtÞ and ZðtÞ correspond to the

zeroth and first moments of the distribution of aggregate sizes and, as such, this demonstrates

a moment closure of the aggregate size distribution. That is, the time-evolution of the complete

aggregate size distribution under these kinetic simplifications is determined by purely the

zeroth and first moments. Nowak and colleagues remarked this reduced formulation was

mathematically equivalent to prior viral models studied in mathematical epidemiology and

derived an expression for the basic reproductive number of a prion aggregate. The basic

reproductive number, or R0 as is commonly denoted in the epidemic community, specifies the

number of secondary infections (in this case infectious aggregate) created by an infection

aggregate during its lifetime. In the case that R0 > 1, we expect exponential growth of disease

in a purely susceptible population and, as such, prion aggregate to persist stably. If R0 < 1, we

expect the infectious elements, in this case prion aggregates, to exponentially decay and

ultimately be lost from the system. In this case the R0 was shown to be a ratio of the underlying

kinetic parameters: R0 ¼
βλb

daðaþbÞ. As such, the stability of prion phenotypes was now shown to

be explicitly a function of biochemical properties offering the promise to interpret results in

this new context.

Nowak and colleagues [42] were also the first to formalize what today is considered to be the

standard prion aggregate kinetics, the nucleated polymerization model (NPM). In this model,

the infectious units are aggregates above a critical size. Below this critical size, aggregates of

the misfolded prion form of the protein are presumed to be highly unstable and are rapidly

resolved into monomers (see Figure 2). (It is this nucleation process that forms the rate-limiting

step in the establishment of prion phenotypes and we discuss this extensively in the next

section.) The dynamics of the NPM are similar to those presented in Nowak's first model;

however, the minimal nucleus size modifies the resulting equations slightly. First, the quanti-

ties YðtÞ and ZðtÞ now represent the aggregates above this critical minimal size, n0: That is,

YðtÞ ¼ ∑
∞

i¼n0

yiðtÞ and ZðtÞ ¼ ∑
∞

i¼n0

i yiðtÞ: (6)

Under the previous simplifications on kinetic rates, this changes the resulting moment closure

of the infinite system of ODEs to the following three-dimensional system of ODEs:
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dx

dt
¼ λ−dxðtÞ−βxðtÞYðtÞ þ bðn0Þðn0−1ÞYðtÞ, (7)

dY

dt
¼ bZðtÞ−ðaþ bð2n0−1ÞÞYðtÞ, (8)

dZ

dt
¼ βxðtÞYðtÞ−aZðtÞ−bðn0Þðn0−1ÞYðtÞ: (9)

In this new formulation the basic reproductive number of a prion aggregate now also depends

on the minimal nucleus size n0. This form of the NPM has become the standard approach for

modeling prion aggregate dynamics and inspired many future mathematical studies.

In 1999 Masel, Jensen and Nowak conducted an extensive analysis of the NPM [43]. In

particular, they sought to link experimental observations on the time to appearance of prion

Figure 2. Nucleated polymerization model of prion dynamics. This demonstrates the key steps in the nucleated polymer-

ization model (NPM) of prion aggregate dynamics. (The description of the kinetic parameters is in the text.) This model is

characterized by prion aggregates below a critical size n0 ¼ 2 (the nucleus size) resolving to protein monomers in the

normal folded state.
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disease symptoms with the kinetic parameters of the NPM. Among other contributions, Masel

and colleagues determined a viable range of minimal nucleus sizes, n0. Overall, there was

remarkable consistency between parameters predicted from different experimental data sets

analyzed providing support at the time for this mathematical formulation. In addition, Masel

et al. [43] (and then Greer and colleagues with a generalization [44]) demonstrated that the

dynamics of aggregates under the NPM are consistent with the long-incubation time observed

for prion phenotypes. If prion disease begins with the introduction of a small amount of prion

protein (in the form of aggregates) those aggregates will first have to increase in size until there

are enough fragmentation sites to permit aggregate amplification through fragmentation.

In early twenty-first century, mathematicians continued formalizing the NPM. Prüss and

colleagues [45] demonstrated that the prion phenotypes were globally asymptotically stable

and not merely locally stable, through deriving a Lyapunov function. Engler et al. [46] ana-

lyzed the well-posedness of the generalization of the NPM where aggregate sizes were contin-

uous, instead of discrete. As such, rather than an infinite system of ordinary differential

equations, the system consisted of a single ODE for protein in the normal configuration and a

PDE specifying the distribution of aggregate sizes. While this formulation departs from the

physically discrete nature of aggregates, in the limit of large aggregate sizes these formalisms

are provably equivalent [47] and the use of PDEs permits a wider array of mathematical

techniques. Most notably, the continuous relaxation on aggregate sizes has permitted determi-

nation of the explicit asymptotic density [44, 46]. (In comparison, the asymptotic density for

the aggregate model with discrete aggregate sizes, while first approximated in 2003 by Pöschel

et al. [48], was derived only recently by Davis and Sindi and required special functions [49].)

While today mathematical models of prion aggregate dynamics have been formulated under

many more general kinetic assumptions (see [47, 50–52] for example) most of these models

have been compared to only in vitro aggregation studies. For yeast, in vivo comparisons have

been made for the Sup35/[PSI+] prion system [53–55], but linking experimental outcomes

uniquely to specific kinetic parameters remains challenging.

Nucleation. As mentioned in the previous section, the rate-limiting step in prion phenotypes is

thought to be the time to the appearance of stable nucleus, that is, an aggregate of misfolded

protein that persists stably. (It is typically thought that this nucleus corresponds to a misfolded

aggregate of a minimal stable size [42, 43].) The self-assembly of particles into aggregates is

fundamental to many physical, chemical and biological processes. Such a process is referred to

in statistical physics as nucleation and mathematical models of nucleation have been studied

for nearly a century [56]. In contrast to other biochemical models of protein aggregation, the

spontaneous appearance of a prion nucleus is thought to be rare [57, 58]. As such, mathemat-

ical models of prion appearance are often framed as first-passage processes; that is, these

models focus on determining the amount of time until a critical event occurs, in this case the

appearance of a prion nucleus.

One of the earliest models of self-assembly of particles was proposed by in 1916 by

Smoluchowski [59]. He considered the evolution of the density of clusters of discrete particle

sizes under the assumption that clusters of any size could join together (coagulation). In 1935,

Becker and Döring introduced kinetic equations for a similar process but where clusters could
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only change in size through monomer addition or removal [60]. More generally, models of

particle self-assembly are distinguished by their associated set of biochemical equations

governing the evolution of cluster sizes. As such, the problem of prion nucleus appearance

can be framed as: given a set of biochemical equations governing misfolded protein aggregate

formation, determine the time it takes for a critical sized nucleus to form [61].

Broadly speaking, two mathematical formulations have been used to describe the time to

nucleus formation: deterministic and stochastic. In a deterministic mathematical model, the

predictions or model output is always the same for a given input. In such a formulation, the

Law of Mass Action is used to convert the set of biochemical equations to a system of ordinary

differential equations (ODEs) [62]. For the standard aggregation processes, like the Becker-

Döring process, systems of ODEs have been extensively studied [60, 63, 64]. In these ODEs, the

mathematical model output is a continuously varying quantity approximating the concentra-

tion or number of aggregates of each possible size. The time to nucleation would then be

specified as the time at which the value associated with the critical nucleus size exceeds a

threshold value. When the number of total proteins present is large, a deterministic formula-

tion describes the dynamics well; however, when the number of proteins is small, random

effects begin to dominate and to capture these effects a stochastic formulation is required [65].

(We note that for in vitro experiments of prion aggregation, when the concentration of proteins

far exceeds physiological settings, deterministic models have proven to be consistent with

observed quantities [66, 67].)

Stochastic mathematical models allow for the possibility of the same input to produce different

output. In this case, the state of the system is given not as a deterministic quantity, but a

random variable that can take on different values [68]. For example, given a coin with two

sides (heads and tails), the number of times a coin must be flipped until heads appears is a

random variable; one might attain heads on the first try or require many trials before heads

appears. Because the observed output can change, the quantity of interest is not the specific

output but rather its properties. To continue our example, we might wish to know either what

the mean (average) number of flips will be required from a fair coin to produce heads and

possibly the variance in that quantity. Alternatively, we might wish to know the probability

associated with observing any possible outcome (i.e., what is the probability we flip the coin k

times before observing a head); this corresponds to a probability density function. For our

example of the coin, the number of flips required before heads appears is given as a geometric

probability distribution. That is, the probability that k coin flips are required before the first

heads is observed is given by: ð1−pÞk−1p where p is the probability of heads on any given trial.

For all but simple systems, such as our coin flip example, it is not possible to obtain an explicit

formula for our random variable in question. As such, an increasingly sophisticated set of

mathematical and computational tools have been employed to aid in such processes.

We note that for nucleation problems, we are interested not in the state of our protein mole-

cules at any particular time, but the first-arrival time of the nucleus. That is, the time at which

the first aggregate of minimal stable size appears. Below we refer to misfolded protein aggre-

gates smaller than the critical nucleus as proto-nuclei and any aggregate larger than the

nucleus size as a propagon. (We note this is consistent with the definition of a propagon as
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being a prion aggregate capable of transmitting the prion phenotype upon transmission to an

environment with normally folded protein [33, 69].)

We will first frame this problem as a continuous-time stochastic process and then discuss how

statistical properties of the first-arrival time may be computed. (For a detailed discussion of

stochastic processes and first arrival times in biological systems, refer to [61, 68].) For simplic-

ity, let us assume that our system consists of a total number of m molecules of our protein in

question and that this number remains constant (i.e., no synthesis or degradation). In this case,

if we observe the system at any particular time the state of the system consists of the number of

protein aggregates of each possible size. If niðtÞ is the total number of aggregates of each size i

at time t (i ¼ 1 corresponds to monomer), then for all time we have:

∑
m

i¼1
i niðtÞ ¼ m: (10)

We useΩ to denote set of all possible molecular configurations and observe that the size of this

space increases exponentially inm but, because there is no synthesis or degradation,Ω is finite.

We distinguish between two sets of configurations in Ω; A: those configurations with only

proto-nuclei and A
C ¼ Ω: those where the system has at least one propagon. While not

required, it is often assumed that the system begins in the all-monomer state (i.e., n1ð0Þ ¼ m,

niðiÞ ¼ 0 for all i > 1) [61, 70]. At any given time, aggregates of any size may increase or

decrease in time through dynamics such as monomer addition, fragmentation and/or coagula-

tion as allowed by the biochemical assumptions (for example, the Smoluchowski [59] or

Becker-Döring [60] assumptions). Refer to Figure 3 for a visualization of the stochastic model.

The first-arrival time is the time that the stochastic process reaches any configuration in A
C.

Figure 3. Stochastic model for prion nucleus appearance. The rate-limiting step in the appearance of prion phenotypes is

thought to be the waiting-time until the appearance of a nucleus, an aggregate of misfolded prion protein that exceeds a

critical size. In a stochastic formulation, the number of prion subunits of each size is tracked in time. As detailed in the

text, we are considering a reduced system where the total number of protein molecules (m) remains fixed in time.
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There are three methods for computing first-arrival times and their associated moments (mean,

variance, etc.) in this stochastic formulation. First, these quantities may be defined directly by

analyzing solutions of the chemical master equation (CME). The CME is the first-order linear

differential equation that describes the time-evolution of the probability of the system to

occupy any particular configuration [68, 71–74]. Because the size of the state-space is exponen-

tial in the number of monomers, the CME is computationally intractable for all but very simple

systems. Second, computational simulations representing individual realizations of the nucle-

ation process are generated in silico; the mean and moments of the first-passage times are then

calculated from these empirical results [75, 76]. While Monte Carlo approaches are typically

easy to code and highly parallelizable, they suffer from slow convergence and in the case of

rare events, like nucleation, individual realizations may take arbitrarily long to terminate [77].

Third, heuristics may be used to simplify the dynamics in particular regimes. For example, in a

series of studies Chou and colleagues [65, 78–80] approximated the mean first-arrival time to a

critical nucleus for the Becker-Döring model (only monomer growth or detachment) in for two

parameter regimes (strong growth and weak growth) by computing the arrival time for the

dominant pathway from the all-monomer state to the appearance of the first aggregate of a

minimal stable size. While dominant path approaches are readily apparent for some models of

aggregation, like Becker-Döring, they are difficult to determine for more general sets of reac-

tions. Further, because these results rely on particular parameter combinations, the approxi-

mations pose challenges to parameter inference—where we want to determine the kinetic

parameters that best match available data.

We note that beyond the mathematical challenges in modeling nucleation there remain many

practical challenges. Experimentally, it is typically not possible to separate the spontaneous

appearance of a propagon, an initial infectious aggregate, from the prion phenotype itself.

Finally, critical events in the underlying biochemical kinetics of nucleus formation in prion

disease are unknown. In our formulation above, we described protein subunits, but the protein

itself is only capable of aggregating when in a particular conformational state. As such, an

accurate predictive model of spontaneous nucleation must also include a model of protein

misfolding. While it is clear that particular prion variants (distinct conformations) are favored

under particular experimental conditions [81], the connection between nucleus formation and

conformation has yet to be fully explored. As such, nucleation remains a challenge on experi-

mental, mathematical and computational fronts.

4. Present state and challenges in prion disease modeling

As described above, a combination of mathematical and experimental studies over the past

few decades have led to the formulation of a protein-only form of inheritance associated with

prion phenotypes. We first summarize our present knowledge and then remark on present day

studies and challenges that remain in modeling prion disease. Today we believe that prion

phenotypes are established through two distinct phases, nucleation and amplification. Once an

initial nucleus—prion aggregate above a critical size—is introduced to a host, four steps are

required for successful in vivo propagation of prion phenotypes (see Figure 4). First, normal
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folded protein must be continuously created. Second, aggregates of the misfolded form of the

protein act as templates by converting normally folded protein to the same misfolded state.

Third, the total number of templates increases through fragmentation where a single aggregate

is split into two (or more) smaller aggregates. Finally, misfolded protein must spread through

other cells. For yeast, this transfer of misfolded protein occurs through cell division where for

mammals this likely involves extracellular diffusion [33].

However, beyond this basic understanding remain many challenges, both mathematical and

biological. We briefly outline some open questions in prion biology we believe are amenable to

interdisciplinary approaches.

Consideration of the cellular environment. Prion phenotypes are established through protein

misfolding, but protein misfolding itself is not rare. Eukaryotic cells have developed a complex

network of molecular chaperones and protein degradation factors that act continuously to

identify and clear misfolded proteins [33]. As such, understanding the in vivo propagation of

prion phenotypes requires considering the environment in which they appear. In the case of

yeast prions, the molecular chaperone Hsp104 has been shown to be essential for the propaga-

tion of [PSI+] prion phenotype in yeast. While comparatively few mathematical studies have

considered the role of Hsp104 as enzyme catalyzing fragmentation [55, 82], the results from

these studies have resolved previously unsupported results on shifts in aggregate size distri-

butions and (as we will discuss further below) rates of loss (curing) of specific [PSI+] strain

phenotypes.

Spread of prion aggregates. A major open question in prion biology amenable to mathemat-

ical analysis is how prion aggregates spread between cells either through cell division (yeast

prion phenotypes) or within a mammalian tissue. Although this question was first explored

Figure 4. In vivo prion propagation. The infectious agent of prion disease is aggregates of misfolded proteins (squares).

Four steps are essential to stable propagation of the prion form of the protein: (1) new normally folded protein must be

created, (2) prion aggregates act as templates to convert normally folded protein to the misfolded state, (3) prion

aggregates are fragmented into smaller aggregates each of which may be capable of acting as a template, and (4) prion

infectious units must spread through other cells. In the case of yeast prions, this transmission occurs through the normal

process of cell division while for mammalian disease transmission corresponds to diffusion and transport through tissue.
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when Nowak and colleagues [42] presented simulations of their NPM where prion aggregates

could move between distinct cells in a population and when Payne and Krakauer [83] consid-

ered prions spreading in tissue as a traveling wave, our understanding of the spread of prion

aggregates is still incomplete. Because the long incubation period and complicated physical

domains involved in mammalian prion disease will pose significant experimental and mathe-

matical challenges, yeast prion phenotypes may provide a useful tool in this question. While

stochastic models have been developed for yeast, which link cellular levels of prion aggregates

with computational simulations [55], formulations amenable to analytical treatment need to be

developed to allow for a more systematic characterization of the spread of prion aggregates.

Reversing prion phenotypes. Mammalian prion diseases remain untreatable and ultimately

fatal and as such the identification of clinical treatments and methods of early detection remain

important scientific and technical challenges. Of particular challenge may be that drugs which

act to promote aggregate fragmentation, with the goal of causing all aggregate to drop below

the critical nucleus size, may in fact promote prion amplification at low doses when they

would merely act to accelerate the exponential growth of prion aggregates [84].

A promising avenue toward finding approaches to manage prion diseases in mammals, might

be to more clearly understand the biochemical processes responsible for a number of reversible

prion phenotypes in yeast [33]. As was demonstrated by Derdowski et al. [55], a combination

of enzyme-limited fragmentation and aggregate-size transmission bias appeared to be respon-

sible for the observed natural rates of curing for the [PSI+] weak phenotype. In addition, for

yeast treatment with GdnHCl has been shown to significantly slow aggregate fragmentation

leading to a natural reversal of prion phenotypes by dilution of the aggregate during cell

division [69, 85–88].

Further, biological and mathematical researchers should consider mechanisms of curing prion

disease through studying mutations in prion proteins, which are known to slow or halt the

disease progression. Such mutations are known to exist in mammals [89] and yeast [90].

Evolvability of prions. While prions were originally implicated in mammalian disease, the

fact that they persist as a number of harmless heritable phenotypes in yeast raises intriguing

questions about how and why prions may have evolved [57, 91, 92]. Because the yeast pheno-

type [PSI+] is associated with a decreased efficiency in stop-codon recognition, it is thought to

serve as an evolutionary capacitor by promoting the generation of novel transcripts [57]. More

recently, a combination of mathematical and experimental studies have demonstrated that

smaller [PSI+] aggregates still retain function associated with the normal Sup35 conformation

offering the possibility this system evolved to tune stop-codon recognition [54]. While we are

still far from understanding the forces behind prion phenotype evolution, the evidence con-

tinues to mount for possible beneficial examples of prion-like mechanisms [93].

5. Conclusion

Many questions remain about prion phenotypes and it is essential once again for scientists

with different backgrounds to utilize their disciplinary expertise and methods to address these

questions. As we have discussed, two critical points in the history of prion disease came from
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researchers that were not primarily biologists, namely the mathematician Griffith [4] and the

veterinarian Hadlow [25]. If the past is any predictor, future studies in prion phenotypes will

continue to benefit from an interdisciplinary approach.

Author details

Suzanne S. Sindi

Address all correspondence to: ssindi@ucmerced.edu

Applied Mathematics, University of California, Merced, California, United States of America

References

[1] Jungck, J.R., Ten equations that changed biology: mathematics in problem-solving biol-

ogy curricula. Bioscene, 1997. 23(1): 11–36.

[2] Reed, M.C., Mathematical biology is good for mathematics. Notices of the AMS, 2015. 62

(10): 1172–6.

[3] Webb, T., et al., Age of onset and death in inherited prion disease are heritable. American

Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009. 150(4): 496–501.

[4] Griffith, J.S., Self-replication and scrapie. Nature, 1967. 215(5105): 1043–4.

[5] Prusiner, S.B., Novel proteinaceous infectious particles cause scrapie. Science, 1982. 216

(4542): 136–44.

[6] Tuite, M.F. and T.R. Serio, The prion hypothesis: from biological anomaly to basic regu-

latory mechanism. Nature Reviews Molecular Cell Biology, 2010. 11(12): 823–33.

[7] Schneider, K., et al., The early history of the transmissible spongiform encephalopathies

exemplified by scrapie. Brain Research Bulletin, 2008. 77(6): 343–55.

[8] Poser, C.M., Notes on the history of the prion diseases. Part II. Clinical Neurology and

Neurosurgery, 2002. 104(2): 77–86.

[9] Poser, C.M., Notes on the history of the prion diseases. Part I. Clinical Neurology and

Neurosurgery, 2002. 104(1): 1–9.

[10] Goldfarb, L.G., Kuru: the old epidemic in a new mirror. Microbes and Infection, 2002. 4

(8): 875–82.

[11] Brown, D.R., Neurodegeneration and Prion Disease. 2005: Springer Science & Business

Media, New York, NY, USA.

[12] Leopoldt J.G., Useful Introduction to Agriculture Based on Experience. volume 5, Chris-

tian Friedrich Günthern, Glogau, Berlin, 1759.

Prion - An Overview222



[13] May G., The sheep: its wool, races, breeding, nutrition, and use, as well as its diseases:

First Edition in 2 vol, Eduard Trewendt, Breslau, 1868.

[14] Richter, F., Compilation of the observations made by me concerning the troubles or

gnubber's disease with regard to their symptoms, the causative organism. Momente,

Weiterverbreitung, Verhütung und Heilung. Magazin für die gesamte Thierheilkunde,

1841. 7: 198–209.

[15] Ribbe, J., Thoughts, and remarks concerning the sheep, and some diseases peculiar to this

animal race, and especially the trotting, which is now so frequently evident.

Oekonomische Neuigkeiten und Verhandlungen, 1826. 50: 397–99.

[16] Stockman, S., Scrapie: an obscure disease of sheep. Journal of Comparative Pathology

and Therapeutics, 1913. 26: 317–27.

[17] Greig, R., Scrapie. Transactions of the Highland and Agricultural Society of Scotland,

1940. 52: 71–9.

[18] Cuillé, J. and P.-L. Chelle, The so-called trembling disease of the sheep is inoculable.

Comptes Rendus de l'Académie des Sciences, 1936. 203: 1552–4.

[19] Gordon,W.,Louping ill, tickborne fever andscrapie.TheVeterinaryRecord, 1946. 58: 516–25.

[20] Pattison, I., Transmission of scrapie to the goat. The Lancet, 1957. 272: 104–5.

[21] Chandler, R., Encephalopathy in mice produced by inoculation with scrapie brain mate-

rial. The Lancet, 1961. 277(7191): 1378–9.

[22] Berndt, R.M., Reaction to contact in the Eastern Highlands of New Guinea. Oceania, 1954.

24(3): 190–228.

[23] Gajdusek, D.C. and J.E. Smadel, Correspondence on the Discovery and Original Investi-

gations on Kuru: Smadel-Gajdusek Correspondence 1955-1958. DHEW Publication No.

(NIH) 76–1168. 1976: US Department of Health, Education and Welfare.

[24] Klatzo, I., D.C. Gajdusek and V. Zigas, Pathology of kuru. Laboratory Investigation, 1959.

8(4): 799.

[25] Hadlow, W.J., Scrapie and kuru. The Lancet, 1959. 274(7097): 289–90.

[26] Gajdusek, D.C., et al., Transmission of experimental kuru to the spider monkey (Ateles

geoffreyi). Science, 1968. 162(3854): 693–94.

[27] Gajdusek, D.C., C. Gibbs Jr and M. Alpers, Experimental transmission of a kuril-like

syndrome to chimpanzees. Nature, 1966. 209: 794–6.

[28] Alper, T., D. Haig and M. Clarke, The exceptionally small size of the scrapie agent.

Biochemical and Biophysical Research Communications, 1966. 22(3): 278–84.

[29] Pattison, I. and K.M. Jones, The possible nature of the transmissible agent of scrapie.

Veterinary Record, 1967. 80(1): 2–9.

[30] Oesch, B., et al., A cellular gene encodes scrapie PrP 27-30 protein. Cell, 1985. 40(4): 735–46.

Mathematical Modeling of Prion Disease
http://dx.doi.org/10.5772/66917

223



[31] Wickner, R.B., [URE3] as an altered URE2 protein: evidence for a prion analog in Saccha-

romyces cerevisiae. Science, 1994. 264(5158): 566–9.

[32] Cox, B., Cytoplasmic inheritance. Prion-like factors in yeast. Current Biology, 1994. 4(8):

744–8.

[33] Sindi, S.S. and T.R. Serio, Prion dynamics and the quest for the genetic determinant in

protein-only inheritance. Current Opinion in Microbiology, 2009. 12(6): 623–30.

[34] Zhang, Z., et al., De novo generation of infectious prions with bacterially expressed

recombinant prion protein. The FASEB Journal, 2013. 27(12): 4768–75.

[35] Cohen, S.I., et al., From macroscopic measurements to microscopic mechanisms of pro-

tein aggregation. Journal of Molecular Biology, 2012. 421(2): 160–71.

[36] Morris, A.M., M.A. Watzky and R.G. Finke, Protein aggregation kinetics, mechanism and

curve-fitting: a review of the literature. Biochimica et Biophysica Acta (BBA)-Proteins and

Proteomics, 2009. 1794(3): 375–97.

[37] Eigen, M., Prionics or the kinetic basis of prion diseases. Biophysical Chemistry, 1996. 63

(1): A1–18.

[38] Prusiner, S.B., Molecular biology of prion diseases. Science, 1991. 252(5012): 1515–22.

[39] Caughey, B., et al., Aggregates of scrapie-associated prion protein induce the cell-free

conversion of protease-sensitive prion protein to the protease-resistant state. Chemistry &

Biology, 1995. 2(12): 807–17.

[40] Come, J.H., P.E. Fraser and P.T. Lansbury, Jr., A kinetic model for amyloid formation in

the prion diseases: importance of seeding. Proceedings of the National Academy of

Sciences of the United States of America, 1993. 90(13): 5959–63.

[41] Lansbury, P.T., Jr. and B. Caughey, The chemistry of scrapie infection: implications of the

‘ice 9’metaphor. Chemistry & Biology, 1995. 2(1): 1–5.

[42] Nowak, M.A., et al., Prion infection dynamics. Integrative Biology Issues News and

Reviews, 1998. 1(1): 3–15.

[43] Masel, J., V.A. Jansen and M.A. Nowak, Quantifying the kinetic parameters of prion

replication. Biophysical Chemistry, 1999. 77(2): 139–52.

[44] Greer, M.L., L. Pujo-Menjouet and G.F. Webb, A mathematical analysis of the dynamics

of prion proliferation. Journal of Theoretical Biology, 2006. 242(3): 598–606.

[45] Prüss, J., et al., Analysis of a model for the dynamics of prions. Discrete and Continuous

Dynamical Systems–Series B, 2006. 6(1): 225–35.

[46] Engler, J., J. Pruss and G.F. Webb, Analysis of a model for the dynamics of prions II.

Journal of Mathematical Analysis and Applications, 2006. 324(1): 98–117.

[47] Doumic, M., et al., Scaling limit of a discrete prion dynamics model. Communications in

Mathematical Sciences, 2009. 7(4): 839–65.

Prion - An Overview224



[48] Pöschel, T., N.V. Brilliantov and C. Frömmel, Kinetics of prion growth. Biophysical

Journal, 2003. 85(6): 3460–74.

[49] Davis, J.K. and S.S. Sindi, A study in nucleated polymerization models of protein aggre-

gation. Applied Mathematics Letters, 2015. 40: 97–101.

[50] Calvez, V., et al., Prion dynamics with size dependency-strain phenomena. Journal of

Biological Dynamics, 2010. 4(1): 28–42.

[51] Calvez, V., et al., Size distribution dependence of prion aggregates infectivity. Mathemat-

ical Biosciences, 2009. 217(1): 88–99.

[52] Doumic, M. and P. Gabriel, Eigenelements of a general aggregation-fragmentation model.

Mathematical Models and Methods in Applied Sciences, 2010. 20(05): 757–83.

[53] Tanaka, M., et al., The physical basis of how prion conformations determine strain

phenotypes. Nature, 2006. 442(7102): 585–9.

[54] Pezza, J.A., et al., Amyloid-associated activity contributes to the severity and toxicity of a

prion phenotype. Nature Communications, 2014. 5: 4384.

[55] Derdowski, A., et al., A size threshold limits prion transmission and establishes pheno-

typic diversity. Science, 2010. 330(6004): 680–83.

[56] Wattis, J.A., An introduction to mathematical models of coagulation–fragmentation pro-

cesses: a discrete deterministic mean-field approach. Physica D: Nonlinear Phenomena,

2006. 222(1): 1–20.

[57] Lancaster, A.K., et al., The spontaneous appearance rate of the yeast prion [PSI+] and its

implications for the evolution of the evolvability properties of the [PSI+] system. Genetics,

2010. 184(2): 393–400.

[58] Belay, E.D. and L.B. Schonberger, The public health impact of prion diseases 1. Annual

Review of Public Health, 2005. 26: 191–212.

[59] Von Smoluchowski, M., Three lectures on diffusion. Brownian motion and coagulation of

colloid particles. Zeitschrift für Physik, 1916. 17: 557–85.

[60] Becker, R. and W. Döring, Kinetic treatment of nucleation in saturated steam. Annalen

der Physik, 1935. 416(8): 719–52.

[61] Chou, T. and M.R. D'Orsogna, First passage problems in biology. In S. Redner, R. Metzler

& G. Oshanin (Eds.) First-Passage Phenomena and Their Applications. Hackensack, NJ:

World Scientific, 2014. 306–345.

[62] Edelstein-Keshet, L. (1998) Mathematical Models in Biology. Philadelphia, PA: SIAM.

[63] Ball, J., J. Carr and O. Penrose, The Becker-Döring cluster equations: basic properties and

asymptotic behaviour of solutions. Communications in Mathematical Physics, 1986. 104

(4): 657–92.

[64] Ball, J. and J. Carr, The discrete coagulation-fragmentation equations: existence, unique-

ness and density conservation. Journal of Statistical Physics, 1990. 61(1–2): 203–34.

Mathematical Modeling of Prion Disease
http://dx.doi.org/10.5772/66917

225



[65] D'Orsogna, M., G. Lakatos and T. Chou, Stochastic self-assembly of incommensurate

clusters. The Journal of Chemical Physics, 2012. 136(8): 084110.

[66] Knowles, T.P., et al., An analytical solution to the kinetics of breakable filament assembly.

Science, 2009. 326(5959): 1533–7.

[67] Xue, W.-F., S.W. Homans and S.E. Radford, Systematic analysis of nucleation-dependent

polymerization reveals new insights into the mechanism of amyloid self-assembly. Pro-

ceedings of the National Academy of Sciencesof the United States of America, 2008. 105

(26): 8926–31.

[68] Allen, L., An Introduction to Stochastic Processes with Applications to Biology 2003:

Pearson/Prentice Hall. Boca Raton, FL, USA.

[69] Byrne, L.J., et al., The number and transmission of [PSI+] prion seeds (Propagons) in the

yeast Saccharomyces cerevisiae. PLoS One, 2009. 4(3): e4670.

[70] Davis, J.K. and S.S. Sindi, Initial condition of stochastic self-assembly. Physical Review E,

2016. 93(2): 022109.

[71] Van Kampen, N.G., Stochastic Processes in Physics and Chemistry. Vol. 1. 1992: Elsevier.

Amsterdam, The Netherlands.

[72] Durrett, R., Essentials of Stochastic Processes. 1999: Springer, New York, NY, USA.

[73] Doob, J.L., Stochastic Processes. Vol. 101. 1953: New York: Wiley.

[74] Van Kampen, N.G., Stochastic Processes in Physics and Chemistry. 1981, Amsterdam:

North-Holland Publishing Company. 419 p.

[75] Gillespie, D.T., Stochastic simulation of chemical kinetics. Annual Review of Physical

Chemistry, 2007. 58: 35–55.

[76] Gillespie, D., Exact stochastic simulation of coupled chemical reactions. The Journal of

Physical Chemistry, 1977. 81(25): 2430–61.

[77] Hammersley, J., Monte Carlo Methods. 2013: Springer Science & Business Media. New

York, NY, USA.

[78] Yvinec, R., M.R. D'Orsogna and T. Chou, First passage times in homogeneous nucleation

and self-assembly. The Journal of Chemical Physics, 2012. 137(24): 244107.

[79] D'Orsogna, M.R., Zhao, B., Berenji, B., & Chou, T. Combinatoric analysis of heteroge-

neous stochastic self-assembly. The Journal of Chemical Physics, 2013, 139(12), 121918.

[80] D'Orsogna, M.R., Q. Lei and T. Chou, First assembly times and equilibration in stochastic

coagulation-fragmentation. The Journal of Chemical Physics, 2015. 143(1): 014112.

[81] Sharma, J. and S.W. Liebman, Exploring the basis of [PIN(+)] variant differences in [PSI

(+)] induction. Journal of Molecular Biology, 2013. 425(17): 3046–59.

Prion - An Overview226



[82] Davis, J.K. and S.S. Sindi, A mathematical model of the dynamics of prion aggregates

with chaperone-mediated fragmentation. Journal of Mathematical Biology, 2016. 72(6):

1555–78.

[83] Payne, R.J. and D.C. Krakauer, The spatial dynamics of prion disease. Proceedings of the

Royal Society B: Biological Sciences, 1998. 265(1412): 2341–6.

[84] Masel, J. and V.A. Jansen, Designing drugs to stop the formation of prion aggregates and

other amyloids. Biophysical Chemistry, 2000. 88(1–3): 47–59.

[85] Ridout, M.S., Computational methods for yeast prion curing curves. Mathematical Bio-

sciences, 2008. 215(2): 152–7.

[86] Ridout, M., et al., Modelling prion dynamics in yeast. Int. Statistical Inst.: Proc. 58th

World Statistical Congress, Dublin (Session IPS020), 2011.

[87] Palmer, K., M. Ridout and B. Morgan, Kinetic models of guanidine hydrochloride-

induced curing of the yeast [PSI+] prion. Journal of Theoretical Biology, 2011. 274(1): 1–11.

[88] Olofsson, P., S.S. Sindi and others, A Crump-Mode-Jagers branching process model of

prion loss in yeast. Journal of Applied Probability, 2014. 51(2): 453–65.

[89] Hunter, N., PrP genetics in sheep and the implications for scrapie and BSE. Trends in

Microbiology, 1997. 5(8): 331–34.

[90] DiSalvo, S., et al., Dominant prion mutants induce curing through pathways that pro-

mote chaperone-mediated disaggregation. Nature Structural & Molecular Biology, 2011.

18(4): 486–92.

[91] Griswold, C.K. and J. Masel, Complex adaptations can drive the evolution of the capac-

itor [PSI], even with realistic rates of yeast sex. PLoS Genetics, 2009. 5(6): e1000517.

[92] Masel, J. and A. Bergman, The evolution of the evolvability properties of the yeast prion

[PSI+]. Evolution, 2003. 57(7): 1498–512.

[93] Newby, G.A. and S. Lindquist, Blessings in disguise: biological benefits of prion-like

mechanisms. Trends in Cell Biology, 2013. 23(6): 251–9.

Mathematical Modeling of Prion Disease
http://dx.doi.org/10.5772/66917

227




