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Abstract

In this chapter, motor current signature analysis based on squared envelope spectrum 
is applied in order to identify and to estimate the severity of outer race bearing faults 
in induction machine. This methodology is based on conventional vibration analysis 
techniques, however, it is, non-invasive, low cost, and easier to implement. Bearing fault 
detection and identification in induction machines is of utmost importance in order to 
avoid unexpected breakdowns and even a catastrophic event. Thus, bearing fault char-
acteristic components are extracted combining summation of phase currents, prewhit-
ening, spectral kurtosis and squared envelope spectrum analysis. Experimental results 
with a 0.37 W, 60 Hz, and three-phase induction machine demonstrated the methodology 
effectiveness.

Keywords: bearing fault detection, induction machine, motor current signature 
analysis, squared envelope analysis, spectral kurtosis

1. Introduction

In an industrial scenario, three-phase induction machines have several applications due to 

their reliability, availability, and cost-effectiveness. Unexpected faults in these machines 
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could lead to unexpected breakdowns, losses at industrial production, or have catastrophic 

consequences. In this context, rolling element bearings are responsible for more than 40% 

of induction machine faults [1]. Rolling bearings are critical mechanical components, which 

allow relative movement between systems, supporting radial and thrust load. Bearing faults 

could be associated to contamination, corrosion, inadequate lubrication, installation prob-

lems, and misalignment or overloading [2]. In general, a fault affects only one bearing compo-

nent—inner race, outer race, cage, or ball; as the fault evolves, it spreads to other components; 

moreover, these faults could be described based on fault mechanism, location, or on a combi-

nation of these [3, 4].

Maintenance of electrical machines is an activity of the utmost importance. Moreover, consid-

ering a scenario of cost reduction and production efficiency, the development of an effective 
maintenance program has been gaining more attention and several tools have been imple-

mented to support and encourage best practices. In this sense, advanced methods for data 

acquisition and processing have been developed in order to allow an effective machine condi-
tion monitoring and early fault detection and identification, avoiding unexpected breakdowns 
and even catastrophic failures, especially for critical systems. Whenever possible, condition 

monitoring should be done non-invasively and without interrupting machine operation [5–7].

Over the years, the concept of maintenance became more comprehensive, reducing fault 

occurrence and increasing industrial system availability. Besides, requirements of reliabil-

ity, safety, and criticality were associated with the system or equipment under analysis. 

Maintenance strategies or schemes can be classified as corrective (run-to-break), preventive 
(time-based) and predictive (condition-based maintenance) [8]. Corrective maintenance is 

only performed after an occurrence of a fault and therefore involves unexpected breakdowns, 

high costs, changes in the production chain, and in addition, it could lead to catastrophic 

events. Preventive maintenance and interventions occur based onto a scheduled maintenance 

plan or based on the equipment mean time between failures. Although it is more effective 
than corrective maintenance, by preventing most failures, unexpected failure may still occur. 

Additionally, the process cost is still high, especially, the costs associated with labor, inven-

tory, and even with unnecessary replacement of equipment or components [8, 9].

On the other hand, predictive maintenance analyses the equipment condition so that a pos-

sible fault can still be identified at an early stage. Predictive maintenance aims to identify a 
machine anomaly so that it does not result in a fault. Such maintenance involves advanced 

technique of monitoring, processing, and signal analysis, that are generally performed non-

invasively and, in many cases, in real time. In case of induction machines, these techniques 

can be developed based on vibration, temperature, acoustic emission, or electrical current 

signal monitoring [9]. It should be noted that the monitoring of such signals or parameters, in 

order to verify the operating condition of a machine, is called condition monitoring. In fact, 

condition monitoring aims to not only observe machine current operational condition, but 

also to predict machine future condition, keeping it under a systematic analysis during the 

machine’s remaining life [8]. In this sense, from a systematic machine condition monitoring, a 

fault condition can be detected and identified, such that, a diagnosis procedure can be estab-

lished, whereby properly investigating the fault symptoms and prognosis [10].
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In general, the machine’s monitored signals are the result of a combination of different sources, 
which can vary according to machine environmental and operational conditions, monitoring 

and acquisition systems, among others. Besides, some faults, such as bearing faults, can pro-

duce a signal modulation, which give rise to other signals (sidebands and harmonics) [8]. 

Thus, a great challenge in machine diagnosis consists of separating and identifying these 

sources. In case of bearing fault detection in induction machines, the motor current signature 

analysis (MCSA) has emerged as one of the leading condition monitoring techniques. This 
approach is an advantageous alternative (or complementary) to condition monitoring based 
on vibration analysis. Many machines already have current monitoring for control or protec-

tion purposes, not requiring the installation of other types of sensor, therefore, this approach 

can be considered non-invasive and cost-effective. Over the years, the spectral estimation 
using techniques based on Fourier transform has been widely applied for analysis of the sta-

tor current [11–13]. This analysis methodology considers the use of stationary signals, that 

is, considers that the machine is operating at constant speed and load. On the other hand, 

advanced techniques take into account the nonstationary signals [11].

In this context, this work consists of applying a methodology for analyzing the electrical sig-

nature for the diagnosis of point defects in bearings induction motor, based on spectral kurto-

sis and squared envelope spectrum analysis, in order to increase the fault detection capability 

even in an incipient stage [14].

2. Bearing fault diagnosis in induction machine

Rolling bearings are one of the most important mechanical components in induction machines. 

Therefore, it is necessary to assess the health condition of these components, especially by 

means of signal processing methodologies for bearing fault diagnosis. Bearing fault diagnosis 

comprises a series of processes performed in order to detect, isolate, and identify the bear-

ing condition based on the machine monitoring [10]. Although there are several techniques 

for monitoring of bearing condition in induction machine, i.e., vibration, acoustic emission, 

and ultrasound, this section describes an approach based on electrical stator current analysis 

or current signature analysis. This approach has been gaining attention since bearing failure 
causes a modulation in electrical current signal, which can be identified in a similar way, as it 
is done in vibration analysis [15].

This section aims to describe some of the most used methodologies for induction machine 

fault detection based on electrical current signature analysis. In this context, it is important to 

know the machine to be monitored, and often the system in which it is inserted, since practical 

considerations are essential to allow a proper fault diagnosis. Some of these considerations 

are mainly related to machine technical specifications; load variations; rotor speed variations; 
power supply characteristics; failure mode to be analyzed (electrical or mechanical); sensors 
(physical quantity to be monitored, specification, amount), among others [16, 17].

Bearing fault detection is a technique mainly based on feature extraction from acquired sig-

nal, and condition identification based on the analysis of these features [10]. In the case of a 
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fault localized on the inner or outer race, whenever a rolling element passes through the fault 

surface, a series of impulses are generated. This almost periodic series of impulses present 

characteristics that vary with bearing geometry and fault localization; in addition, they excite 

resonances in the bearing and in the machine structure as a whole [8, 16].

The series of generated impulses are still amplitude modulated as the fault passes by the 

load zone and they are influenced by the transfer function from the fault to the sensor. The 
impulses are generated at a rate which varies according to: the fault position (inner race, outer 
race, and cage), the bearing dimensions, and the machine shaft speed (f

r
). Thus, it is possible 

to estimate the so called bearing characteristic frequencies, i.e., ball pass frequency of the 

outer race (BPFO), ball pass frequency of the inner race (BPFI), fundamental train frequency 
(FTF), which is related to cage speed rotation, and ball spin frequency (BSF). The following 
equations represent these frequencies [3]:

  BPFO =   
n  f  

r
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2
   (1 −   d __ 

D
   cos α)   (1)
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D

   cos α)    
2

 ]   (4)

where n corresponds to the number of rolling elements; α is the angle of the load from the 

radial plane; d is the ball diameter and D is the pitch diameter. When such characteristic 

frequencies appear (or its amplitude increase) in the analyzed signal spectrum, it is possible 
to identify a bearing fault and its location [10]. However, it is very difficult to extract these 
components, since they have low amplitude and are merged with other spectral components 

and background noise.

Therefore, it is possible to affirm that fault detection based on the current analysis is great a 
challenge, especially in industrial environments mainly due to low signal-to-noise ratio of the 

characteristic frequency components associated with these faults, even though several stud-

ies have shown promising results in this area [6, 18]. On the other hand, in many situations, 

motor current signature analysis (MCSA) becomes a useful alternative to traditional fault 
detection methods, e.g., vibration analysis, particularly considering the sensor  installation, 

risks, costs associated with process, and degree of criticality of the system or machine under 

analysis [11].

2.1. Motor current signature analysis—MCSA

MCSA is one of the most commonly used techniques to fault detection in induction motors, 

since it allows identifying electrical and mechanical faults. It performs a spectral analysis of 

stator electrical current, which is usually monitored at one of three power supply phases. 

Studies related to mechanical faults effects on motor stator current mainly consider: load 
torque oscillations, rotating eccentricities, and air gap eccentricity [11, 15, 19].
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In case of bearing faults, it is possible to consider that machines inductances can vary due 

to rotating eccentricities at bearing characteristic frequencies f
C
, i.e., BPFO, BPFI, etc., which 

produces a stator current modulation, described by [11]:

   f  
E
   =  f  

s
   ± k ·  f  

C
    (5)

where f
E
 is the frequency related to a bearing fault; f

s
 is the power supply frequency; and k = 1, 

2, 3, … is the harmonic number. Thus, f
C
 appears in the current spectrum as sidebands.

In this context, it is import to observe that rotor inertia and winding inductances produce an 

electromechanical filtering effect in stator current, such that, this current is mainly affected by 
low frequency components [20, 21].

Other studies show that load torque oscillations can occur each time the rolling elements reach 

a localized fault on the outer or inner race, or when a fault on a rolling element reaches a race. 

These oscillations cause phase modulations in electrical current as described by Eq. (5) [22].

Finally, another approach considers that the effect of a localized bearing fault in stator current 
can be modeled as air gap eccentricity. In this case, a magnetic flux density variation affects 
stator current as a function of the fault location. Thus, frequencies related to the bearing faults 

are expressed by [19]:

   f  
E outer race

   =  f  
s
   ± k · BPFO  (6)

   f  
E inner race

   =  f  
s
   ±  f  

r
   ± k · BPFI  (7)

    f  
E ball

   =  f  
s
   ± FTF ± k · BSF  (8)

where f
E outer race

, f
E inner race

, and f
E ball

 are the frequencies related to a fault in outer race, inner race, 

and ball respectively, which correspond to an amplitude modulation of the fundamental 

power supply frequency (f
s
). It is important to observe that this modulation is caused by a 

permeance variation on the rotor fundamental magnetomotive force [11].

2.2. Power spectral density

Generally, the MCSA is carried out using classical or nonparametric spectral estimation meth-

ods. Nonparametric methods require little information regarding the signal to be analyzed 
and its computational complexity is low, especially compared to modern spectral estimation 

methods [16, 23].

Among the most common nonparametric techniques are the periodogram and its refined vari-
ations, i.e., Bartlett, Welch, and Daniell methods [22]. Periodogram can be obtained by [23]:

    Φ   
∧
    
P
   (ω)  =   1 __ 

N
     | ∑ 

n=0
  N−1    y (t)   e   −jωt |    2   (9)

where y(t) is signal under analysis and its samples could be represented by    [y (t) ]   
t=1

  N   .

Mean squared error, represented by the sum of the bias squared and the variance, is a 

parameter commonly used to evaluate the performance of an estimator. In this sense, bias 

reduction is obtained by applying a window. In order to reduce periodogram variance, 

Bartlett method uses an average of several periodograms obtained from different segments of 
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the signal. In this case, the original signal    [y (t) ]   
t=1

  N    with N samples is split into K segments, such 

that, an average of L = N/K periodograms is computed. Welch method can be seen as evolution 

of Bartlett method; since the estimation is performed considering that the signal segments are 
overlapped and windowed. Thus, variance is reduced, but also the resolution [23].

3. Envelope analysis

Bearing faults can be classified as localized (single-point) or extended. Incipient localized 
faults produce sharp impulses that cover a large bandwidth. These faults, in general, are 

associated with small pits or spalls. On the other hand, extended faults effect is not so appar-

ent or highlighted in the spectrum and its bandwidth is limited. Brinelling and corrosion are 

examples of extended bearing faults. It is also possible that a small localized fault becomes an 

extended fault as the fault evolves over time. Regardless of the type of fault, in general, bear-

ing failure can be detected using envelope analysis [3].

It is also important to observe that signals produced by bearing faults (localized or extended) 
are typically nonstationary, i.e., signals whose statistical parameters vary in time. More spe-

cifically, localized bearing faults signals can be modelled as cyclostationary or pseudocyclo-

stationary [8, 24].

Over the years, the envelope analysis or high frequency resonance demodulation has been 

widely used for identifying localized faults in rolling bearings. Each time a bearing compo-

nent strikes the fault surface, a mechanical shock occurs. Consequently, an impulse is gener-

ated and structural resonances of the system are excited by it. In addition, these impulses 

are modulated in amplitude. This way, through the envelope analysis, it is possible to obtain 

demodulated signals, which are directly related to the bearing condition [8].

The following steps perform envelope analysis. First, digital bandpass filtering of acquired sig-

nal in a suitable frequency band, in general, around the machine mechanical resonance is per-

formed. Following, the filtered signal is demodulated. Finally, the resulting signal frequency 
spectrum is estimated, resulting in the envelope spectrum, whereby it is possible to identify the 

periodic components associated with a fault in a bearing component [16, 25]. In other words, it 

is possible to identify the repetition frequency of the impulses caused by a fault simply analyz-

ing the envelope signal spectrum, which, in general, it is not possible by using the raw spec-

trum [17]. Fourier transform is applied in order to obtain the envelope spectrum.

One of the most used tool for demodulation or envelope extraction is Hilbert transform 

[26, 27]. First, the acquired signal is bandpass filtered around a machine resonance frequency, 
and then Hilbert transform is applied. This digital technique reduces the data length and 

allows flexibility for bandpass filter specification [28].

However, it is important to observe that a suitable frequency band to filter the signal must 
contain impulses generated by the fault and amplified by machine mechanical or struc-

tural resonances [8]. Therefore, one of the main difficulties in using envelope analysis is 
undoubtedly the choice of an appropriate frequency band for filtering the signal. In order 
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to circumvent this drawback, algorithms based on spectral kurtosis have been successfully 

applied, which is discussed later in the chapter.

3.1. Hilbert transform

As mentioned before, bearing fault signals can be seen as amplitude modulated signal, such 

that, carrier frequency, represented by high frequency resonances are modulated by bear-

ing characteristic frequencies. Hilbert transform can be used for the demodulation process in 

envelope analysis when modulated signal is proved to be analytic [8].

When envelope analysis is performed based on Hilbert transform, the frequency band to be 

demodulated can be properly separated from adjacent components that could interfere with 

the analysis. Impulse response function produced by bearing faults has real and imaginary 

parts of its corresponding frequency function related by Hilbert transform [8].

In general, signal-to-noise ratio is used as an indication of the frequency band where the 

modulated signal should be filtered. After filtering, selected frequency band is shifted at low 
frequencies in the spectrum and padded with zeros to double the length in order to obtain a 

one-side spectrum. When computing the inverse Fourier transform of this one-side spectrum, 

an analytic signal is obtained, such that, its imaginary part is the Hilbert transform of the real 

part. In this way, envelope corresponds to the modulus of real and imaginary parts. However, 

it is more interesting to analyze the squared envelope, since it can improve signal-to-noise 

ratio by removing extraneous components in practical situations [28].

3.2. Kurtogram

A rolling bearing fault excites high frequency resonances in the rotating machine, which can 

produce modulations at bearing characteristic frequencies. Therefore, characteristic frequency 

components should be demodulated using an optimal selection of frequency and bandwidth 

(f, Bw) for bearing fault identification based on envelope analysis. In this sense, spectral kur-

tosis based algorithms, such as kurtogram, aims to find this combination in a computationally 
efficient way [25].

Initially, spectral kurtosis (SK) was defined based on short-time Fourier transform (STFT) for 
impulsivity measurement as a function of frequency, and it was mainly applied to sonar signal 

analysis [17]. Some years ago, SK was also considered and applied for bearing fault analysis [29].

Thus, spectral kurtosis of a signal x(t), i.e., kurtosis value for each frequency (f), can be com-

puted based on the STFT (X(t, f)) of this signal, such that [8, 30]:

   SK (f)  =   
 〈 X   4  (t, f) 〉 

 _______ 
  〈 X   2  (t, f) 〉    2 

   − 2  (10)

where X(t, f) corresponds to the envelope as a time-frequency function; X2(t, f) represents the 
power spectrum values calculated for each time (t); and the average of all these power spectral 
values (〈X2(t, f )〉) corresponds to the power spectrum of the analyzed signal as a whole. In addi-
tion, the constant factor 2 is subtracted, so that, for Gaussian signal, Eq. (2) turns to zero [8]. In 

this sense, spectral kurtosis can be understood as a filter so that its value is maximum in the 
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frequency bands containing impulsive signals and zero for that frequency bands dominated by 

stationary signals [29].

Since using short-time Fourier transform, parameters, such as window length, can directly 

affect the spectral kurtosis calculation; therefore, considering an impulsive signal, the win-

dow shorter than the spacing between two consecutive pulses and longer than an individual 

pulse shall provide a maximum kurtosis value. A detailed investigation about the relation 

between spectral kurtosis value and window length was conducted in Ref. [28]. Additionally, 

in Ref. [29], it was depicted that the square root of the spectral kurtosis is equivalent to the 

optimum Wiener filter and it demonstrated a close relation between optimum matched filter 
and spectral kurtosis value. For envelope analysis, in order to obtain an optimum result, it 

is of utmost importance to specify properly filter center frequency and bandwidth. For this 
purpose, the concept of kurtogram emerges as a tool to find the optimum filter for enve-

lope analysis based on spectral kurtosis values. Kurtogram displays the spectral kurtosis val-
ues as a function of frequency and windows length, which define the spectral resolution. 
Experiments showed that the filter set from kurtogram was more efficient for outer race fault 
detection, when compared with Wiener and matched filters [28].

Fast kurtogram algorithm was developed as an extension of the kurtogram, especially con-

sidering that it was costly and inefficient to analyze all possible combinations of frequency 
and windows length. Fast kurtogram computes spectral kurtosis using digital filters, instead 
of short-time Fourier transform, following a dyad-decomposition so-called 1/3-binary tree. 

This decomposition is similar to discrete wavelet packet transform, where frequency bands 

are divided into bands with one half of their previous width, but here, divisions by 1/3 are 

also included [30].

As an alternative for fast kurtogram, the wavelet kurtogram algorithm was developed. In this 

case, nonorthogonal complex Morlet wavelets are used for signal decomposition and it is con-

sidered that the optimum combination center frequency and bandwidth for envelope analysis 

could be found based on a 1/nth-octave wavelet analysis. In general, the sequence 1/1, 1/2, 

1/3, 1/4, 1/8, 1/12, …, 1/nth-octave is used, although, any sequence could be applied. Besides, 

before wavelet decomposition, the original signal power spectral density is prewhitened by 

an autoregressive model in order to enhance the fault detection into the envelope spectrum. 

Additionally, applied complex Morlet wavelet was optimized, since several filter banks are 
tested and the selected for envelope analysis is the one that maximizes the SK. The scheme of 
signal decomposition by means of filter bank for SK optimization is similar to that one used 
in kurtogram [17].

Wavelets are used because they present an impulse response with a constant damping ratio, 

which is more suitable for impulsive signals analysis in comparison with STFT. Besides, 

complex Morlet wavelet is analytic; therefore, its Fourier transform presents only positive 

frequencies. Thus, SK for each wavelet filter can be calculated considering that the product 
of the Morlet wavelet coefficients and their complex conjugate corresponds to the squared 
envelope of the filtered signal [17]. Here, it is also important to notice that using the qua-

dratic envelope has been more advantageous for bearing signal analysis [28], which will be 

discussed in the next section.
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The SK calculation could be enhanced by prewhitening the spectrum of the signal to be ana-

lyzed. Through the prewhitening, signal spectrum becomes almost constant, similar to the white 

noise spectrum. This process reduces variations that could occur in transient signals spectrum, 

which can lead to inaccurate SK calculations [17]. An autoregressive model can be used for signal 

spectrum prewhitening. In this case, the model error corresponds to the noise, but especially to 

the nonstationary part of the signal, which contains information related to bearing fault. In other 

words, it is possible to say that a digital filter (linear prediction filter), which is designed based on 
an autoregressive signal model, predicts the deterministic part of the signal; and the prediction 

error, which contains an impulsive signal that will be used for machine condition analysis [31].

An autoregressive model (AR) of order p can be represented by [32]:

   AR (k)  = −  ∑ 
i=1

  p    a (i) x (i + k) + error (k)   (11)

where a(i), i = 1, 2, 3, …, p, corresponds to the linear prediction filter weighting coefficients; 
error (k) is a whitened signal, which is the difference between the original and the predicted 
signals. Minimum least square error is used to find the coefficients of the linear predictor. 
Model order (p) will be one that maximizes the kurtosis of the error(k), such that, this residual 
signal will contain fault related impulse signals. Besides, (p) must be smaller (in number of 
samples) than that the space between two consecutive bearing faults impulses [17].

3.3. Squared envelope analysis

During the envelope analysis, existing random or discrete noise components can make it dif-
ficult to identify components related to bearing failure. That is why a major constraint of 
envelope analysis is related to signal-to-noise ratio. A way to overcome this limitation is by 

using squared envelope. In this case, envelope spectrum presents a higher harmonic reduc-

tion, which cannot be obtained by a common filtering operation [28].

A method for computing squared envelope from an analytic signal was depicted in Ref. [28]. 

There, squaring envelope process is defined as a convolution of an analytic signal and its 
complex conjugate. Thus, squared envelope spectrum can be calculated by the convolution of 

the analytic signal and its complex conjugate corresponding spectra. In this case, spectrum of 

squared envelope does not present a sum of frequency components, since the analytic signals 

have only positive frequency components. Besides, the squared envelope spectrum has the 

same frequency range as if it was calculated using Hilbert transform and zero padding [8].

It is also important to highlight that the integral of spectral correlation of all considered frequen-

cies is equivalent to spectrum of the squared envelope, where the spectral correlation is a two-

dimensional Fourier transform calculated on the two-dimensional autocorrelation function [33].

4. Bearing fault detection methodology

Despite major advances in bearing fault detection techniques, such as MCSA, current meth-

odology still has limitations that make it difficult to identify incipient faults, impairing the 
fault prognosis. Depending on the operational environment and machine specifications, there 
may be a reduction in the analysis reliability as a whole.
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A way to mitigate this problem consists in separation of signals coming from different sources. 
In general, the components in the machine vibration or current signals have specific charac-

teristics that allow their separation and identification in order to detect changes in machinery 
health condition. Noise, eccentricity, gear, cavitation, rolling bearing characteristic frequen-

cies, and broken bars are examples of components that may be present in vibration signals or 

electric current signals [8].

In this scenery, several techniques have been proposed to support signal separation and identi-

fication in machine fault detection. Among these techniques, it is possible to mention, for exam-

ple, time synchronous averaging (TSA), which is used to remove signal components that are 
not synchronous with rotor speed. In this situation, a minimal disturbance could occur in the 

resulting signal, but it is necessary an angular sampling for each harmonic family to be sepa-

rated. This technique removes harmonics, but not lateral modulation bands. Techniques related 

to noise cancelling, also could be used in order to mitigate noise contamination. In addition, 

linear prediction filtering could be used to separate the predictable deterministic signal, which 
must be removed from the original signal in order to highlight the signal component related to 

bearing fault [1]. Linear prediction was also considered for electrical signature analysis.

Another technique that was evaluated in Ref. [14] to improve the detection of fault related com-

ponents was the sum of the electric currents. A common operation in three-phase circuit analy-

sis is to obtain the current or voltage phase using information from other phases. In the case of 

a three-phase induction machine connected to a delta system, considering that the sum of all 

currents entering a node is equal to the sum of all the currents out of the node (1st Kirchhoff's 
Law), it is possible to assume that I

A
 + I

B
 + I

C
 = 0, where I

A
, I
B
, and I

C
 are the measured currents 

of the phase A, B, and C, respectively. In this sense, the current of any phase (I
A
, I
B
, or I

C
) can 

easily be defined by the other two. For example, I
C
 = − (I

A
 + I

B
).

This procedure is similar to the synchronous average calculation. Any mechanical effect 
related to the machine condition (nominal or under a fault), including periodic or random 
components, can be observed in any of the three phases’ current, or alternatively, in the 

numerically obtained current, i.e. (I
C
). On the other hand, any other uncorrelated random 

effect will be attenuated using this procedure [14].

This way, the methodology that guided this work follows five steps:

1. Sum of the electric currents.

2. Prewhitening (linear prediction filtering).

3. Spectral kurtosis based algorithm.

4. Squared envelope spectrum.

5. Bearing fault identification based on bearing characteristic frequency detection.

It is also important to highlight that since faults are identified in the envelope spectrum, its 
amplitude can be used as severity index. Thus, a fault evolution can be analyzed as function 

of increases in the bearing characteristic frequency amplitude [34].
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4.1. Experimental issues

In this section, damaged rolling bearings (model 6203-ZZ) are installed on a three-phase 
induction motor; for each bearing, stator current signals are acquired and squared envelope 

spectrum was analyzed in order to detect outer race faults by means of ball pass frequency 

outer race (BPFO) identification. Rolling bearings were artificially damaged, such that, 
through holes of 1.0 mm, 2.0 mm, and 3.0 mm diameter were drilled on the outer race to 

simulate localized faults with different levels of severity. Experiments were performed using 
6203-ZZ shielded metric radial bearings, also described as deep groove ball bearing, single 
row, double shielded, pressed steel cage, normal clearance, prelubricated with grease, with 

inner (bore) diameter: 17mm; outside diameter: 40mm; and overall width: 12mm.

Experimental test rig (Figure 1) consists of a three-phase squirrel cage induction motor with 
0.37 kW power, four poles, and 60 Hz supply frequency, coupled to an electric machine work-

ing as a power generator (constant mechanical load), without any speed or torque control. A 
24-bit/4-channel data acquisition board (National Instruments NI 9239) and current probes 
were used to acquire electric current signals at 50 kHz sample rate. Prior to any processing, 

data was filtered using a low pass filter of 25 kHz.

Two of the three stator currents (I
A
 and I

B
) were measured, and the third one (I

C
) was numeri-

cally obtained, such that I
C
 = − (I

A
 + I

B
), and used in the fault detection process. Figure 2 shows 

the damaged bearings used in the experiments. Rotational speed was estimated to be 28.80 Hz 

(1728 rpm), and the characteristic frequency for a fault on the bearing outer race was estimated 
in (BPFO = 87.93 Hz ± 2%).

The methodology was applied to calculate electric stator current. Following, prewhitening was 

performed, such that the AR model order was chosen by using the kurtosis maximization criterion 

of the residual signal. In this work, it is proposed as a simplified methodology, where the healthy 

Figure 1. Experimental test rig.
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bearing is initially tested and the resulting AR model order is also used for the faulty bearings 

analysis. Therefore, an AR model order (p = 32) is used for all experiments. Following, fast kur-
togram algorithm was applied at five levels of decomposition. It is important to notice that this 
process, including sampling, signal processing, and feature extraction, lasts about 2 minutes on a 

modern computer. Although the wavelet kurtogram algorithm has been analyzed, only the results 

obtained with the fast kurtogram are presented, mainly due to its performance in this application, 

as explained in Refs. [14, 34]. The signal processing is performed offline using Matlab®.

Thus, the described methodology was applied for all damaged bearing cases. The fast kur-

togram color map was similar to that in Figure 3; then, only the resulting squared envelope 

spectrum was shown for the other experiments. The bandpass filter with center frequency 
f
C
 = 6250 Hz and bandwidth Bw = 4167 Hz, at decomposition level (k = 2.6), indicated by 

black circle in Figure 3, was used in all squared envelope calculations, which was very use-

ful for comparisons. In the Figures, an arrow indicates the amplitude of the bearing outer 

race characteristic frequency (BPFO).

Figure 2. Damaged bearings used in the experimental tests. From left to right holes of 1.0 mm, 2.0 mm, and 3.0 mm.

Figure 3. Fast kurtogram color map.
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Figure 4 shows the squared envelope spectrum of the electric current for the damaged bear-

ing with the 1.0 mm hole. In this case, the envelope spectrum clearly shows the fault signature 

around the estimated BPFO, with amplitude A = 2.9 × 10− 9.

The same procedure was applied to the damaged bearing with 2.0 mm hole, as presented 

in Figure 5. Here, a significant increase in the bearing characteristic fault frequency ampli-
tude (A = 7.9 × 10− 9) was observed, confirming the fault effect in the stator current envelope 
spectrum amplitude.

Figure 4. Squared envelope spectrum of the electric current for the damaged bearing with the 1.0 mm hole.

Figure 5. Squared envelope spectrum of the electric current for the damaged bearing with the 2.0 mm hole.
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The last experiment assessed the damaged bearing with 3.0 mm hole. In this case, it is impor-

tant to observe a change in the envelope spectrum graphic scale (Figure 6), due to the increase 
in amplitude (A = 11.3 × 10− 9) in the observed fault frequency.

The obtained results validate the methodology, and therefore, the involved theoretical con-

cepts. A BFPO frequency (at 88.1 Hz) was detected for each damaged bearing experiment, 
strongly indicating a bearing outer race fault. Besides, the characteristic frequency amplitude 

increases with the fault severity, which could be used as a prognosis indication. In the enve-

lope spectra, it was also observed that as the amplitude of BPFO increased, the amplitude 

of another frequency component decreased. Thus, as in Ref. [11], it is possible to conclude 

that, although the stator current analysis is more complex than the vibration analysis, it is an 

important alternative to bearing fault detection in induction motors, mainly due to its advan-

tages related to cost, availability and applications.

5. Conclusions and comments

This work describes a methodology to enhance MCSA for bearing fault detection and identifica-

tion in induction machines by combining electrical currents sum, prewhitening based on linear 

Figure 6. Squared envelope spectrum of the electric current for the damaged bearing with the 3.0 mm hole.
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prediction filtering, spectral kurtosis, and squared envelope analysis. This methodology is based 
on successful methodologies and algorithms, initially proposed to be applied to vibration sig-

nals. An experimental test of such methodology was depicted using a test rig where artificially 
damaged bearings were created in order to simulate faults at different severity levels. Results 
show that the methodology improves MCSA in comparison with traditional spectrum analysis. 

Besides, the methodology provides an indication of fault severity based on bearing characteristic 

frequency (e.g. BPFO) amplitude in squared envelope, which can be used for prognosis purposes. 
For real industrial applications, the authors believe that this methodology could be easily carried 

by a professional predictive maintenance team, given adequate equipment and analysis software.
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