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Abstract

The increasing importance of location‐aware computing and context‐dependent infor‐
mation has led to a growing interest in low‐cost indoor positioning with submeter 
accuracy. Localization algorithms can be classified into range‐based and range‐free tech‐
niques. Additionally, localization algorithms are heavily influenced by the technology 
and network architecture utilized. Availability, cost, reliability and accuracy of localiza‐
tion are the most important parameters when selecting a localization method. In this 
chapter, we introduce basic localization techniques, discuss how they are implemented 
with radio frequency devices and then characterize the localization techniques based on 
the network architecture, utilized technologies and application of localization. We then 
investigate and address localization in indoor environments where the absence of global 
positioning system (GPS) and the presence of unique radio propagation properties make 
this problem one of the most challenging topics of localization in wireless networks. In 
particular, we study and review the previous work for indoor localization based on radio 
frequency (RF) signaling (like Bluetooth‐based localization) to illustrate localization chal‐
lenges and how some of them can be overcome.

Keywords: ad‐hoc networks, wireless sensor networks (WSNs), localization, radio 
frequency (RF) signaling, Bluetooth low energy (BLE), Wi‐Fi, XBee, indoor localization, 
range‐based localization

1. Introduction

Localization is a key requirement of most mobile and wireless networks. For example, wireless 

sensor networks are often deployed in an ad‐hoc fashion, which means that the locations of 

the sensors are not known a priori [1]. Localization is necessary to provide a physical  context 
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to sensor readings for services such as intrusion detection, inventory and supply chain man‐

agement. It is also a fundamental task for sensor network services such as geographic routing 

and coverage area management [1, 2]. Over the last few decades, localization technologies 

have undergone significant progress and they now play a crucial role for many location‐ and 
context‐aware services and applications such as navigation, robotics, patient monitoring and 

emergency response systems.

Localization algorithms can be classified into either range‐based or range‐free. Range‐based 
localization (like GPS and some forms of cellular‐based positioning) can have very high accu‐

racy by taking measurements of a signal at the cost of computational and implementation 

complexity. In contrast, range‐free localization algorithms (such as simple cell‐based localiza‐

tion) can provide a less accurate position (but perhaps “good enough” for the specific pur‐

pose) with a much more simple implementation. Additionally, the physical environment can 

have a great impact on the performance of a chosen localization algorithm. For example, while 

global positioning system (GPS) has been the primary localization approach for outdoor envi‐

ronments, indoor environments (and all other GPS‐denied areas) face severe challenges such 

as the limited accuracy of techniques like cellular‐based positioning [2] and radio propagation 

characteristics that can differ significantly from outdoor environments [3]. Therefore, as one 

of the most challenging topics in localization, indoor localization has attracted the attention of 
many researchers both in industry and academia.

In recent years, a variety of novel approaches have been presented, including positioning 

based on FM signaling [4], Wi‐Fi trilateration [5] and low energy Bluetooth beaconing (e.g., 

iBeacons) [6]. Most such techniques rely on the received signal strength indicator (RSSI) as the 

main parameter to extract distance information with acceptable accuracy [7]. Infrared‐based 

indoor localization [8], signal fingerprint‐based localization [9] and image‐based indoor local‐

ization [10] are examples of localization that do not rely on RSSI or other similar signal or link 

measurement for distance determination. However, these methods typically introduce higher 

costs and complexity and may not be as readily available.

Availability, cost, reliability and accuracy of localization are the most important parame‐

ters when selecting a localization method and technology. Among existing technologies, 

RF‐based methods based on Bluetooth and Bluetooth low energy (BLE), Wi‐Fi and XBee 

are popular choices due to their availability (e.g., BLE is available on most modern smart 

devices), low power consumption (particularly BLE and XBee) and low cost. Although 

RF‐based methods have several advantages for localization purposes, they also have a sig‐

nificant shortcoming in indoor environments, i.e., prior work has shown that RSSI is not a 
reliable metric and that it can easily be affected by the unique characteristics of the indoor 
environment [11]. On the other hand, timing‐based ranging approaches have attracted much 
attention using technologies such as XBee/ZigBee [12], ultra wideband (UWB) [13] and Wi‐Fi 

[14]. Timing methods come with their own collection of advantages and disadvantages in an 

ad‐hoc and indoor environment. In this chapter, we investigate recent work involving in the 

field of RF‐based localization to address the challenges of RSSI‐ and timing‐based localiza‐

tion in indoor environments and then review approaches that can be used to address these 

challenges.
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The structure of the chapter is organized as follows: Section 2 presents the basic concepts 

of localization and its application including a discussion of common characteristics of local‐

ization algorithms. Section 3 narrows down the localization problem to indoor localization 

algorithms based on RF signaling. Section 4 discusses some of the challenges associated with 

RF‐based indoor localization. Section 5 reviews how some of these challenges are addressed 

in recent work and addresses future research directions to tackle the remaining challenges.

2. Introduction to localization

2.1. Overview

Before we investigate localization in an indoor environment with radio frequency devices 

in detail, we must first establish a solid understanding of localization. The general problem 
of localization is the determination of the position of an object (or person) within a specific 
space. This location could be within some local coordinate system or it could be a global 

coordinate system, such as latitude and longitude coordinates on the Earth's surface. The 

best‐known solution to the localization problem is the global positioning system (GPS), which 

uses the time of arrival of signals from multiple satellites to determine where the GPS receiver 

is located within several meters. Moreover, companies such as Apple, Microsoft, Google and 

Skyhook all have methods of estimating a user's location by fusing GPS, Wi‐Fi and cellular 

data for a multitude of purposes ranging from enabling context‐aware applications to locat‐

ing stolen devices. The usefulness and importance of localization are difficult to understate 
as is the difficulty and multitude of approaches to solving this problem. Not all localization 
systems are created equal, for they are implemented using a variety of technologies according 

to the necessities of the system in which the location is required. For example, locating a car 

on the road has different requirements than locating a person in a shopping mall or a drone in 
a building. Based on these requirements, such as high accuracy or low power consumption, 

a localization system can be developed either by repurposing or piggybacking on existing 

technology or by using an existing localization system, namely, GPS.

A common way that localization is implemented is to determine the distances between a tar‐

get and a sufficient number of reference points. This process is referred to as ranging. Once 
these distances are known, then it is possible to approximate the location of the target geo‐

metrically through trilateration or min‐max. Trilateration works by using the measured dis‐

tance as the radius of a circle around a reference point. The intersection of three circles is the 

estimated location of the target. If the circles do not intersect at a single point then further 

action must be taken to improve the estimate. An example of trilateration in two dimensions 

is shown in Figure 1. The min‐max method takes the measured distance between the target 

and the reference point and uses it to form a square with side length twice that distance with 

the reference point that made the measurement at the center. The target is assumed to be in 

the center of the rectangle formed by the intersecting reference nodes’ squares. An example of 

min‐max in two dimensions is shown in Figure 2. Methods of localization using trilateration 

or min‐max belong to the group of range‐based localization methods. Because they are based 
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on geometry and they are, perhaps, the most straightforward localization algorithms and 

have the potential for providing highly accurate location estimates.

Figure 1. Trilateration technique with three reference points.

Figure 2. Min‐max technique with three reference points.
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GPS is an example of such a system, because once the time of flight (ToF) of the signals from 
the GPS satellites to the GPS receiver is known, then it is simply a matter of multiplying the 
speed of the signal (the speed of light) by the time it took to travel from the satellites to the 

receiver (accounting for relativistic effects along the way). Note that this relies on the sender 
and receiver having synchronized clocks to determine the time of arrival (ToA). Time‐based 

ranging can also be accomplished through what is called time difference of arrival (TDoA). 
In this method, one needs to only measure the difference in arrival time between two signals 
with different (known) propagation speeds. For example, one could measure the arrival time 
of a radio signal and that of an auditory signal and because the speed of the signals is known, 

it would be a simple matter to determine the distance to the target which initiated both signals. 
The final method of ranging relies on measuring the amount that a signal decays as it travels 
from (or to) a known location. That is, if we know how a signal such as a sound or a radio wave 

diminishes as it travels and we also know the strength of the signal to begin with, then we can 

determine how far the signal traveled by measuring its strength at the receiver.

It is not always necessary to determine the distance between some reference points and a 

target. Methods of localization that estimate a location without using ranges are called range‐

free. This class of localization algorithm is characterized by its use of network connectivity 

and geometry as well as radio characteristics to estimate the location of a target node. For 

example, given three anchor nodes (nodes whose locations are known) and a target that has 

a connection with all of them allow us to estimate the target's location by finding the centroid 
of the triangle created by the three anchors. There are many methods that improve this simple 

“find the centroid” approach as well as other methods that estimate distances based on the 
known anchor positions and the connectivity of the network. In general, range‐based local‐

ization methods are characterized by fairly high accuracy at the cost of higher computational 

complexity compared to range‐free localization. Additionally, some ranging methods, such as 

those based on timing, may require hardware that devices in a resource‐constrained sensor 

network may not have.

Localization in an ad‐hoc network further complicates the localization process by placing 

stronger constraints on the resources available and how they are accessed. Ad‐hoc networks, 

whether they are mobile ad‐hoc networks (MANETs), vehicular ad‐hoc networks (VANETs), 

or wireless sensor networks (WSNs), impose some limit on the amount of information avail‐

able at any particular node and come with the added complication of having to share that data 

in an ad‐hoc manner with other nodes in the network. For localization purposes, this means 

that combining widespread sources of information to estimate a range or location may no lon‐

ger be possible. In fact, it may not even be possible to estimate an absolute location if the net‐

work does not include any anchors. Additionally, adding in the issue of mobility, whether it is 

the somewhat predictable mobility of a VANET or the less predictable movement of nodes in a 

MANET, turns the localization problem into a tracking problem and also needs to be balanced 

with how and where localization computations are going to be carried out in the network.

2.2. Characteristics of localization algorithms

Aside from the primary classification as a range‐based or range‐free, which is largely dictated 
by the hardware employed, localization systems can be further distinguished by their various 
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characteristics including their network topology, computational strategy, use of anchors and 

ability to handle mobility, whether it be the anchors or the targets that are mobile.

The network topology is closely associated with the method of computation and has a major 

impact on the localization methods available because it dictates how information is going to 

be passed and to whom it will be passed. For example, in a star topology, the end nodes will 

not be able to communicate directly (or at all) with neighboring end nodes, which means that 

timing‐based approaches may be difficult to implement and computation will need to be 
carried out at the master node. However, if a mesh topology is available, then there are few 

restrictions (imposed by the network) on the method of localization and it opens the door to 

distributed computation and cooperative localization.

The availability of anchors can be a hardware constraint if a global reference frame is in use 

and GPS is unavailable. Anchors can also take the form of a node with a known location in an 

arbitrary (but consistent) frame of reference, so lacking even these data are also a possibility. 

The availability of an anchor could be determined by the nodes’ mobility and location; for 

example, a node moving about within a building may become an anchor when it is in a loca‐

tion where it can receive a GPS signal. Anchor‐based localization algorithms are those that 

require anchors to function, whereas anchor‐free algorithms could operate in their absence. 

Range‐free localization algorithms that rely on finding the centroid of the shape formed by a 
set of nodes can only function if the locations of the nodes are known. In contrast, the range‐

based localization (e.g., ToF) can localize targets without anchors.

The various forms of mobility (or lack thereof) that a localization algorithm can handle are a 

characteristic that may be imposed by the hardware on the nodes or it may simply be an assump‐

tion made by the designers. For example, the computational burden than can be handled by sen‐

sors in a WSN may be severely limited, so the design of an algorithm that can handle precise 

tracking on such hardware would be infeasible. Similarly, the algorithm designers may assume 

that the targets to be localized are generally static or that their movements are fairly predictable.

In addition to these characteristics, considerations must be made regarding the impact of the 

localization algorithm on the normal network communication and the environment in which 

a localization system is to be deployed. The former consideration is one that is more impor‐

tant with regard to optimization, so it will not be discussed here. The latter is a point that will 
be considered in the next section as we discuss radio frequency (RF)‐based localization with a 

focus on its implementation indoors and the challenges arising from that.

3. RF‐based indoor localization

3.1. Radio frequency devices

The radio frequency devices under consideration in this chapter are Wi‐Fi, Bluetooth/BLE and 
XBee devices due to their wide commercial availability and frequent use in ad‐hoc  networks. 

Wi‐Fi is a well‐known and ubiquitous radio technology based on the IEEE 802.11 standard. It 

operates in the 2.4 and 5 GHz bands with three nonoverlapping channels in the former and two 

dozen in the latter. Bluetooth falls under the IEEE 802.15.1 standard, operates in the 2.4 GHz 
band and is designed for wireless communication over short ranges. Instead of focusing on 
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replacing wired networks, Bluetooth has found great usefulness in enabling communication 

on a smaller scale. BLE is a version of Bluetooth aimed at reducing power consumption, which 

has made it possible to integrate Bluetooth into power‐constrained devices. BLE has also led 

to the development of Bluetooth beacons, which can be used for proximity detection for the 

purposes of driving context‐aware applications such as navigation or advertisements in shop‐

ping malls. Finally, there are XBee radios that are designed for low data rate communication in 

personal area networks. They also operate in the 2.4 GHz band, have low bandwidth and are 

widely used for home automation and Internet of Things (IoT) applications. Since all of these 

forms of radios operate in similar frequency bands, they can and will interfere with each other; 

moreover, they all experience similar behavior with respect to radio wave propagation. With 

this in mind, there are a variety of range‐based and range‐free localization methods that can 

be implemented with all of these radios; however, there are some methods that may be better 
suited to one radio than another.

3.2. Range‐based localization

As introduced above, range‐based localization methods are used for triangulation, trilatera‐

tion, or min‐max. The go‐to method of ranging, due to its simplicity, is RSS ranging, which 

relies on the notion that the strength of a radio signal decays in a reliable and easily calculable 

way. One common approach is to assume that the antenna is isotropic and then make use of 

a path loss model to solve for the distance given the power of the signal at the source and at 

some unknown point. Other approaches include developing different path loss models as in 
Refs. [15, 16] and improving the estimated distances or locations through the use of maxi‐

mum‐likelihood estimation [17] or a Kalman filter [18]. Almost all of these methods of RSS 

ranging involve some sort of calibration (solving for environmental characterization values, 

calculating a path loss model, etc.) to be effective.

Another common form of ranging is to calculate the ToF of the radio signal from the sender 

to the receiver. Since the speed of the radio signal is the speed of light, the distance can be 

calculated readily. The difficulty lies in how to precisely measure ToF because the processing 
delay between the arrival of the signal at the radio and when these data are read at the appli‐

cation layer is significant and can greatly overshadow the actual signal propagation time. 
Rather than perform one‐way ranging (OWR), where both nodes must have clocks that are 

synchronized, another method is to perform two‐way ranging (TWR), where a message in 

not only sent from one node to the other, but the other node also responds with an acknowl‐

edgment. TWR is helpful because it helps to account for the processing times on either end 

and also does not require that the two have synchronized clocks. One can go even further 

and perform symmetric double‐sided TWR (SDS‐TWR) in which the TWR procedure is run 
through twice starting once at each node. This method can help with issues such as clock drift 

[19], which are not addressed by TWR. A final method of ToF ranging (described in Ref. [14]) 

leverages the ability to analyze channel characteristics combined with communication across 

many channels to determine ToF. The key to this method is to change finding the ToF into an 
application of the Chinese Remainder Theorem by analyzing the phase of the arriving signal 

across many channels of communication. One drawback of this last method is that it requires 

both the hardware and software to support such an analysis of the arriving signal, which may 

not be the case for a lot of consumer radio products.
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The final method of radio frequency ranging is ranging in the general sense of measuring 
something between a reference node and a target node. Determining the angle of arrival 
(AoA) is a ranging method in which the angle between a reference node and an unknown 

node in the former's frame of reference is determined. There are two ways that this has been 

accomplished in the literature. The first method is to use an antenna array so that the time 
difference of arrival at each of the antennas in the array of the signal can be used to calculate 
the AoA of the signal. The second approach is referred to as synthetic aperture radar (SAR) 

and entails moving an antenna at a predetermined speed in a predetermined direction (for 

example, rotation about an axis). Using the time difference of arrival at the antenna at dif‐
ferent points in its trajectory, the direction of the signal can be determined. With additional 

sensors that can account for the movement of the node, SAR can be accomplished across an 

unknown trajectory as well as mentioned in Ref. [20].

3.3. Range‐free localization

The accuracy of range‐free localization methods is typically less than that of the range‐based 

methods; however, these methods have the advantage of simplified implementation and 
hardware requirements. Additionally, it is not always necessary to calculate an exact location, 

so range‐free localization displays varying levels of accuracy and complexity, so that the right 

tool can be chosen for the job.

One of the most accurate forms of range‐free localization is called fingerprinting and relies on 
RSS measurements to develop a radio map of a location. Rather than attempt to draw a rela‐

tionship between the RSS measurements and the distance between the unknown and known 

nodes, the RSS measurements at many known locations are stored in a database during a con‐

figuration phase. Later, a new node that enters the mapped area can get its location by having 
its signal strength readings compared against the database.

There are many methods that revolve around the use of network connectivity information 

in addition to the known location of a set of nodes. With this information, the centroid of the 

triangle formed by three nodes with known locations is used as the location estimate of a 

node to which all three are connected. There are a variety of implementations of the centroid 

method that differ, largely, by the geometry they wish to exploit. Another method of localiza‐

tion, which can be used in a multihop network, is DV‐Hop, or distance vector hop [21], range‐

free localization. This method piggybacks on the distance vector routing algorithm with the 

knowledge of some of the node locations to estimate the length of a hop. The hop length esti‐

mate is then used to estimate the distances from the nodes with known locations to the target 

nodes. The final method of range‐free localization addressed here is a simple proximity‐based 
localization system in which connectivity to a reference node is assumed to mean that the 

target is located in the same place. If the signal range of the reference node can be controlled, 

then this method can be useful for room‐level localization.

4. Challenges of RF‐based indoor localization

4.1. Evaluation parameters

In order to study the challenges of the localization methods and evaluate their performance, we 

first need to present some metrics and concepts, which define their constraints and limitations.
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(i) Localization accuracy: The localization accuracy is one of the most crucial parameters 

depending on the application of localization. For example, in safety applications in vehicular 

environments for pedestrian protection from accidents, the highest localization accuracy is 

desired (submeter accuracy). For less sensitive applications, lower accuracy coarse ranging 

(i.e., immediate, near and far region) is acceptable and for GPS‐based localization, an accu‐

racy of a few meters can be sufficient. The localization strategy, network structure, number of 
beacons and the devices’ capabilities and technologies are other parameters that can impact 

the localization accuracy.

(ii) Localization reliability: Another important aspect of localization algorithms is the reli‐

ability of the methods, i.e., how consistent a localization method can be in different situations. 
Environment, the mobility of devices and objects in the network and type of technology are a 

few aspects that can impact the reliability of the localization method. Specifically, in RF‐based 
localization based on analysis of RSSI to extract proximity information, the susceptibility of 

RSSI to multipath and shadowing caused by environmental changes is the main challenge to 

reliability (and accuracy). We will explore this further in the next section.

(iii) Power requirements: Networks (especially sensor networks) can have strict power require‐

ments, which can impact localization performance. Two clear ways that power requirements 

impact localization are in the computational complexity of the localization algorithm chosen 

and the communication technology utilized. In the latter case, strict power requirements may 
push one to consider using BLE or XBee rather than Wi‐Fi.

(iv) Availability/cost: For practical implementations of localization algorithms, cost and avail‐
ability of the technologies and devices are the two essential factors. For example, BLE is one 

of the most popular and available technologies in smart devices and can easily be used for 

many localization purposes.

4.2. Challenges

One of the main shortcomings of RSSI‐based localization (such as Bluetooth‐based local‐

ization) in indoor environments is that RSSI measurements only provide a rough estimate 

of the distance between a transmitter and a receiver. In realistic environments, increasing 
the distance between the transmitter and the receiver does not necessarily decrease the sig‐

nal strength (especially indoors where signals are often reflected multiple times). Another 
important point to consider is that even for a constant distance between the devices, the 

RSSI values can fluctuate very erratically over time. Based on prior work [22] and our own 

experiments, we can summarize some characteristics of using RSSI for ranging. The follow‐

ing experiments were carried out in a hallway that measures 2.41 m wide × 2.34 m high. The 

walls are concrete and there are multiple metal doors along them (which help to ensure the 

presence of multipath). In all cases, a node (either a receiver or transmitter) was affixed to 
the bottom of an EXIT so that the node was 2.13 m off of the ground while the other node 
was either carried or set on the ground for each measurement. For BLE experiments, we used 

Estimote beacons, and, in order to collect the BLE data (RSSI), we developed an application 

for smart phones using the Estimote SDK. Wi‐Fi data were collected using Raspberry Pi 2B 
(RPi) where the RPis are used for both transmitter and receiver. We wrote some Python code 
to configure the RPi as a transmitter and set the transmission parameters such as transmis‐

sion channel, transmission rate, etc. On the receiver side, a Python script was written to scan 
the channels and record the RSSI. Finally, XBee data were collected through the use of Digi 
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XBee S2 radio modules with a 2 mW wire antenna and software running on a laptop that uses 

a remote AT command to get the RSSI of the last received packet. A single RSSI measurement 

as reported below is actually the median of five such RSSI request values, which provides 
a rough filtering of outliers. Care was taken to ensure that there were no obstacles between 
transmitter and receiver for all data collected. That is, there was always a line of sight path 
between the two nodes.

In stationary cases (i.e., no device mobility and the distance between transmitter and receiver 
is fixed), RSSI values can fluctuate significantly between adjacent beacons, as shown in 
Figures 3–5. The BLE fluctuation data in Figure 3 were collected at a distance of 8 m and 

transmit power of 4 dBm. In Figure 3, the RSSI measurements vary by as much as 29 dB over 

a 45 s period and in Figure 4, maximum fluctuations of 10 dB can be observed for XBee radios. 
The XBee fluctuation data were collected at the same distance and transmit power as the BLE 
experiment. Finally, Figure 5 presents the RSSI measurements from Wi‐Fi at a distance of 8 m 

with transmission power of 4 dBm. As can be observed, Wi‐Fi shows more stable RSSI behav‐

ior with less fluctuation (e.g., less than 10 dBm).

These fluctuations are to be expected because all the walls, doors and floor serve to reflect 
the signal, which results in many copies of the same packet arriving at the transmitter with 

Figure 3. BLE RSSI fluctuations in an indoor environment.
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varying signal strengths. XBee would appear to be a good choice for communication in the 

presence of multipath effects due to its lower RSSI fluctuations, but the importance of this 
metric needs to be balanced with the ability to accurately and reliably relate RSSI to distance. 

The RSSI value is expected to decrease with increasing distances, but in practice, this relation‐

ship is not reliable. As shown in Figure 6, the average RSSI does not necessarily decrease as 

distance increases for BLE, Wi‐Fi and XBee (now transmitting at 5 dBm). Note that for BLE, 
the data were collected while walking away from the EXIT‐sign‐affixed node at a rate of 0.5 
m/s. In particular, for BLE, the average RSSI at a distance of 10 m is greater than the RSSI at a 
distance of 6 m. A similar behavior can be observed for Wi‐Fi signals in Figure 6. We note that 

if the RSSI is not averaged then fluctuations such as those illustrated in Figures 3 and 4 can 

have a much greater impact on the RSSI‐distance trend.

The measured RSSI values typically differ from the expected relationship between signal 
strength and distance. We performed experiments to show this observation for BLE, Wi‐

Fi and XBee. In Figure 7, we compare the measured RSSI with the mathematical relation 

between RSSI and distance for BLE presented in Eq. (1) as a function of transmission power, 

distance (d) and path exponent (n):

  RSSI = −   (  10nlog  (  d )    − A )     (1)

Figure 4. XBee RSSI fluctuations in an indoor environment.
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Figure 6. RSSI versus distance for BLE, Wi‐Fi and XBee.

Figure 5. Wi‐Fi RSSI fluctuations in an indoor environment.
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In Eq. (1), A is the measured power, which is the expected RSSI value at a distance of 1 m 

to the BLE beacon. The measured RSSI is a function of transmission power. We performed 

the same experiment with Wi‐Fi to investigate the relation between Wi‐Fi RSSI and distance. 

Figure 8 shows the comparison of the average of RSSI at different distances with the analytical 
equation presented in Eq. (2). As can be seen in this equation, the relation between RSSI and 

distance is a function of frequency f and RSSI.

  Distance =  10    (    
27.55−  (  20log  (  f )    )   +RSSI

  _________________ 
20

   )     (2)

Figure 9 shows the relation between RSSI and distance for XBee in the same environment using 

the same equation as BLE (using different parameters). This figure also indirectly illustrates the 
sensitivity of radio frequency communication to the environment because here the transmitter 
was held 1 m off the ground rather than sitting on the ground as shown in Figure 6 and the rela‐

tion is much closer to a log relationship between distance and RSSI than the data in Figure 6.

The effect of an indoor environment on signal propagation is the primary reason for these 
data not matching with their respective theoretical model. Any particular packet (or set of 

packets) may be influenced by multipath despite averaging of results. Additionally, the trans‐

mit power, receiver sensitivity and antenna orientation all play a role in influencing RSSI and 
cause it to no longer follow the theoretical relationship. It is also important to note that the 

interference from other devices in 2.4 GHz band could have had a hand in driving the mea‐

sured RSSI away from the expected values.

Figure 7. RSSI versus distance for BLE (analytical model and measurements).
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Figure 8. Average RSSI versus distance for Wi‐Fi‐2.4 GHz (analytical model and measurements).

Figure 9. Average RSSI versus distance for XBee radio (analytical model and measurements).
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The differences in ranging accuracy are difficult to compare between the different types of 
radio frequency devices because RSSI is not, by any means, a strictly defined value. Beyond 
the fact that RSSI is an 8‐bit integer representing the strength of the signal, there is little specifi‐

cation as to its implementation. This means that RSSI implementations can differ between ven‐

dors of different radio frequency devices and even the same type of radio frequency device.

Finally, as mentioned earlier, the RSSI value fluctuates even for fixed distances between trans‐

mitter and receiver. However, these fluctuations vary based on distance, i.e., the larger the 
distance between transmitter and receiver, the larger the variations observed in the measured 
RSSI values, as shown in Table 1. As shown in Table 1, the errors become significantly larger 
when the receiver is further from a transmitter for BLE beaconing.

5. Possible approaches to address the RF‐based localization challenges  

in indoor environments

In the previous section, we reviewed the main challenges of RF‐based localization. The main 

source of these challenges is the structure of indoor environments, which causes  multipath 

effects, heavy shadowing, noise interference and nonline of sight (NLOS) conditions. 
Additionally, indoor environments must contend with the mobility of obstacles, which has a 

far greater effect on localization than in an outdoor environment. In the following section, we 
review various efforts to address these challenges.

5.1. Leveraging channel state information

In recent years, Wi‐Fi chipmakers have made channel state information (CSI) per subcarrier 

(and per antenna) available on their chips. Using a CSI extraction tool, the authors [14, 20, 23] 

illustrate the use of the channel subcarrier information to achieve decimeter level localization 

accuracy. In particular, Kotaru et al. [23] use multiple antennas and CSI to calculate the angle 

of arrival (AoA) and uses a rough estimate of the ToF to provide resilience against multipath 

Distance (m) Std. dev. (dBm) Avg. RSSI (dBm)

3.23 3.76 –63.28

4.65 5.43 –69.60

6.11 4.90 –67.44

7.59 4.64 –65.42

9.07 3.55 –68.57

10.56 6.16 –71.44

12.05 7.89 –74.42

13.55 6.57 –74.28

15.04 7.83 –77.36

Table 1. Average RSSI and standard deviation for BLE.
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effects. Localization is accomplished using a combination of RSSI and AoA for ranging at each 
anchor. Vasisht et al. [14], as mentioned earlier, use the CSI to calculate the ToF by taking mea‐

surements at many different frequencies. Finally, in [20], the authors present Ubicarse, which 

combines CSI with the gyroscopes in a tablet to realize a synthetic aperture radar (SAR) to 

carry out localization. The ability to access and analyze this rich source of radio information is 

incredibly helpful in improving RF‐based ranging in an indoor environment and could easily 

see deployment in an ad‐hoc network as long as the hardware and software required to utilize 

CSI fit within the constraints of the network.

5.2. Calibration

Another technique for improving the reliability of RSSI is using calibration or add‐

ing an adjustment factor based on the network parameters such as network dimension, 

 transmission power and number of beacons. The main idea behind the calibration tech‐

nique is to use the relationship between RSSI and the actual distance between several nodes 

(usually the anchor nodes with known positions) and utilize it as an offset value to adjust 
the RSSI for distance estimation. In Ref. [24], the authors attempt to calibrate the RSSI‐dis‐

tance model by using least squares to adjust the reference power at 1 m as well as the path 

loss exponent. By adaptively calibrating the system, it achieves a lower error and better 
reliability than methods that only calibrate manually during setup or after a major change. 

Calibration in this way keeps the range estimation from deteriorating when the environ‐

ment changes.

As an example of calibration, we implemented a network with three Bluetooth beacons at 

known locations. We measured the RSSI values at different distances and compare it with the 
analytical equation as presented in Figure 7. To calibrate the ranging measurements, the RSSI 

was measured between two different pairs of beacons such that the distance separating the 
pairs was sufficiently dissimilar. Between these new RSSI‐distance points, we interpolate a 
line, which is used to adjust the RSSI measurements. Figure 10 shows the RSSI‐distance graph 

after using the calibration.

Also, Figure 11 shows the comparison of the distance error with and without calibration, 

showing that the calibration can improve the distance estimation error. However, there are 

still some large peaks in the error graph which illustrate that even with the use of calibration, 

RSSI is not a completely reliable parameter for distance estimation.

5.3. Adaptive beaconing

Adaptive beaconing is another approach that can be useful for different situations in the net‐
work by changing the transmission rate and/or transmission power of the beacons.

Adaptive transmission rate depends on the application of localization. For some applications, 

such as mobile device tracking and navigation systems, higher transmission rates are needed 

to keep track of a mobile device. A serious challenge for such systems with high transmis‐

sion rate is the high packet collision and delay that can affect the localization performance 
significantly.
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Figure 10. The measured RSSI after calibration.

Figure 11. Comparison between distance errors when using the calibration function.
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Adaptive transmission power, or multirange beaconing, is an approach that can be utilized to 

improve the distance estimation for localization purposes. In Ref. [25], the effect of transmis‐

sion power and number of anchors on accuracy of localization and connectivity of nodes is 

investigated. In order to evaluate this approach, we ran some experiments by choosing five 
transmission power levels (–30, –20, –12, –4 and 4 dBm) and measuring the distance error for 

each transmission power. The average distance error over all transmission powers was also 

recorded. The measurements were conducted in separate scenarios to avoid any interference. 

Figure 12 shows the comparison of the distance error estimation for our measurements. As 

indicated that with increasing distance, the error increases for each particular transmission 

power. More importantly, the distance estimation error changes for different transmission 
powers. Low transmission power can provide very high accuracy distance estimations over 

short distances from the beacon while high transmission powers are better for distance esti‐
mation of greater distances. This illustrates that adapting the transmission power to the dis‐

tance can provide higher accuracy distance estimation than using a single transmission power 

alone (or averaging the results of all the transmission powers).

5.4. Combination of RF signaling

Another approach for improving the distance estimation and reliability of RSSI is combining 

different RF‐based communication technologies. Recently, Bluetooth‐based localization has 
attracted a lot of attention because of its availability and cost, but many of the efforts rely on 
unreliable RSSI for proximity extraction in indoor environments. To address this problem, 

several prior efforts combined Bluetooth beaconing with other technologies such as Wi‐Fi [26], 

Zigbee [27] and RFID [28] to further improve the localization accuracy. Although combining 

these technologies can improve the localization accuracy, it introduces other challenges such as 

availability, complexity, or implementation problems that make them less practical solutions.

Figure 12. Effect of transmission power on distance estimation error.
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5.5. Fusing additional sensor data

With the availability of multiple sensors on nodes in some ad‐hoc networks, one approach 

to improve localization estimates is to somehow fuse data from these other sources to, hope‐

fully, cover up some of the shortcomings of RF ranging. For example, ToA and RSSI ranging 

using anchors can be combined with dead reckoning to improve localization as demonstrated 

in Refs. [29, 30]. In the former, the authors used two‐way time of arrival (TOA) for localization 

of vehicles in a vehicular network. They assume the existence of a road side unit (RSU) where 

the vehicles use two‐way communication with the RSU and a partial dead reckoning method 

to determine the position of vehicles in GPS‐denied areas. In the latter work, pedestrian dead 
reckoning location estimates are combined with RSSI localization estimates through the use 

of an extended Kalman filter (EKF) with some success.

5.6. Cooperative localization

In some network layouts, it is not always possible for every node to communicate with 

the anchors nodes (if there are any). In such a case, nodes must work together through 

cooperative localization to figure out where they are all located. Cooperative localization 
is similar to relative localization but also includes the possibility of some anchors nodes 

somewhere in the network as well as the potential for fusing additional data from onboard 

sensors (available in a vehicle or a smartphone) to help localize a node. In [31], pedestrian 

dead reckoning (PDR) with a smartphone is combined with Wi‐Fi RSSI ranging where RSSI 
is used to determine when two smartphones are near to each other. In this way, the RSSI 

ranging can help correct heading inaccuracies from PDR. The path that a person takes is 
abstracted as a series of lines and joints where the RSSI ranging allows for the correction 

of the joint angles. In Ref. [32], relative localization through ranging is combined with the 

network topology and graph theory concepts to develop distributed cooperative localiza‐

tion algorithms that can greatly reduced computational complexity and provide resilience 

to noisy internode measurements. Cooperative localization has great potential in robotics, 

MANETs and VANETs.

6. Discussion and conclusion

In general, localization in any network can be improved through the exploitation of addi‐

tional information whether it is from multiple sensors, extra data from the radio, or additional 

location estimates from neighbors. The goal is to leverage data that is already available so as 

to not increase the cost or resource requirements of nodes in an ad‐hoc network. However, 

the solutions presented to the above indoor radio frequency localization issues are still not the 

end of the road for indoor localization or localization in GPS‐denied locations. No single solu‐

tion is going to work everywhere because of constraints on the network, e.g., the availability 

of particular hardware to carry out localization. Additionally, some networks may not have 

the luxury of dedicated beacons or anchors, or they may be located in a highly dynamic envi‐

ronment such that RSSI ranging becomes even more troublesome than usual. Finally, on top 
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of the issues of accuracy and cost, there is the issue of the impact of the localization scheme 

on the performance of the network. The use of passive beacons or active ranging messages 

could, in the best case, mildly interfere with communication or, at worst, impose a severe 

restriction on the communication capabilities of the network. The difficulty and importance 
of indoor localization will ensure that creative and innovative solutions will continue to be 

sought by those hoping to develop the indoor equivalent of GPS. Whether a single method 

will satisfy the requirements and constraints of the many disparate networks in use today 

remains to be seen.
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