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Abstract

Multicellular organisms constantly encounter potentially harmful microorganisms. 
Although insects lack an adaptive immune system, they do have powerful means of 
fighting infections. Cellular responses involve phagocytosis of bacteria and encapsula‐
tion of parasites. In addition, insects can mount a humoral response against pathogens. 
This is characterized by the secretion of antimicrobial peptides into the hemolymph. 
Recognition of foreign pathogens involves specific receptors for sensing infection. These 
include peptidoglycan recognition proteins (PGRPs) and β‐glucan recognition proteins 
(βGRPs). Engagement of these receptors starts signaling pathways that activate the genes 
that encode antimicrobial peptides. These pathways include the Toll, the Imd, and the 
JAK‐STAT. This chapter describes the innate immunity of insects including both the cellu‐
lar and humoral responses to bacteria, fungi, and parasites. In addition, recent advances 
in insect antivirus immune responses are discussed.

Keywords: insect, phagocytosis, hemocyte, innate immunity, signal transduction, toll, 
Imd, JAK/STAT, TLR, siRNA, autophagy

1. Introduction

Multicellular organisms are constantly exposed to different microorganisms, many of which 
can be potentially harmful. To protect themselves from these microorganisms, multicellular 
organisms have evolved cellular and molecular defense mechanisms against infection. These 

defense mechanisms are known as immunity. At the beginning of an infection from viruses, 
bacteria, fungi, and protozoa, early mechanisms such as expression of antimicrobial prod‐

ucts, recognition of microorganisms by pattern‐recognition receptors (PRRs), and activation 
of phagocytic cells get engaged for eliminating pathogens. These early mechanisms are collec‐

tively known as innate immune systems. In vertebrates, such as mammals, cells facilitate the 
recognition of microorganisms at later times during the course of an infection with specific 
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receptors for microbial antigens. The T‐ and B‐lymphocytes are the cells responsible for the 
specific recognition of pathogenic antigens and together provide a more selective defense 
system, known as adaptive immunity, which provides a much better and faster response to 
the same pathogen during a second challenge.

Insect species live practically in every known habitat and ecological niche, except marine 
environments. This diversity exposes insects to all sorts of infectious agents. Yet, insects 

are clearly very successful organisms against infections. Although insects lack an adaptive 

immune system, they do have a powerful innate immune system for fighting infections. The 
innate immune system of insects consists of physical barriers, humoral responses, and cellular 
responses [1, 2].

Physical barriers include the integument and the peritrophic membrane. Integument, the 
outer surface of an insect, is formed by a single layer of cells covered by a multilayered cuticle 
[3]. The peritrophic membrane is a layer made of chitin and glycoprotein that covers the insect 
midgut. It functions as a physical barrier against abrasive food particles and digestive patho‐

gens [4]. However, this membrane is semipermeable and therefore it is not an efficient bar‐

rier for viruses. These structures constitute the initial protection for the hemocele (the insect 

body cavity) and the midgut epithelium against microorganisms. When microorganisms 
enter these barriers, the humoral and cellular immune responses are activated. Humoral 
immune responses include production of antimicrobial peptides, activation of prophenoloxi‐
dase (proPO), and production of reactive oxygen species [5, 6]. Cellular immune responses 
include nodulation, encapsulation, and phagocytosis [7, 8].

Hemolymph, the liquid that fills the hemocele, transports nutrients throughout the insect 
body and also contains several types of free‐moving cells or hemocytes. There are several 
types of hemocytes including granulocytes, plasmatocytes, spherulocytes, and oenocytoids 

[7, 9]. However, it is important to emphasize that not all these hemocyte types exist in all 

insect species [10, 11]. Hemocytes are essential for insect immunity, as shown in Drosophila 

melanogaster larvae where plasmatocytes, making up approximately 95% of circulating hemo‐

cytes, decrease in numbers during an infection [12]. Also, the genetic [13] or mechanical elimi‐

nation [14, 15] of phagocytic hemocytes in adult Drosophila leads to an increase in infection 

susceptibility from various bacteria.

Upon infection of the hemocele, cellular immune responses are engaged almost immediately; 

while humoral responses take place several hours later. It is believed that invading microor‐

ganisms are first eliminated by hemocytes and later the humoral responses finish up the few 
microorganisms not eliminated by cells [16]. These defense mechanisms do not work inde‐

pendently from each other. For example, hemocytes produce molecules that promote hemo‐

cyte‐microorganism interactions [17, 18]. These molecules function similarly to the opsonins 

(complement and antibodies) that increase phagocytosis of microorganisms by leukocytes [19]. 

Also, Drosophila plasmatocytes induce fat‐body (insect equivalent of the liver) cells to produce 
antimicrobial peptides after a bacterial infection [14]. In addition, in adult flies, plasmatocytes 
contribute to reduce the infection susceptibility to various bacteria including Escherichia coli, 

Bacillus subtilis, and importantly Staphylococcus aureus [13, 15]. These findings clearly indicate 
that there is an effective cross‐talk between humoral and cellular immunity in insects.
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Here, I will describe insect cellular immune functions with emphasis on the innate immunity 
of insects including both the cellular and humoral responses to bacteria, fungi, and parasites. 
Specific receptors for sensing infection and the signaling pathways that activate genes for 
production of antimicrobial peptides will be described. In addition, recent advances in insect 
antivirus immune responses are discussed.

2. The inducible humoral response

One of the first identified defense mechanisms of insects is the production of antimicro‐

bial peptides (AMPs). Upon microbial infection, a series of small peptides and proteins are 
produced and released into the hemolymph [20]. The production of AMPs is highly induc‐

ible following a microbial infection, the levels of AMPs change from mostly undetectable 
in uninfected animals to micromolar concentrations in hemolymph of infected individuals 

[21]. Expression of these AMPs comes mainly from fat‐body although hemocytes also con‐

tribute to their production [5, 22]. The first identified antimicrobial protein of insects was the 
lysozyme from Galleria mellonella. This enzyme is structurally similar to the chicken C‐type 
lysozyme [23] and is capable of degrading bacterial cell wall peptidoglycans of Gram‐posi‐
tive bacteria. It also has some activity against Gram‐negative bacteria [24, 25] and against 

some fungi [26].

2.1. Antimicrobial peptides

Biochemical analysis of the hemolymph of the fruit‐fly D. melanogaster and other Diptera has 

led to the discovery of seven groups of AMPs in insects. They present a wide variety of actions 

against microorganisms and can be grouped into three families based on their main biological 
targets [21]. Against Gram‐positive bacteria, there are defensins. Against Gram‐negative bacte‐

ria, there are cecropins, drosocin, attacins, and diptericin. Against fungi, there are drosomycin 
and metchnikowin.

2.1.1. Defensins

Insect defensins are characterized by having three or four stabilizing intramolecular 
disulfide bonds. The name comes from their molecular similarity to mammalian α and β 
defensins [27]. Insect defensins form two groups: one with peptides presenting α‐helix/β‐
sheet mixed structure and the other with peptides presenting triple‐stranded antiparallel 

β‐sheets. Defensins with antibacterial and antifungal activity have been reported in many 
Lepidopteran species [28–30].

2.1.2. Cecropins

Cecropins are small basic peptides of about 31–37 amino acid residues with an amphipa‐

thic α‐helix conformation [27]. The first amphipathic antimicrobial peptide from insects was 
identified in hemolymph of the silkworm Hyalophora cecropia and was named cecropin [31]. 

Amphipathic peptides present antimicrobial activity due to their capacity to damage pathogen 
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cell membranes; they also inhibit proline uptake and cause leaky membranes. Now, several 
cecropin family genes from many lepidoptera species are known. In Bomby mori, 13 cecropin 

genes were found [32]. Moricins are another group of amphipathic α‐helical antimicrobial 
peptides [33] found first in the silkworm B. mori. In the B. mori genome nine moricin genes 

were found [32], and in G. mellonella eight moricin homologs are reported to have activity 

against bacterial as well as against yeast and filamentous fungi [34]. Cecropins isolated from 
insects other than H. cecropia have been given various names, for example, bactericidin, lepi‐
dopterin, and sarcotoxin [21]. However, all of these peptides are structurally related.

2.1.3. Drosocin

Drosocin is a 19‐mer cationic antimicrobial peptide from D. melanogaster. An O‐glycosylated 

threonine residue has been identified as important for the antimicrobial activity of these pep‐

tides, since elimination of the disaccharide at this position renders them with activity several 

times lower than the native compound [35].

2.1.4. Attacins

Attacins are glycine‐rich 20 kDa AMPs originally isolated from the hemolymph of H. cecropia. 

Two attacin isoforms, one acid and one basic, have been cloned from H. cecropia [36] and they 

induce an increase of permeability of the outer‐membrane of bacteria, binding mainly to lipo‐

polysaccharide (LPS). This explains why the basic attacin is more effective against E. coli than 

the acid attacin. Attacins also inhibit outer‐membrane protein synthesis of bacteria at the tran‐

scriptional level [36]. Attacins have also been cloned from other Lepidoptera such as the beet 
armyworm, Spodoptera exigua [37].

Gloverins and lebocins are also glycine‐rich AMPs found in the lepidoptera [11, 38, 39]. These 

peptides also inhibit bacterial growth by blocking outer‐membrane protein synthesis [40]. 

In addition to their antibacterial activity, gloverins also present antifungal activity [38, 39], 

and recently, it has also been reported that they may have antiviral activity [41].

2.1.5. Diptericin

Diptericin is an AMPs rich in glycine synthesized by insects in response to a bacterial injection 
or to injury. It is a basic heat‐stable peptide with a molecular weight of 8.6 kDa, containing 
high levels of Asx, Pro, and Gly. It is active only against a limited range of Gram‐negative bac‐

teria and seems to function by disrupting the cytoplasmic membrane of growing bacteria [21]. 

Recently, diptericin has been reported to be involved not only in inhibiting bacterial growth 
but also in protection from oxidative stress. Authors suggested that diptericin may trap or 
“scavenge” free radical anions and also attenuate oxygen toxicity by increasing antioxidant 
enzyme activities in D. melanogaster [42].

2.1.6. Drosomycin

Drosomycin is an inducible antifungal peptide of 44 residues initially isolated from bacteria‐
challenged D. melanogaster. It is synthesized in the fat‐body and secreted into the hemolymph 

Insect Physiology and Ecology182



of the insect. It exhibits potent antifungal activity but is inactive against bacteria. Drosomycin 
belongs to the cysteine‐stabilized α‐helical and β‐sheet (CSαβ) superfamily and is composed of 
an α‐helix and a three‐stranded β‐sheet stabilized by four disulphide bridges [43]. It also has 

a significant homology with a family of 5 kDa cysteine‐rich plant antifungal peptides isolated 
from seeds of Brassicaceae [44]. Drosomycin exhibits a narrow antimicrobial spectrum and is 
only active against some filamentous fungi [45]. However, recent work using recombinant dro‐

somycin expressed in E. coli revealed that it also has antiparasitic and antiyeast activities [46].

2.1.7. Metchnikowin

Metchnikowin is a 26‐residue proline‐rich peptide whose expression in Drosophila is induc‐

ible by infection [47]. This peptide is expressed in the fat‐body after immune challenge and 
can be induced either by the Toll or the Imd pathways [48] (described later). The metch‐

nikowin peptide is unique among the Drosophila antimicrobial peptides in that it is active 
against both Gram‐positive bacteria and fungi. Recently, Metchnikowin has been shown to 
be able to protect a transgenic plant from fungal pathogens. Transgenic barley expressing the 
metchnikowin gene displayed enhanced resistance to several fungal ascomycetes pathogens, 

including powdery mildew and Fusarium head blight [49].

2.2. Signaling pathways activating genes that encode antimicrobial peptides

Once a microorganism is detected by PRRs, a series of signaling molecules are activated 
inside cells to instruct them for different responses. These molecules follow particular sig‐

naling pathways that determine the final cellular response. In insects, the signaling path‐

ways involved in humoral immune responses are best described in D. melanogaster [50]. The 

humoral immune responses mainly involve the release of AMPs by the fat‐body, via the Toll 
[51, 52], the immune deficiency (Imd) [53, 54], and the JAK‐STAT [55] pathways. Gram‐posi‐

tive bacteria and fungi predominantly induce the Toll signaling pathway, whereas Gram‐
negative bacteria activate the Imd pathway.

2.2.1. The Toll pathway

The Toll pathway was initially identified as a developmental pathway in D. melanogaster. 

It involves signaling to nuclear factor kappa B (NF‐κB) and is essential for embryonic devel‐
opment and immunity [51, 56]. The study of this pathway leads to the subsequent charac‐

terization of Toll‐like receptors (TLRs) and using this it has reshaped our understanding 

of the mammalian immune system [57, 58]. Activation of the transmembrane receptor Toll 
requires a proteolytically cleaved form of an extracellular cytokine‐like polypeptide, Spätzle 
[59], suggesting that Toll requires cooperation of other PRRs. This idea is supported by the 
fact that a mutation in a peptidoglycan recognition protein (PGRP‐SA) blocks Toll activation 
by Gram‐positive bacteria and significantly decreases resistance to this type of infection [60]. 

Toll activation is not only mediated by PGRPs, but it requires Gram‐negative binding protein 
(GNBP) 1 for Gram‐positive bacterial infections [61], and GNBP3 for fungal infections [62]. In 

addition, the Drosophila Persephone protease activates the Toll pathway when proteolytically 

matured by secreted fungal virulence factors [63] (Figure 1).
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Toll signaling is activated when cleaved Spätzle binds the Toll receptor. This binding triggers 
dimerization of the intracytoplasmic TIR domains, inducing binding of the adaptor protein 
MyD88 through its own TIR domain. MyD88 binds the adaptor protein Tube, which in turn 
recruits the protein kinase Pelle. These interactions take place via contact of death domains in 

each protein. Recruitment of Pelle induces its autophosphorylation, triggering phosphoryla‐

tion and degradation of cactus (an IκB inhibitor) and translocation to the nucleus of the NF‐κB 
transcription factors Dorsal and Dif depending on the context [51, 52, 64, 65] (Figure 2).

2.2.2. The Imd pathway

The D. melanogaster Imd (immunodeficiency) pathway was discovered when adult flies car‐

rying this mutation alone had impaired production of most AMPs after infection with E. coli 

and Micrococcus luteus. In these flies, however, the antifungal Drosomycin remained induc‐

ible [66]. It was later shown that Drosomycin induction, after fungal infection, was regu‐

lated by the Toll pathway, while the response to most Gram‐negative bacteria was blocked 
by the Imd mutation [67]. The Imd pathway is activated when the receptors peptidoglycan 

Figure 1. Protease cascades important for Toll activation. The Toll ligand Spätzle is formed when proSpätzle is cleaved 
by serine protease cascades. The fungi cell wall component β‐1,3‐glucan is recognized by the circulating pathogen 
recognition receptor Gram‐negative binding protein 3 (GNBP3); while the receptors peptidoglycan recognition proteins 
PGRP‐SA and PGRP‐SD, together with GNBP1, recognize peptidoglycan of Gram‐positive bacteria. These interactions 
initiate protease cascades that converge at the level of the serine protease ModSP, which then activates the protease Grass, 

which in turn activates the Spätzle processing enzyme (SPE). Some microbial proteases (virulence factors) released from 
pathogenic fungi or bacteria can also be detected by the protease Persephone. Cleavage of Persephone leads to activation 
of SPE and formation of active Spätzle. Horizontal blue arrows represent proteolytic conversion of the proenzymes 
(circles) into their active forms (stars). Vertical black arrows represent the site of action for the active proteases.
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recognition protein (PGRP)‐LC and PGRP‐LE bind meso‐diaminopimelic acid (DAP)‐type 
peptidoglycan [68, 69], which comprises the cell wall of most Gram‐negative bacteria. These 
receptors initiate signaling to the NF‐κB transcription factor Relish [70], via the Fas‐associ‐

ated protein with death domain (FADD)—death‐related ced‐3/Nedd2‐like protein (DREDD), 
and the transforming growth factor beta (TGF‐β)‐activated kinase 1 (TAK1)—inhibitor 
of κB kinase (IKK) pathways [53, 68, 71] (Figure 3). Once bound to peptidoglycan, these 
receptors likely dimerize and connect to the adaptor protein Imd [72]. Imd recruits dFADD 

(Drosophila FADD) [73] and the DREDD caspase [74]. DREDD cleaves Imd, which is then 
further activated by K63‐ubiquitination via the ubiquitination machinery component inhibi‐
tor of apoptosis 2 (IAP2) [75]. The K63‐polyubiquitin chains are thought, recruit, and activate 
TAK1 via the ubiquitin‐binding domain of its regulatory partner TAK1‐associated binding 
protein 2 (TAB2). TAK1 is then responsible for activating the IKK complex to allow free 
Relish to translocate into the nucleus. DREDD is also required for mediating the cleavage of 
the precursor Relish [76] (Figure 3).

Figure 2. The Toll signaling pathway. Activation of the transmembrane receptor Toll requires a proteolytically cleaved 
form of Spätzle. Upon Spätzle recognition by a dimer of Toll molecules, a signaling complex is assembled. Toll binds 
Myd88 through TIR domains (circles), and in turn Myd88 binds Tube and Pelle through their death domains (triangles). 
The kinase Pelle gets activated by autophosphorylation and then phosphorylates cactus (an IκB inhibitor), marking it for 
degradation. The NF‐κB transcription factors Dorsal or Dif get free and translocate to the nucleus, where they activate 
transcription of antimicrobial peptides (AMP). P represents a phosphate group.
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2.2.3. The JAK‐STAT pathway

As mentioned above, the Toll and Imd pathways were first described in Drosophila and then 

similar pathways were found in mammals, due to the fact that the central components of 

these pathways are conserved in evolution. In contrast, the Janus kinase‐signal transducer and 

activator of transcription (JAK‐STAT) signaling pathway was first recognized as important 
in regulating multiple processes of human immunity [77], including control of inflammation 
and activation of leukocytes, such as neutrophils and macrophages. Now, research is looking 

back to the fruit fly as a useful model system for elucidating the in vivo roles of the JAK‐STAT 

pathway and its regulators, which are challenging to demonstrate in mammalian systems [55].

The canonical signaling model for the JAK‐STAT pathway indicates that after binding of a cyto‐

kine to its receptor, the receptor dimerizes and JAKs that are constitutively associated with the 

cytoplasmic tail of the receptor get activated. Activated JAKs phosphorylate each other and spe‐

cific tyrosine residues on the cytoplasmic part of the receptor. These phosphorylated tyrosines 
become docking sites for the Src homology 2 (SH2) domains of STAT molecules. The STATs are 
then tyrosine phosphorylated by JAKs, which allows them to form dimers and translocate into 

Figure 3. The Imd signaling pathway. In the case of Gram‐negative bacteria and some Gram‐positive species, polymeric 
DAP‐type peptidoglycan (poly PGN) is recognized by a dimer of PGRP‐LC to activate Imd signaling. Imd binds to 
FADD (Fas‐associated protein with death domain), and then the caspase DREDD (FADD‐death‐related ced‐3/Nedd2‐
like protein) is recruited. DREDD cleaves Imd, which is then activated by K63‐ubiquitination. The K63‐polyubiquitin 
chains (yellow circles) help connect to TAB2 (TAK1‐associated binding protein 2) and to recruit and activate TAK1 
(transforming growth factor beta (TGF‐β)‐activated kinase 1). TAK1 is then responsible for activating the IKK complex, 
which phosphorylates the NF‐kB‐like nuclear factor Relish. DREDD is also required for mediating the cleavage of the 
precursor Relish. Upon cleavage and phosphorylation, free Relish can translocate into the nucleus, where it activates 

transcription of specific antimicrobial peptides (AMP). Monomeric peptidoglycan can be recognized intracellularly by 
the receptor PGRP‐LE, and also activate the Imd pathway.
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the nucleus, where they bind the promoters of their target genes [78]. In humans, this pathway 

is very complex due to the number of cytokines that can activate it, and the ability of the JAKs 
and STATs to form homo‐ and heterodimers and associate with multiple transcription factors 

and coactivators. There are four JAKs (JAK1, JAK2, JAK3, and TYK2) and seven STATs (STAT1, 

STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6) [78]. In Drosophila, the known JAK‐STAT 

pathway ligands consist of only three cytokine‐like proteins called unpaired (upd), upd2, and 

upd3 [79]. All three upd molecule signal via a single receptor, Domeless (Dome) [80], which binds 
to a single JAK, hopscotch (hop) [81], and one STAT transcription factor, Stat92E [82] (Figure 4). 

In addition, in mammals, the JAK‐STAT pathway is regulated at the receptor level by the mem‐

brane‐spanning signal transducer protein gp130 [83], and by negative feedback loops involv‐

ing the suppressor of cytokine signaling (SOCS) proteins [84]. In Drosophila, similar regulating 

mechanisms have been found. Eye transformer (ET), a no signaling protein that resembles gp130, 
is associated with the receptor complex, interacting with both Dome and hop. Thus, ET seems 
to inhibit intracellular signaling [85, 86] (Figure 4). Also, three members of the SOCS family are 
found in Drosophila, Socs16D, Socs36E, and Socs44A. Of these, Socs36E is the principal negative 
feedback loop regulator, and it is strongly induced by JAK‐STAT signaling [87] (Figure 4).

Figure 4. The JAK‐STAT signaling pathway. Three cytokine‐like proteins called unpaired (upd), upd2, and upd3 signal 

via the receptor Domeless (Dome), which binds to a single JAK, hopscotch (hop). Upon receptor activation, hopscotch 
phosphorylates itself and specific tyrosine residues on the cytoplasmic part of the receptor. These phosphorylated tyrosines 
become docking sites for the STAT transcription factor, Stat92E. Hopscotch also phosphorylates Stat92E at tyrosine residues, 
allowing it to form dimers and then translocate into the nucleus, where it binds the promoters of their target genes. This 
pathway is also regulated by a negative feedback loop involving the suppressor of cytokine signaling (SOCS) protein Socs36E, 
which is upregulated by STAT‐JAK signaling. In addition, eye transformer (ET), a nonsignaling receptor for upd, is able to 
associate with the receptor complex, interacting with both Dome and hop. Thus, ET seems to inhibit intracellular signaling.
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As described above, the humoral immune response in Drosophila is mainly controlled by the 
Toll and Imd pathways in cells of the fat‐body and leads to the production of antimicrobial 
peptides [51, 54]. Also, the JAK‐STAT pathway leads to production by the fat‐body of other pro‐

teins, including cytokines and stress response proteins. This pathway is activated by the ligand 
upd3. Various stress conditions, such as injury, heat‐shock, or dehydration, induce hemocytes 
to secrete upd3 [88] (Figure 5). Moreover, the JAK‐STAT pathway has been shown to contribute 
to the Drosophila viral response. Established JAK‐STAT pathway target genes, such as TotM, 
upd2, and upd3, are all induced by multiple viruses [89]. Finally, the JAK‐STAT pathway also 

contributes to the antimicrobial defense in the gut by inducing the expression of a subset of 
antimicrobial peptides, such as drosomycin‐like peptide (dro3). However, this response seems 
to be mediated by recognition of cell damage rather than the pathogen [90] (Figure 5).

3. Receptors sensing infections

Innate immune responses of insects can be triggered through the interaction of hemocyte 
receptors or plasma proteins with specific molecules, such as lipids or sugars, on the surface 
of many microorganisms [91]. Pattern‐recognition proteins can be grouped into various types 
including peptidoglycan recognition protein (PGRP) [92], β‐1,3‐glucan recognition protein 
(βGRP), hemolin, and C‐type lectins.

Figure 5. Activation signals for the JAK‐STAT signaling pathway. (A) In Drosophila, hemocytes participate in recognizing 

stress conditions by secreting the cytokine‐like protein upd3, which binds to the receptor Domeless (Dome). This 
activates the JAK, hopscotch (hop) and the STAT, Stat92E for induction of immune response genes. (B) In the fly gut 
epithelium, an infected (with pathogenic bacteria, for example) cell also produces upd3 for activating the JAK‐STAT 
pathway in neighbor cells. These cells then produce antimicrobial peptides, such as drosomycin‐like peptide (dro3). Also 
some proliferation and tissue repair responses are activated to protect the epithelium from infection.
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3.1. Peptidoglycan recognition proteins (PGRPs)

Peptidoglycan recognition proteins (PGRPs) are innate immunity proteins, conserved from 

insects to mammals, which recognize bacterial peptidoglycan, and function in antibacterial 
immunity and inflammation. Mammals have four PGRPs [93, 94]. They are secreted pro‐

teins expressed in polymorphonuclear leukocytes (PGRP1), in liver (PGRP2), or in secre‐

tions (PGRP3 and PGRP4). All PGRPs recognize bacterial peptidoglycan and three of them 
(PGRP1, PGRP3, and PGRP4) are directly bactericidal for both Gram‐positive and Gram‐
negative bacteria [94]. Insects have up to 19 PGRPs, classified into short (S) and long (L) 
forms. The short forms are present in the hemolymph, cuticle, and fat‐body cells, whereas 
the long forms are mainly expressed in hemocytes [95, 96]. The expression of insect PGRPs 

is often upregulated by exposure to bacteria. These receptors activate the Toll or the Imd 
signal transduction pathways (described above) or induce proteolytic cascades that generate 
antimicrobial products [94, 97].

Known functions of PGRPs in Drosophila are as follows: the PGRP‐SA in hemolymph 

binds to Lys‐type peptidoglycan and together with PGRP‐SD and Gram‐negative binding 
protein (GNBP) 1 leads to activation of the Toll pathway (Figure 1). GNBP3 also leads 
to activation of the Toll pathway in response to yeast. These pattern‐recognition pro‐

teins initiate the serine protease cascades that lead to activation of the Spätzle‐processing 
enzyme (SPE), which in turn cleaves proSpätzle to generate free Spätzle, the ligand for 
Toll (Figure 1). Similarly, the Imd pathway is activated when the PGRP‐LCx homodi‐
mer complex binds DAP‐type polymeric peptidoglycan, or the heterodimer PGRP‐LCx/
PGRP‐LCa binds DAP‐type monomeric peptidoglycan. PGRP‐LE can bind both poly‐

meric and monomeric DAP‐type peptidoglycan. Extracellular PGRP‐LE activates the Imd 
pathway through PGRP‐LC transmembrane receptors and is also involved in activation of 
the prophenoloxidase (proPO) cascade upstream of the proPO‐activating enzyme (PPAE) 
(Figure 6). Intracellular PGRP‐LE can also activate the Imd pathway by recognizing intra‐

cellular bacteria with DAP‐type peptidoglycan and binding to the Imd adaptor protein. 
In addition, intracellular PGRP‐LE can activate autophagy in an Imd pathway‐indepen‐

dent manner (Figure 6). PGRP‐LF functions as an inhibitor of the Imd pathway, because it 
can bind to PGRP‐LCx but not to peptidoglycan. In this manner, it prevents the formation 
of a PGRP‐LC active dimer. PGRP‐LB and ‐SC1a/1b/2 cleave DAP‐type peptidoglycan 
to inactive fragments, thus preventing activation of the Imd pathway. In addition to its 

scavenger function, PGRP‐SC1a is involved in the phagocytosis of bacteria as an opsonin. 
PGRP‐SB1 is directly bactericidal due to its DAP‐type peptidoglycan‐specific amidase 
activity [98] (Figure 6).

3.2. Beta‐1,3‐glucan recognition proteins (βGRPs)

Insect β‐1,3‐glucan recognition proteins (βGRPs) and Gram‐negative bacteria binding proteins 
(GNBPs) are a family of plasma proteins with an amino‐terminal glucan‐binding domain and a 
carboxyl‐terminal region similar to β‐1,3‐glucanases [99]. All β βGRPs bind to β‐1,3‐glucans on 
bacteria and can activate the proPO cascade. Manduca sexta βGRP1 is constitutively expressed 
in fat‐body, whereas βGRP2 gene expression is increased during the early wandering stage 
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prior to pupation or after and immune challenge [5, 100]. Binding of these βGRPs to hemo‐

lymph proteinase‐14 precursor (proHP14) induces autoactivation of HP14 to initiate a protein‐

ase cascade leading to proPO activation [101]. A βGRP with glucanase activity was isolated 
from midgut extract of Helicoverpa armigera larvae. This enzyme hydrolyzes β‐1,3‐glucan but 
not β‐1,4‐glucan, and it probably functions more as a digestive enzyme than an immune activa‐

tor [102].

3.3. Hemolin

Hemolin is a plasma protein with four immunoglobulin (Ig) domains commonly found in adhe‐

sion molecules of vertebrates [103]. Hemolin is a common protein in several Lepidopteran  species, 

including B. mori [32], Antheraea mylitta [104], Plutella xylostella [105], and Samia cynthia [106], but 
it has not been identified in insects from other orders. Hemolin binds to bacterial LPS and lipotei‐
choic acid [23]. Hemolin also associates with hemocytes, thus serving as a bridge between micro‐

organisms and hemocytes, and inducing phagocytosis or nodulation [107].

Figure 6. Known functions of PGRPs in Drosophila. Peptidoglycan recognition proteins (PGRPs) are innate immunity 

proteins, conserved from insects to mammals, which recognize bacterial peptidoglycan. The Imd pathway is 
activated when the PGRP‐LCx homodimer complex binds polymeric peptidoglycan (poly PGN), or the heterodimer 
PGRP‐LCx/PGRP‐LCa binds monomeric peptidoglycan (mono PGN). PGRP‐LE can bind both polymeric and monomeric 
peptidoglycan. Extracellular PGRP‐LE activates the Imd pathway through PGRP‐LC transmembrane receptors and is 
also involved in activation of the prophenoloxidase (proPO) cascade upstream of the proPO‐activating enzyme (PPAE). 
Intracellular PGRP‐LE can also activate the Imd pathway by recognizing intracellular monomeric peptidoglycan and 
inducing Imd signaling or autophagy independently of Imd. PGRP‐LF functions as an inhibitor of the Imd pathway. 
PGRP‐LB and ‐SC1a/1b/2 cleave DAP‐type peptidoglycan to inactive fragments, thus preventing activation of the Imd 
pathway. In addition, PGRP‐SC1a acts as an opsonin for phagocytosis of bacteria. PGRP‐SB1 is directly bactericidal due 
to its DAP‐type peptidoglycan‐specific amidase activity.
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3.4. C‐type lectins (CTLs)

C‐type lectins (CTLs) from animals are a large group of carbohydrate‐recognition molecules 
that bind ligands in a calcium‐dependent manner. Several C‐type lectins have been found 
in Lepidoptera including LPS‐binding protein (LBP or CTL20), immulectins ‐1, ‐2, ‐3, and 
‐4, [108, 109], CTL10 [110], CTL11, CTL19, and CTL21 [32]. All these lectins have two carbo‐

hydrate‐recognition domains, and their genes suggest that these types of lectins are rather 

unique to Lepidoptera, since they have not been found in other insect species [5].

Most Lepidopteran CTLs bind to bacterial LPS and some also to lipoteichoic acid [108, 109, 

111], inducing agglutination of bacteria and yeast [109, 110], probably because each of the 
two carbohydrate‐binding domains bind to sugar residues on the surface of adjacent micro‐

bial cells [5]. This microbial aggregation may help hemocytes eliminate pathogens via phago‐

cytosis and nodule formation.

4. The cellular response

Cellular immune responses are immediately after an invasion of the hemocele, while humoral 
responses appear several hours after an infection. Hemocytes are responsible for a variety of 
defense responses in insects. Many variations in hemocyte immune responses exist due to the 

presence of millions of insect species, and we are just beginning to understand these varia‐

tions [7, 112]. However, a number of frequent cellular immune responses have been described 
in most insects studied. These responses include nodulation, encapsulation, melanization, 

and phagocytosis.

4.1. Hemocytes

There are various types of hemocytes described in insects, including granular cells, crys‐

tal cells, oenocytoids, and plasmatocytes [8]. These hemocytes are capable of adhesion and 
phagocytosis [2]. Other types of hemocytes like oenocytoids can produce proPO. This classifi‐

cation of hemocytes, based on morphology, does not always correlate well with cell function. 
Thus, other attempts have been made to classify hemocyte types. By flow cytometry, three 
major types of hemocytes can be separated: large granular cells, small semigranular cells, 
and small hyaline cells [113]. Also, there are some monoclonal antibodies that can distinguish 
hemocytes based on antigenicity rather than morphology [114, 115]. A number of those mono‐

clonal antibodies could also inhibit some cellular responses [116, 117]. In D. melanogaster, 

three types of hemocytes have been described in greater detail: crystal cells, plasmatocytes, 
and lamellocytes [118].

Crystal cells are relatively large cells with crystalline inclusions, thus their name. They 
produce the zymogen proPO, which is activated during melanization. Melanin deposits 

are important for wound healing or encapsulation of parasites [119, 120]. Plasmatocytes 

comprise approximately 95% of the hemocyte pool. They are rather small cells (around 10 

μm in diameter), but extend large lamellipodial protrusions and form dynamic filopodia 
[121, 122]. Plasmatocytes are long‐lived cells that seem to persist through the entire life 
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of a fly [122]. Mature plasmatocytes express Croquemort (Crq), a CD36 scavenger recep‐

tor ortholog, Peroxidasin, an extracellular matrix enzyme, and phagocytic receptors [123]. 

Lamellocytes are flat cells that appear during larval stages and only detectable when the 
larvae is infected by parasitic organisms. These hemocytes are mainly responsible for encap‐

sulating the parasitoid wasp egg [119]. Lamellocytes seem to differentiate from a precursor 
pool of plasmatocytes [124], during a wasp egg infestation and also during sterile injury 
[125, 126] (Figure 7).

Independently of the type of hemocyte involved, insect immune responses initiate with adhe‐

sion of granular hemocytes and plasmatocytes to foreign surfaces or to other cells [127, 128]. 

Adhesion of hemocytes leads to phagocytosis and also to nodule formation and encapsula‐

tion. These cellular innate functions are described next.

4.2. Phagocytosis

Phagocytosis is the process by which cells recognize, bind, and ingest relatively large par‐

ticles [19]. In insects, phagocytosis is performed by a subset of hemocytes in the hemolymph 
[7]. Professional phagocytes in Diptera and Lepidoptera have been described as plasmato‐

cytes and granular hemocytes, respectively [129]. In agreement with this, plasmatocytes or 

granulocytes are the main phagocytic cells in most insects [7, 113, 130, 131]. Recognition of 

target particles for phagocytosis can be direct by specific cell‐surface receptors, or indirect 

Figure 7. Types and functions of hemocytes in Drosophila. Crystal cells are relatively large cells with crystalline 
inclusions. They produce the zymogen prophenoloxidase, which is activated during melanization. Plasmatocytes are 

granular cells that comprise approximately 90% of all hemocytes. They express phagocytic receptors and eliminate 

most of the invading bacteria by phagocytosis or nodulation. Lamellocytes are flat cells that appear during larval stages 
and only detectable when the larvae are infected by parasitic organisms. These hemocytes are mainly responsible for 
encapsulating the parasitoid wasp egg. Images are not drawn to scale.
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by opsonins that cover the particle so that it can be detected by phagocytic receptors. During 
development, phagocytic hemocytes eliminate many dying cells, which are detected by the 
scavenger receptors Croquemort [132], and Draper [133]. In the embryo, hemocytes phago‐

cyte live bacteria but the receptors involved have not been yet identified [134]. In the larva 

and adult insects, recognition of microorganisms is mediated by the Nimrod family receptors 
Eater [135] and NimC1 [136], which bind to both Gram‐positive and Gram‐negative bacteria. 
Cytokines capable of activating hemocyte functions have also been reported in Lepidoptera 
insects. A hemocyte chemotactic peptide from Pseudaletia separata induces migration and 

aggregation of hemocytes [137]. This peptide belongs to a group of Lepidopteran cytokines 
called ENF peptides, which have various biological activities, including plasmatocyte adhe‐

sion and spreading, and release of proPO activation [138].

4.3. Nodulation

When the initial phagocytic immune response is not sufficient, hemocytes activate other 
mechanisms to control infections. To deal with large bacterial loads, hemocytes form nod‐

ules to control the infections. Nodulation involves the formation of multicellular hemocyte 

aggregates that entrap large numbers of bacteria. First, hemocytes surround bacteria and 
then join other hemocytes to form small aggregates. These cell aggregates continue grow‐

ing by adding more hemocytes until large nodules are formed. At the end, the nodule is 
covered with layers of flattened hemocytes and it is melanized. Melanin‐covered nodules 
efficiently isolate bacteria from the hemolymph. Although the process of nodule formation 
is not completely characterized, certain molecules such as eicosanoids, proPO, and dopa 

decarboxylase (Ddc) are important for nodule formation in many insect species [139–142]. In 

addition, screenings for novel immune genes from an Indian saturniid silkmoth (A. mylitta) 

larvae, and from B. mori larvae, identified two proteins, Noduler [143] and Reeler1 [144], 

respectively, as essential molecules in mediating nodulation against E. coli K12 and B. subtilis 

bacteria challenge.

4.4. Encapsulation

For larger pathogens such as parasites, protozoa, and nematodes, hemocytes respond by 
forming a capsule around the foreign organism. Lamellocytes are the effector cells of encapsu‐

lation. Lamellocytes bind to the target in multiple cell layers until they form a capsule around 
the invader. The capsule is normally melanized at the end by degranulation of crystal cells 
[145]. Inside the capsule the invading organism is killed by reactive cytotoxic products or by 
asphyxia [146]. Insect hemocytes aggregate in multiple layers during encapsulation and bind 
to microorganisms during phagocytosis. These functions can be mediated by integrins [147] 

and indeed various integrins have been found in insect hemocytes [129]. Integrins are also 

relevant for encapsulation. Various α and β integrins are required for microbial recognition 
by M. sexta hemocytes [148], and in Drosophila, the β2‐integrin myospheroid is required for 

attachment to the wasp egg [149].

Interestingly, recent reports have shown that insect hemocytes can release chromatin in a con‐

trolled manner to form extracellular traps [150], similar to the NETs formed by mammalian 
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neutrophils [151, 152]. Hemocytes release their nucleic acids in a process known as ETosis. 
The chromatin fibers participate in histone‐mediated killing of microorganisms [150], and also 

in the process of encapsulation by creating a scaffold on which hemocytes can assemble [153].

4.5. Melanization

Melanization is the process of melanin formation. It is activated during wound healing and 

also in nodule and capsule formation against large pathogens or parasites in several insects [8, 

154]. The enzyme phenoloxidase (PO) is a key in this process. Activation of proPO to PO [155] 

is mediated by a Serine proteinase cascade [156] and requires pattern‐recognition proteins such 
as PGRP or βGRP. Then active PO binds to foreign surfaces including hemocyte membranes 
[157], where it initiates melanin formation. PO acts on tyrosine and converts it to dopa [22]. 

Dopa can then be decarboxylated by Ddc to dopamine or further oxidized by PO to dopaqui‐
none. Both products are then further metabolized to eumelanin and finally melanin [22].

5. Antivirus insect response

Insects, like any other organism, are also infected by viruses. Some viruses are restricted to 
insect cells and are pathogenic to them; other viruses are transmitted to mammals by biting 
insects. Understanding the insect innate immune response against viruses thus has tremen‐

dous medical and economic importance.

The major mechanism of antiviral defense is the RNA interference (RNAi) pathway that rec‐

ognizes virus‐derived double‐stranded RNA (dsRNA) to produce small, interfering RNAs 
(siRNAs). These siRNAs, in turn, target viral RNA for degradation and hence suppress virus 

replication. In addition, other innate antimicrobial pathways such as Imd, Toll, and JAK‐STAT 
pathways have also been shown to play important roles in insect antiviral responses. In par‐

ticular, the JAK‐STAT pathway seems to function similarly to the mammalian interferon sys‐

tem. A virus‐infected cell sends a signal that activates this pathway in uninfected bystander 
cells leading to antiviral activity. Finally, the autophagy pathway has also been suggested to 
be important in some viral infections.

5.1. The RNA interference (RNAi) pathway

When challenged with viruses, the most robust insect response is through the RNA interfer‐

ence (RNAi) pathway (Figure 8). Double‐stranded viral RNA is detected by Dicer‐2 (a mem‐

ber of the RNase III family of endoribonucleases) together with the protein R2D2 [158, 159]. 

Then, Dicer‐2 cleaves the dsRNA into small (21‐nucleotide) duplex DNA fragments [160, 161]. 

Unwinding of the duplex takes place and a guide strand is selected on the basis of comple‐

mentarity. The siRNA guide strand is then loaded into the RNA‐induced silencing complex 

(RISC), which includes the RNase Argonaute [162]. A target viral RNA pairs with the guide 

strand, and it is degraded by Argonaut (Figure 8).

The importance of the RNAi pathway for controlling virus infections is highlighted by the 
fact that several viruses have been found to produce RNAi suppressor proteins (1A proteins 
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in Nodaviridae, or B2 proteins in Dicistroviridae) that block the action of the RISC during 
infection [163, 164]. The B2 protein from the flock house virus (FHV) is a dimer that binds to 
dsRNA and prevents the cleavage of dsRNA by Dicer‐2 [165]. The A1 protein from Drosophila 

C virus (DCV) functions similarly to FHV B2, by binding to dsRNA and preventing cleavage 
[164]. In contrast, the 1A protein of cricket paralysis virus (CrPV) interacts with Argonaute 
and inhibits its RNAse activity [164] (Figure 8). When viruses do not have these proteins they 
replicate poorly and the insect is able to clear the infection completely. The RNAi pathway 
is clearly very important also for protecting mammalian cells against viruses. Recently, the 

NS4B protein of dengue virus 2 (DENV‐2), flavivirus was found to inhibit the siRNA path‐

ways both in mammalian and insect (Sf21) cells [166].

5.2. The JAK‐STAT pathway

In addition to the RNAi pathway, the Toll [167, 168] and Imd signaling [169, 170] pathways 

have been also reported to be involved in antivirus responses. In addition to AMPs, these 
pathways induce particular sets of genes that are distinct from the genes induced by bacteria 
or fungi, depending on the virus involved [171]. The actual mechanism for virus recognition 

and the particular response induced through these pathways is just beginning to be eluci‐

Figure 8. RNA interference (RNAi) pathway. Double‐stranded viral RNA is detected by Dicer‐2 together with the 
protein R2D2. Then, Dicer‐2 cleaves the dsRNA into small duplex DNA fragments. These siRNA fragments are loaded 

into the preRNA‐induced silencing complex (preRISC), which includes the RNase Argonaute (Arg). A target viral RNA 
pairs with the guide strand and Argonaut degrades it. RNAi suppressor proteins from some viruses can block the RNAi 
pathway. The B2 protein from the flock house virus (FHV) prevents the cleavage of dsRNA by Dicer‐2; the 1A protein of 
cricket paralysis virus (CrPV) interacts with Argonaute and inhibits its RNAse activity.
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dated. In contrast, the JAK‐STAT pathway response to viruses seems to be more relevant for 
preventing the spread of infection [172]. Recent reports also suggest that the JAK‐STAT path‐

way may function similarly to the mammalian interferon system [173]. Infected cells produce 

factors that activate this pathway in uninfected bystander cells inducing an antiviral state in 
those cells [172, 173].

As mentioned earlier, the JAK‐STAT pathway was initially characterized for its role in develop‐

ment and hemocyte proliferation [77]. The JAK‐STAT pathway also gets activated in respond to 

bacterial infections leading to production of AMPs and other effector molecules [55, 174]. This 

pathway is activated in a paracrine fashion through the binding of secreted ligands. In the case 
of virus infections, a novel ligand for the JAK‐STAT pathway has recently been identified. In fruit 
flies, DCV and Sindbis virus (SINV) infections result in increased expression of mRNA for Vago, 
an 18 kDa cysteine‐rich protein with a single von Willebrand factor type C motif [175]. Vago was 

then shown to be secreted by West Nile virus (WNV)‐infected Culex quinquefasciatus (southern 

house mosquito) cells [173]. In addition, Vago mRNA expression was dependent on Dicer‐2 but 
no other RNAi pathway components [173]. Secreted Vago then goes and activates the JAK‐STAT 

pathway in other cells, but interestingly it does not bind the Dome receptor. A different unknown 
receptor must be responsible for activation of this signaling pathway (Figure 9). This creates a 

new level of complexity to our understanding of the JAK‐STAT pathway in insects [176]. The 

mechanism by which the JAK‐STAT pathway creates an antiviral state in the cells is also not 
known. Future research will help understanding this complex immune response in insects.

5.3. The autophagy pathway

Autophagy has also been proposed as another antiviral mechanism in insects that is independent 
of the Toll, Imd, or JAK‐STAT pathways [177, 178]. Autophagy is the process by which double‐
membrane vesicles named autophagosomes are formed inside cells. These vesicles are formed 
with newly synthesized membranes that incorporate large cytoplasmic components including 
damaged organelles or protein aggregates. Then, the autophagosome fuses with lysosomes 

and degrades its content. Autophagy is induced by several stress signals including nutrient 

Figure 9. RNA interference (RNAi) pathway and JAK‐STAT pathway in viral infections. In a virus‐infected cell, an 

increased expression of mRNA for Vago is observed. The Vago mRNA expression is dependent on Dicer‐2. Secreted Vago 
then goes and activates the JAK‐STAT pathway in other cells, but interestingly it does not bind the Dome receptor. 
A different unknown receptor (?) must be responsible for activation of this signaling pathway to induce expression of 
viral response genes, including TotM, upd2, and upd3.
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starvation, infection, and cellular repair mechanisms. In this manner, the degradative process 

of autophagy helps recycle nutrients and maintains cellular homeostasis [179]. The signaling 

pathway to autophagy involves the phosphoinositide 3‐kinase (PI3K)‐Akt pathway, which aug‐

ments the level of TOR, a negative regulator of autophagy [180] (Figure 10). During growing 

conditions, TOR is active and phosphorylates Autophagy‐related (Atg) 13 protein at multiple 

sites. This prevents Atg13 to bind with Atg1, a central regulator for autophagy [180], leading to 

decreased Atg1 kinase activity and blocking autophagy (Figure 10). During starvation condi‐

tions, TOR activity is reduced and Atg13 is rapidly dephosphorylated and forms a complex with 

Atg1, thus activating it. Atg1 in turn binds to other Atg proteins for assembly of the preautopha‐

gosomal structure (PAS) leading to autophagy (Figure 10). Different Atg proteins accumulate 
at the PAS under normal growing conditions to generate cytoplasm to vacuole targeting (Cvt) 
vesicles, or under starvation conditions to generate autophagosomes [181].

In an infection of Drosophila with vesicular stomatitis virus (VSV), the PI3K‐Akt‐TOR signal‐

ing pathway is inhibited. This activates autophagy and in turn decreases viral replication 
[178]. The viral surface glycoprotein, VSV‐G, was proposed to be the pathogen‐associated 
molecular pattern (PAMP) that initiated this cell response [178]. More recently, it was found 

that, the Drosophila TLR ortholog, Toll‐7, was responsible for sensing VSV on the cell sur‐

face (Figure 10). Toll‐7 signaling was activated upon VSV infection and knockdown of Toll‐7 

resulted in a higher viral protein level in vitro and greater pathogenesis in vivo [177].

Figure 10. Autophagy response in viral infections. The signaling pathway to autophagy involves the phosphoinositide 

3‐kinase (PI3K)‐Akt pathway, leading to activation of TOR. This kinase phosphorylates autophagy‐related (Atg) 13 

protein at multiple sites. This prevents Atg13 binding to Atg1 and other Atg proteins like Atg17, for assembly of the 
preautophagosomal structure (PAS), which leads to autophagy. Different Atg proteins accumulate with Atg1 under 
normal growing conditions to generate cytoplasm to vacuole targeting (Cvt) vesicles. During an infection with vesicular 
stomatitis virus (VSV), the receptor Toll‐7 detects the virus, and the PI3K‐Akt‐TOR signaling pathway is inhibited. This 
activates autophagy and in turn decreases viral replication.
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6. Conclusion

Insects clearly possess powerful defense mechanisms for fighting infections. Cellular 
responses involve phagocytosis of bacteria, and encapsulation of parasites, while humoral 
responses involve secretion of antimicrobial peptides into the hemolymph. Recognition of 
foreign pathogens involves specific receptors such as peptidoglycan recognition proteins 
(PGRPs), β‐glucan recognition proteins (βGRPs), and Toll‐related proteins. These receptors 
activate signaling pathways such as the Toll, the Imd, and the JAK‐STAT pathways. The par‐

ticular pathway activated by each pathogen and the final outcome in each case are still not 
completely known. This is particularly true for viral infections. Thus, future research in the 

area of insect immunity promises to be full of surprises.

Another fascinating aspect of insect defense mechanisms against infections is the current 

view that insects depend only on its innate immune response to fight invading microorgan‐

isms. By definition, innate immunity lacks adaptive characteristics. However, there are some 
reports showing that in Drosophila, an initial sublethal exposure to Streptococcus pneumoniae 

can protect flies from a second lethal exposure to the same bacteria [182]. Although not all 

microbial challenges generate this specific primed response, the fungus Beauveria bassiana, 

a natural fly pathogen, can also induce specific protection against a second exposure to the 
fungus [182]. These results indicate that insect immune responses can indeed adapt and sug‐

gest that insect hemocytes may also present an activation response similar to the one known 

in mammalian leukocytes.

Finally, most of what we know about insect innate immunity comes from studies of 
Drosophila, where genetics analysis has been instrumental in elucidating the antimicrobial 
peptide response, as well as to open the door for the study of Toll‐like receptors, which 

are essential for the innate immune response of mammals. Similarly, future genetic screens 

will help identifying novel host antiviral genes and also the receptor molecules that sense 

viral infection. Yet, it is important to keep in mind that insect‐pathogen interactions have 

coevolved. Thus, it is important to confirm findings from Drosophila studies in other insect 

species [8, 128, 176].
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