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Abstract

Lipoproteins are complexes of lipids and proteins that carry water‐insoluble cholesterol 
in the bloodstream. While cholesterol is required for normal cell function, hypercholes‐
terolemia contributes to the development of cardiovascular disease (CVD). Increased 
low‐density lipoprotein (LDL) is a major risk factor for CVD. Reduced high‐density lipo‐
protein (HDL) levels are inversely related to CVD risk, suggesting a protective role for 
HDL. Several diseases, including atherosclerosis, diabetes, chronic kidney disease and 
rheumatoid arthritis, have been identified where HDL levels are decreased or function is 
compromised. HDLs are spherical particles with a hydrophobic core of cholesteryl esters 
surrounded by a monolayer of phospholipids, proteins and unesterified cholesterol. 
Apolipoprotein (apo) A‐I, the major protein component of HDL, plays an important role 
in the assembly and function of HDL. One of the major functions of HDL is to mediate 
cellular cholesterol efflux and the transfer of cholesterol from extrahepatic tissues to the 
liver for excretion into the bile. In addition to regulating cholesterol metabolism, HDL 
also exhibits antioxidative, antithrombotic and anti‐inflammatory properties. Under cer‐
tain conditions, however, HDL may undergo biochemical modification resulting in the 
formation of a particle with pro‐inflammatory properties. This review will focus on the 
variable properties of HDL under normal physiological conditions and in the context of 
inflammation.

Keywords: HDL, inflammation, lipid composition, protein composition, function, 
macrophage mitochondria

1. Introduction

Hypercholesterolemia is an important determinant of cardiovascular disease (CVD), the lead‐

ing cause of death globally [1]. Cholesterol, among other lipids, is carried in the bloodstream 
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from the liver to different parts of the body by lipoproteins, complex particles composed of 
lipids and proteins. There are four major lipoproteins that can be classified on the basis of 
their density: chylomicrons, very low‐density lipoprotein (VLDL), low‐density lipoprotein 

(LDL) and high‐density lipoprotein (HDL) [2]. Chylomicrons, VLDL and LDL are larger par‐

ticles with densities ranging from 0.95 to 1.063 g/ml. HDL is a mixture of spherical particles 
ranging in size from 7 to 12 nm in diameter and 1.063–1.21 g/ml in density. Epidemiological 
studies have established an inverse relationship between HDL cholesterol and CVD risk [3, 4]. 

Thus, a reduction in plasma HDL levels represents an important risk factor for CVD. Results 
of clinical trials demonstrate that lowering LDL levels reduces CVD risk [5, 6]. Evidence sup‐

porting a role for elevated HDL in reducing CVD risk, however, is still forthcoming. Clinical 

trials have shown that torcetrapib, dalcetrapib and extended‐release niacin significantly 
increase circulating HDL levels; however, this was not associated with improved outcomes 

[7–9]. On the other hand, raising plasma HDL by infusion or overexpression of apoA‐I in 

murine models was shown to reduce atherogenic lesion progression [10]. One hypothesis to 

explain this disparity proposes that the “quality” or functional status of HDL may be a better 
indicator of CVD risk than plasma levels of HDL per se [11]. This review will focus on the 
structure‐function relationship of HDL and how it influences responses to the lipoprotein in 
the context of inflammation.

HDL particles have a neutral core of cholesteryl ester and triglycerides (TG) surrounded 
by a monolayer of phospholipids, free cholesterol (FC) and protein. ApoA‐I is the major 

protein associated with HDL particles and is synthesized in the liver and small intestine. 

Phospholipids and cholesterol are transferred to apoA‐I by a process mediated by the ATP‐
binding cassette transporter type 1 (ABCA1) [12, 13] resulting in the formation of a lipid poor, 

dense particle called preβ‐HDL. This particle plays an important role in reverse cholesterol 
transport, a process by which cholesterol is removed from cells. Although these particles 

have been predominantly studied under in vitro conditions, little information is available 
regarding the presence or functional significance of preβ‐HDL in vivo [14]. HDL isolated 

from plasma by sequential ultracentrifugation yields two major subpopulations: HDL2, a 

large, light, lipid‐rich particle (d1.063–1.125 g/ml), and HDL3, a smaller, denser protein‐rich 
particle (d1.125–1.21 g/ml). These two particles can be further subdivided into five distinct 
populations: HDL2b, HDL2a, HDL3a, HDL3b and HDL3c [15]. These heterogeneous particles 
vary in their lipid and protein composition, forming particles of varying density, charge, and 

antigenicity. They also possess discrete functional properties.

2. HDL structural components

The HDL lipidome: Phospholipids (PL) represent the major lipid component of HDL, con‐

stituting about 50% by weight of all the lipids [15]. Phosphatidylcholine (PC), with a carbon 

backbone of varying length and saturation, is the major PL species. Lysophosphatidylcholine 

(LPC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and plasmalogens are also 
present at lower, but significant, amounts (greater than 1% of total HDL lipids by weight). 
Other phospholipids (phosphatidylglycerol (PG), phosphatidylserine (PS), phosphatidic acid 
(PA) and cardiolipin) constitute less than 1% of total HDL lipids by weight.
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Sphingolipids are also well‐represented in HDL particles. Sphingomyelin (SM) accounts for 

5–10% by weight of total HDL lipids [15]. SM is converted to ceramide by sphingomyelin‐

ase [16]. Ceramide constitutes 0.05% by weight of total HDL lipids. Ceraminidase converts 

ceramide to sphingosine. Finally, the enzyme sphingosine kinase converts sphingosine to 

sphingosine 1‐phosphate (S1P) [16]. S1P, as well as ceramide‐1‐phosphate, are carried by 

HDL and are potent signaling molecules that regulate cell growth, survival and differentia‐

tion [17]. S1P plays an important role in the suppression of inflammation [17]. S1P binding to 

HDL requires its physical interaction with apo M [17, 18]. Sphingosylphosphorylcholine and 

lysosulfatide are additional, biologically active lysosphingolipids carried by HDL [15]. The 
principal lipids associated with HDL particles are summarized in Table 1.

The HDL proteome: The HDL proteome has been characterized by several groups over the 
past 10 years. Using mass spectroscopy, the presence of at least 85 proteins on HDL have been 
reported [19]. These fall into different regulatory categories: lipid metabolism, acute phase 
response (APR), hemostasis, immune response, metal binding, vitamin transport, proteinase 

inhibitor and complement regulation [19, 20]. A representative list of HDL‐associated pro‐

teins is shown in Table 1. Among these, the lipid metabolism group is the largest and con‐

tains apoA‐I as well as other apolipoproteins (Table 1). As mentioned above, HDL exists as 

multiple sub‐species. The proteins, lecithin‐cholesterol acyltransferase (LCAT), phospholipid 
transfer protein (PLTP) and cholesteryl ester transfer protein (CETP), play a major role in 
converting HDL from one sub‐species to another. APR proteins such as apo A‐IV, SAA1 and 

SAA2 regulate lipid metabolism and are also present along with Apo J, a protein involved in 

Proteins Lipids

Apolipoproteins (AI‐II, A‐V, C‐I‐IV, D, E, F, M, H, O) Phospholipids:

CETP PC, PE, PI, PG, PS, PA

PAF‐AH

PLTP Sphingolipids:

LCAT SM

PON1, PON3 Ceramides

SAA1, SAA2, SAA4 S1P

Albumin Sphingosylphosphorylcholine

Transthyretin Lysosulfatide

Hemoglobin

Hemopexin

Transferrin

Ceruloplasmin

Vitamin D binding protein

Complement

Table 1. Normal protein and lipid components of HDL.
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lipid metabolism and complement regulation. Surprisingly, a variety of other proteins with 

diverse functions such as hemoglobin, hemopexin and transferrin (iron metabolism), ceru‐

loplasmin (metal binding), and vitamin D binding protein (vitamin binding) are also seen. 

These are described in detail in the review by Shah et al. [19]. Thus, the protein and lipid cargo 
on HDL significantly influence particle function.

3. Functions of HDL

Reverse cholesterol transport: Under hypercholesterolemic conditions, the accumulation of 
cholesterol in macrophages leads to the formation of “foam cells” which contribute to ath‐

eroma formation. HDL is commonly referred to as the “good cholesterol”. The salutary effect 
of HDL has been attributed to its ability to transfer cholesterol from extra‐hepatic tissues to 
the liver for metabolism and excretion into the bile, a process called reverse cholesterol trans‐

port [21]. This is believed to be a critical antiatherogenic function of HDL. Cholesterol from 
macrophages is transferred to lipid‐poor apoA‐I [22] via ABCA1. The cholesterol is converted 
to cholesterol esters by the action of LCAT present on HDL. Sequestration of cholesterol esters 
in the hydrophobic core of the particle is associated with the formation of spherical HDL2 and 

HDL3. These mature HDL particles also incorporate cholesterol via an alternate transporter, 

the ATP‐binding cassette transporter G1 (ABCG1) as well as the scavenger‐receptor class B, 
type 1 (SR‐BI) pathway [23]. Cholesterol‐enriched HDL is subsequently removed from the 

circulation by hepatocytes and is excreted by the biliary pathway into bile and feces. In addi‐

tion to mediating reverse cholesterol transport, HDL also possesses antioxidant, anti‐inflam‐

matory and antithrombotic properties. These pleiotropic effects of HDL play a major role in 
limiting inflammatory injury associated with leukocyte infiltration in the blood vessel wall.

Antioxidant properties of HDL: Chylomicrons, VLDL and LDL are apoB‐containing lipo‐

proteins which deliver cholesterol and TG to cells and are strongly implicated in atheroma 
formation. The response‐to‐retention hypothesis postulates that [24] LDL is oxidized in the 

arterial wall by enzymes including myeloperoxidase (MPO), NADPH oxidase, nitric oxide 

synthase and lipoxygenase, resulting in the accumulation of lipid hydroperoxides (LOOH) 

[25]. Oxidized LDL (ox‐LDL) is taken up by macrophages leading to the formation of foam 

cells and fatty plaques. Protein and lipid components of HDL inhibit the accumulation of 
LOOH in LDL and prevent the formation of ox‐LDL. LOOH and phosphatidyl choline hydro‐

peroxides (PLOOH) are transferred from LDL to HDL. This process is regulated by the lipid 
composition and rigidity of the HDL surface. Specifically, HDL surface rigidity is determined 
by the ratios of SM:PC, FC:PL and saturated to polyunsaturated fatty acids (SFA:PUFA) [26]. 

Zerrad‐Saadi and colleagues have identified the HDL3 particle as a key mediator of LOOH 
transfer due its optimal surface rigidity and particle content [27].

ApoA‐I is likely the major HDL protein species involved in the removal of LOOH moieties 

from LDL. The methionine (Met) residues 112 and 148 of apoA‐I can reduce LOOHs to inac‐

tive lipid hydroxides (LOH) [28]. In addition, apoA‐I removes seeding LOOH molecules from 

LDL [29]. In addition to apoA‐I, other apolipoprotein and enzyme components of HDL, such 

as, apo E, apo J, apo A‐II, apo L‐1, apo F, apo A‐IV, PON1/3, PLTP and PAF‐AH, play a role in 
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its antioxidant function. Proteomic analyses from the Davidson laboratory [30] demonstrate 

that HDL3c contains all these proteins along with apo M, apo D, apo A‐II, SAA1,2 and 4 and 

apo C‐I and apo C‐II. This corroborates earlier studies showing that HDL3c has more potent 
antioxidant activity than other HDL subspecies [31, 32]. Thus, both lipid and protein compo‐

nents of HDL3c contribute to its antioxidant activity. Kontush et al. [32] have hypothesized 

that the protein components of HDL3c form a pocket which enables the transfer of LOOH 

from LDL which is further reduced by the concerted action of apolipoproteins and enzymes 

in this pocket [26].

Anti‐inflammatory properties of HDL: The role of inflammation in atherogenesis has been 
clearly established [33–35]. Acute and chronic inflammations are associated with monocyte 
adhesion/infiltration and endothelial cell activation [33–35]. HDL is known to suppress the 

lipopolysaccharide (LPS)‐induced secretion of interleukin‐6 (IL‐6), tumor necrosis factor‐α 
(TNF‐α), interferon‐γ (IFN‐γ) and other pro‐inflammatory mediators [36–38]. HDL also 

reduces inflammation by neutralizing endotoxin, further supporting its anti‐inflammatory 
role [39]. Thus, HDL exerts its anti‐inflammatory effect in multiple ways.

Regulation of endotoxicity: In the context of infection, Gram‐negative bacteria release LPS in the 
circulation which binds CD14 located in membrane rafts on cell surfaces. CD14 engagement 

facilitates the activation of toll‐like receptor 4 (TLR4) binding, resulting in the release of pro‐
inflammatory cytokines such as IL‐6 and TNF‐α. HDL is able to inhibit this initial activation 
step via binding to lipid A, a glycolipid component of LPS, thus preventing TLR4 activation. 
Gram‐positive bacteria release lipoteichoic acid (LTA) which, similar to LPS, binds CD14 and 
activates pro‐inflammatory signaling via the TLR2/6 pathway [40, 41]. HDL additionally con‐

tributes to the inactivation of LPS and LTA by disrupting membrane rafts. In this manner, 
HDL mediates cholesterol and phospholipid efflux which destabilizes rafts and prevents the 
assembly of receptor complexes for LPS and LTA [14, 40].

Regulation of macrophage function: Macrophages are a versatile group of cells that play a criti‐

cal role in regulating immunity, inflammation and lipid metabolism. Macrophage phenotype 
and function are regulated, in large part, by their environmental milieu [42–45]. On the basis 

of cell morphology and function, two populations of activated macrophages have been identi‐

fied [46]. The classically activated M1 macrophage is induced by LPS and Th1 cytokines such 
as IFN‐γ, interleukin‐2 (IL‐2) and TNF‐α [43, 44]. These cells are pro‐inflammatory and secrete 
inflammatory mediators (TNF‐α, IL‐1, IL‐6, IL‐15, IL‐18, IL‐23, IFN‐γ), stimulate inducible 
nitric oxide synthase (iNOS) and promote the formation of reactive oxygen and nitrogen spe‐

cies [47]. The second macrophage phenotype, the alternatively activated M2 macrophage, is 
induced by IL‐4, IL‐10, IL‐13 and glucocorticoid hormones [42–45]. M2 macrophages play 

an important role in the resolution of inflammation by inhibiting inflammatory cytokine 
expression and promoting wound healing [42–45]. HDL and apo A‐I have been shown to 

promote the formation of anti‐inflammatory M2 macrophages in human monocyte‐derived 
macrophages [48] and mice [49]. As mentioned in the previous section, HDL3 is a key media‐

tor of reverse cholesterol transport and possesses potent antioxidant properties. Reports 

from several laboratories suggest that HDL‐associated S1P inhibits inflammation via activa‐

tion of the PI3‐kinase/Akt signaling pathway [50–52]. Pretreatment of bone marrow‐derived 
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 macrophages (BMDMs) with S1P suppressed LPS‐induced secretion of TNF‐α, monocyte 
chemoattractant protein (MCP) and IL‐12 [53]. Additionally, Hughes and colleagues reported 

that S1P enhanced the activity of Arg1 and suppressed the NF‐kB‐mediated induction of 
iNOS [53]. These responses to S1P are associated with M2 macrophage polarization.

Regulation of mitochondrial function: The mitochondrion is a double‐membraned, energy‐pro‐

ducing organelle, which contains its own maternally inherited mitochondrial DNA [54–56]. 

Under normal conditions, the mitochondrial respiratory chain shuttles electrons through the 
respiratory complexes, consumes oxygen at Complex IV and pumps hydrogen ions from 

inside the mitochondria to the intermembrane space at Complexes I, III and IV. This allows 
ATP production to proceed at the level of Complex V (ATP synthase). Under normal condi‐
tions, oxidative phosphorylation is a tightly regulated process with heat and reactive oxygen 

species (ROS) being produced as byproducts.

In the presence of ox‐LDL and other oxidized lipids, the mitochondrion increases the for‐

mation of ROS, which can damage the mitochondria and other organelles causing cellular 

dysfunction and death. HDL, by virtue of its antioxidant properties, can decrease the cellu‐

lar damage caused by oxidized lipids. The HDL protein PON1 hydrolyzes cholesterol esters 
and phospholipids in oxidized lipoproteins [52, 57, 58] thus inhibiting mitochondrial damage 

in the presence of oxidized lipids [58]. Further, HDL‐associated apoA‐I has been implicated 

in electron transport chain maintenance and repair [59]. In apoA‐I null mice (apoA‐I‐/‐), an 

increase in coronary ischemia‐reperfusion injury is observed compared to wild‐type mice 

[59] and is associated with a decrease in the content of the mitochondrial protein Coenzyme 

Q (CoQ) in cardiomyocytes. CoQ normally supports oxidative phosphorylation by shuttling 
electrons from Complex II to Complex III. Exogenous administration of CoQ to apo‐A‐I‐/‐ mice 

attenuated myocardial infarct size compared to the injury response in untreated mice. These 
data indicate the importance of HDL, and specifically, apoA‐I in preserving mitochondrial 
structure and function.

Potential mechanisms by which HDL preserves mitochondrial function include activation of 

the Reperfusion Injury Salvage Kinase (RISK) pathway and the Survivor Activating Factor 

Enhancement (SAFE) cascade. These are cell survival pathways which are known to prevent 
mitochondrial damage in models of ischemic pre‐ and postconditioning [60]. Activation of 

STAT3 is an important component of the SAFE pathway and results in the downregulation 
of pro‐apoptotic factors Bax and Bad and upregulation of antiapoptotic factor Bcl‐2 and the 
antioxidants manganese superoxide dismutase and metallothionein [60, 61]. Further, STAT3 
is transported to the mitochondrion by the GRIM‐19 chaperone where it inhibits the release of 
cytochrome c and reduces cell death [62–64]. In a rodent model of coronary artery occlusion, 

the administration of apoA‐I was shown to decrease infarct size and inhibit mitochondrial 

morphological changes seen in the heart [60]. Further analyses showed that apoA‐I increased 

the phosphorylation of Akt and glycogen synthase kinase 3 beta (GSK3β), known mediators 
of the RISK and SAFE survival pathways.

The S1P component of HDL is also able to activate the RISK And SAFE pathways [51, 52, 

65]. Interestingly, studies conducted in neonatal rat cardiomyocytes showed that S1P is criti‐

cally required for the phosphorylation of STAT3. In contrast, STAT3 phosphorylation was 
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absent in cells treated with HDL that was deficient in S1P [65]. In addition, S1P stimulates 

the phosphorylation of the transcription factor, forkhead box O‐1 (FOXO‐1), which inhibits 

ROS formation and apoptosis in the phosphorylated form [66, 67]. These data suggest that 
HDL activates RISK and SAFE pathways and inhibits ROS, mitochondrial dysfunction and 
cell death.

Interestingly, S1P has also been shown to regulate mitochondrial Complex IV assembly and 

cellular respiration by interacting with mitochondrial prohibitin‐2 (PBH‐2) [68]. PBH‐2 acts 
as a scaffolding protein for mitochondria and its interaction with S1P during ischemic pre‐
conditioning of cardiomyocytes is essential for cardioprotection [68–70]. These data suggest 
that S1P can stabilize mitochondrial complexes and inhibit ROS formation, suggesting an 

alternate cardioprotective mechanism of S1P action.

Recent studies have suggested that other HDL‐associated apolipoproteins play a role in pre‐

serving mitochondrial structure and function. ApoJ is expressed ubiquitously and is present 

on small dense HDL3 particles [71–73]. It is considered to be an antioxidant due to the pres‐

ence of disulfide bonds that inhibit ROS‐induced injury and preserve mitochondrial function 
[74]. Further, apoJ has been implicated in activating Akt and GSK3β and the RISK survival 
pathway [71]. ApoM is found in association with approximately 5% of HDL particles where 

it confers several cytoprotective properties that include stimulating preβ‐HDL formation, 
facilitating reverse cholesterol transport and inhibiting LDL oxidation [75–78]. ApoM also 

plays an important role in the cytoprotective response to S1P by binding the sphingolipid and 

facilitating its incorporation into HDL particles [75, 79, 80]. It follows that overexpression of 

apoM in mice reduces infarct size in response to ischemia‐reperfusion injury and preserves 

mitochondrial function by increasing the HDL content of S1P.

4. Inflammation‐induced alterations in HDL structure

Changes in HDL sub‐species and their function have been reported in several disease states, 

including atherosclerosis [4], rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) 
[81, 82], diabetes [83], hypertension [84] and psoriasis [85–87]. Inflammation/infection triggers 
an APR that causes a reduction in HDL quantity and alterations in both its lipid and protein 

composition. Van Lenten and colleagues [88] first reported that HDL loses its ability to inhibit 
LDL oxidation during the APR, demonstrating that inflammation affects the structure and 
function of HDL.

Lipidome alterations: The phospholipid content of HDL is altered during the APR [89]. This 
may be due to an increase in the activity of secretory phospholipase 2 (sPLA

2
) [90, 91]. Acute 

phase HDL also contains lower amounts of PE and PI along with several species of LPC with 
different levels of saturation. An important feature of acute phase HDL is that it contains 
oxidized phospholipids generated by the actions of transition metal ions, free radicals and 

hypochlorous acid (HOCl) [92, 93]. Formation of acute phase HDL in patients with coronary 

heart disease is also associated with a reduction in SM content [94]. An increase in triglycer‐

ides with a decrease in cholesteryl esters is also commonly observed in acute phase HDL [89].
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Proteome alterations: Several changes in HDL‐associated proteins arise in response to inflam‐

mation (Table 2). While a reduction in apo A‐I represents perhaps the most prominent change 

in HDL composition, data suggest that the lipoprotein content of SAA may increase up to 1000‐

fold [85]. Endotoxin and inflammatory cytokines (TNF‐α, IL‐1β and IL‐6) decrease the expres‐

sion of apoA‐I which leads to a decrease in circulating HDL concentration [95, 96]. In addition, 

an increase in the synthesis of SAA results in the displacement of apoA‐I from acute phase HDL 

[85]. Inflammation further decreases HDL levels by inducing the upregulation of sPLA
2
 which 

degrades phospholipid components of the lipoprotein particle [89]. Loss of LCAT activity [97, 

98] reduces the cholesterol carrying capacity of HDL by preventing the formation of cholesterol 

esters. Finally, PON1 activity is reduced by inflammation in patients with RA, SLE and psoriasis 
and infections and is associated with a reduction in the antioxidant capacity of HDL [99–102].

The presence of apoM in HDL particles is thought to contribute to atheroprotection [103]. LPS 

and inflammatory cytokines, however, attenuate apoM mRNA levels and protein expression 
in Hep3B cells [104]. A decrease in serum apoM is also observed in patients with sepsis and 

HIV infections [104]. Further, a reduction in apoM reduces the association of S1P with HDL 

resulting in degradation of anti‐inflammatory function [103].

The association of other apolipoproteins with HDL may impair the function of the lipopro‐

tein. ApoO is incorporated by HDL, LDL and VLDL particles [105]. Data suggest that apoO 

provides structural stability for mitochondria by stabilizing the inner mitochondrial mem‐

brane and cristae [105]. Other data, however, show that overexpression of apoO degrades 

mitochondrial protein and increases cardiac dysfunction in hypercholesterolemic mice [106]. 

In cardiomyocyte cultures, upregulation of apoO was associated with an increase in ROS and 

apoptosis compared to control cells that were apoO‐deficient [106]. ApoC is an additional, 

exchangeable apolipoprotein associated with HDL and apoB‐containing lipoproteins. In iso‐

Proteinsa Lipidsb

Increased Decreased Increased Decreased

Serum Amyloid A (SAA) Apo A‐I Triglycerides Total lipid

Apo J Apo A‐II FC Phospholipids

sPLA
2

Apo C LPC CE

Apo E Apo M FFA SM

Ceruloplasmin LCAT

PAF‐AH CETP

LBP Transferrin

Apo A‐IV Hepatic lipase

Apo A‐V Paraoxanase I

a Adapted from Refs. [87, 96, 97, 104].
b Adapted from Refs. [15, 89, 94].

Table 2. Inflammation‐induced changes in HDL composition.
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lated rat liver mitochondria, addition of the apoC‐III isoform was shown to inhibit mitochon‐

drial oxygen consumption and attenuate ATP formation [107]. Another study showed that 

enrichment of HDL with apoC‐I stimulates cytochrome c release, caspase 3 cleavage and cell 

death in human aortic smooth muscle cells [108]. Finally, apoC‐I enrichment of HDL is associ‐

ated with a reduction in HDL‐associated apoA‐I, suggesting that loss of apoA‐I and its cyto‐

protective effects is a component of apoC‐I‐mediated cell injury [107, 108]. Clearly, additional 

in vitro and in vivo studies are required to define the mechanistic role of specific apolipopro‐

tein species in the development of inflammatory injury.

5. Functional consequences of acute phase HDL formation

Changes in HDL lipid and protein composition induced by the APR impair normal HDL 

function resulting in the formation of “dysfunctional” HDL.

Loss of cholesterol efflux ability: Since cholesterol efflux involves the participation of apoA‐I, 
phospholipids, LCAT and CETP, several aspects of dysfunctional HDL inhibit normal reverse 
cholesterol transport. The reduction in apoA‐I and increase in HDL‐associated SAA impair 
cholesterol efflux capacity [109, 110]. The presence of SAA on HDL increases foam cell forma‐

tion by facilitating the uptake of cholesterol esters by macrophages. At the level of the hepa‐

tocyte, this acute phase HDL impairs cholesterol uptake and degradation [111]. Decreased 

content of LCAT, PL and CETP on HDL also contribute to a loss of efflux activity as does the 
oxidative modification of apoA‐I [112, 113].

Impairment of antioxidative activity: An increase in TG and decrease in cholesterol ester 
content in dysfunctional HDL leads to a change in conformation of the HDL particle. The 
formation of a TG‐rich HDL particle induces structural changes in apoA‐I and decreases its 
stability [114]. Additionally, an increase in SAA and loss of PON1 result in a reduced antioxi‐

dant capacity of the HDL particle.

Attenuation of anti‐inflammatory activity: Dysfunctional HDL has an impaired capacity to 

counteract the action of LPS and inflammatory cytokines. The ability to regulate membrane 
raft cholesterol content is reduced and can thus enhance TLR activation in response to pro‐
inflammatory mediators [115]. Oxidation of apoA‐I also results in a loss of functionality with 

respect to its ability to efflux cholesterol. The protein and lipid alterations observed (reduced 
apoA‐I, cholesterol ester, PON1 and LCAT levels and increased TG and SAA levels) are also 
responsible for the attenuated anti‐inflammatory activity observed with dysfunctional HDL.

6. Conclusions

HDL plays an important role in regulating atherogenesis via its ability to mediate reverse 

cholesterol transport. The ability of HDL to reduce inflammatory injury and oxidant stress 
has also been shown to reduce CVD risk. As discussed in this review, both protein and 

lipid components of the lipoprotein particle play critical roles in attenuating inflammation. 
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Identification of these cytoprotective HDL components has been facilitated by recent pro‐

teomic analyses. Under pathological conditions, HDL levels may be reduced and the lipo‐

protein may undergo biochemical and structural modification resulting in the formation of 
dysfunctional HDL with pro‐inflammatory properties. It has been suggested that the anti‐
inflammatory status of HDL may be of greater predictive value for CVD risk than HDL levels 
per se [116, 117]. Therapeutic approaches that increase the functional properties of HDL may 
thus be superior to simply raising circulating HDL. Unfortunately, specific and reliable bio‐

markers for anti‐inflammatory HDL have not been identified. Under ex vivo conditions, the 
quality of HDL can be assessed by studying lipoprotein effects of processes such as mono‐

cyte chemotaxis and endothelial inflammation. These assays, however, are cumbersome and 
time‐consuming. Despite these drawbacks, there is significant interest in developing new 
pharmacotherapies that positively impact circulating lipoproteins. Randomized clinical tri‐

als have assessed effects of several classes of drugs on plasma cholesterol levels in patients at 
risk. Niacin and statins significantly lower LDL and were shown to induce modest increases 
in HDL [8]. Residual risk, however, may be present in patients with persistently low HDL 

despite a reduction in LDL. CETP inhibitors have been shown to increase HDL levels in ani‐
mal models and in human subjects with low HDL [118, 119]. The ILLUMINATE trial tested 
effects of the CETP inhibitor torcetrapib on HDL and outcomes in high risk patients but was 
terminated early due to an increase in mortality due to off‐target effects [7]. In ongoing stud‐

ies, the antiatherogenic and anti‐inflammatory effects of reconstituted HDL therapy as well as 
apolipoprotein mimetics are being evaluated. Recent exciting data also show that HDL serves 

as a carrier for functional miRNAs that suppress inflammation at the level of the endothelial 
cell [120]. miRNAs have also been identified that regulate HDL biogenesis [121]. These recent 
observations may lay the foundation for a new field of miRNA‐based HDL therapeutics.

Author details

Roger White1, Samantha Giordano1 and Geeta Datta2*

*Address all correspondence to: gdatta@uabmc.edu

1 Department of Medicine, University of Alabama at Birmingham, USA

2 Division of Cardiovascular Disease, Department of Medicine, University of Alabama at 
Birmingham, Birmingham, AL, USA

References

[1] Gotto AM, Jr. Jeremiah Metzger Lecture: cholesterol, inflammation and atheroscle‐

rotic cardiovascular disease: is it all LDL? Transactions of the American Clinical and 
Climatological Association. 2011;122:256–89.

[2] Lewis B. Classification of lipoproteins and lipoprotein disorders. Journal of Clinical 
Pathology Supplement. 1973;5:26–31.

Advances in Lipoprotein Research62



[3] Gordon DJ, Rifkind BM. High‐density lipoprotein—the clinical implications of recent 
studies. The New England Journal of Medicine. 1989;321:1311–6.

[4] Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipopro‐

tein as a protective factor against coronary heart disease. The Framingham Study. The 
American Journal of Medicine. 1977;62:707–14.

[5] Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM, Jr., Kastelein JJ, et al. 
Rosuvastatin to prevent vascular events in men and women with elevated C‐reactive 

protein. The New England Journal of Medicine. 2008;359:2195–207.

[6] Yusuf S, Bosch J, Dagenais G, Zhu J, Xavier D, Liu L, et al. Cholesterol lowering in 
intermediate‐risk persons without cardiovascular disease. The New England Journal of 
Medicine. 2016;374:2021–31.

[7] Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects 
of torcetrapib in patients at high risk for coronary events. The New England Journal of 
Medicine. 2007;357:2109–22.

[8] Investigators A‐H. HDL cholesterol levels receiving intensive ststin therapy. New 

England Journal of Medicine. 2011;365:2255–67.

[9] Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dal‐
cetrapib in patients with a recent acute coronary syndrome. The New England Journal 
of Medicine. 2012;367:2089–99.

[10] Plump AS, Scott CJ, Breslow JL. Human apolipoprotein A‐I gene expression increases 
high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E‐defi‐

cient mouse. Proceedings of the National Academy of Sciences of the United States of 
America. 1994;91:9607–11.

[11] Joy T, Hegele RA. Is raising HDL a futile strategy for atheroprotection? Nature Reviews 
Drug discovery. 2008;7:143–55.

[12] Asztalos BF, de la Llera‐Moya M, Dallal GE, Horvath KV, Schaefer EJ, Rothblat GH. 
Differential effects of HDL subpopulations on cellular ABCA1‐ and SR‐BI‐mediated cho‐

lesterol efflux. Journal of Lipid Research. 2005;46:2246–53.

[13] Duong PT, Weibel GL, Lund‐Katz S, Rothblat GH, Phillips MC. Characterization and 
properties of pre beta‐HDL particles formed by ABCA1‐mediated cellular lipid efflux to 
apoA‐I. Journal of Lipid Research. 2008;49:1006–14.

[14] Zhu X, Parks JS. New roles of HDL in inflammation and hematopoiesis. Annual Review 
of Nutrition. 2012;32:161–82.

[15] Kontush A, Lhomme M, Chapman MJ. Unraveling the complexities of the HDL lipi‐
dome. Journal of Lipid Research. 2013;54:2950–63.

[16] Nixon GF. Sphingolipids in inflammation: pathological implications and potential ther‐

apeutic targets. British Journal of Pharmacology. 2009;158:982–93.

Role of HDL-Associated Proteins and Lipids in the Regulation of Inflammation
http://dx.doi.org/10.5772/67141

63



[17] Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature. 
2014;510:58–67.

[18] Hla T, Dannenberg AJ. Sphingolipid signaling in metabolic disorders. Cell Metabolism. 
2012;16:420–34.

[19] Shah AS, Tan L, Long JL, Davidson WS. Proteomic diversity of high density lipoproteins: 
our emerging understanding of its importance in lipid transport and beyond. Journal of 

Lipid Research. 2013;54:2575–85.

[20] Vaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, Cheung MC, et al. Shotgun 
proteomics implicates protease inhibition and complement activation in the antiinflam‐

matory properties of HDL. The Journal of Clinical Investigation. 2007;117:746–56.

[21] Fazio S, Linton MF. Sorting out the complexities of reverse cholesterol transport: CETP 
polymorphisms, HDL, and coronary disease. The Journal of Clinical Endocrinology and 
Metabolism. 2006;91:3273–5.

[22] Du XM, Kim MJ, Hou L, Le Goff W, Chapman MJ, Van Eck M, et al. HDL particle size 
is a critical determinant of ABCA1‐mediated macrophage cellular cholesterol export. 
Circulation Research. 2015;116:1133–42.

[23] Rosenson RS, Brewer HB, Jr., Davidson WS, Fayad ZA, Fuster V, Goldstein J, et al. 
Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol 
transport. Circulation. 2012;125:1905–19.

[24] Williams KJ, Tabas I. The response‐to‐retention hypothesis of early atherogenesis. 
Arteriosclerosis, Thrombosis, and Vascular Biology. 1995;15:551–61.

[25] Gaut JP, Heinecke JW. Mechanisms for oxidizing low‐density lipoprotein. Insights from 
patterns of oxidation products in the artery wall and from mouse models of atheroscle‐

rosis. Trends in Cardiovascular Medicine. 2001;11:103–12.

[26] Kontush A, Chapman MJ. Antiatherogenic function of HDL particle subpopulations: 

focus on antioxidative activities. Current Opinion in Lipidology. 2010;21:312–8.

[27] Zerrad‐Saadi A, Therond P, Chantepie S, Couturier M, Rye KA, Chapman MJ, et al. 
HDL3‐mediated inactivation of LDL‐associated phospholipid hydroperoxides is deter‐

mined by the redox status of apolipoprotein A‐I and HDL particle surface lipid rigid‐

ity: relevance to inflammation and atherogenesis. Arteriosclerosis, Thrombosis, and 
Vascular Biology. 2009;29:2169–75.

[28] Garner B, Waldeck AR, Witting PK, Rye KA, Stocker R. Oxidation of high density lipopro‐

teins. II. Evidence for direct reduction of lipid hydroperoxides by methionine residues 
of apolipoproteins AI and AII. The Journal of Biological Chemistry. 1998;273:6088–95.

[29] Navab M, Hama SY, Cooke CJ, Anantharamaiah GM, Chaddha M, Jin L, et al. Normal 
high density lipoprotein inhibits three steps in the formation of mildly oxidized low 

density lipoprotein: step 1. Journal of Lipid Research. 2000;41:1481–94.

Advances in Lipoprotein Research64



[30] Davidson WS, Silva RA, Chantepie S, Lagor WR, Chapman MJ, Kontush A. Proteomic 

analysis of defined HDL subpopulations reveals particle‐specific protein clusters: rel‐
evance to antioxidative function. Arteriosclerosis, Thrombosis, and Vascular Biology. 
2009;29:870–6.

[31] Kontush A, Chantepie S, Chapman MJ. Small, dense HDL particles exert potent pro‐

tection of atherogenic LDL against oxidative stress. Arteriosclerosis, Thrombosis, and 
Vascular Biology. 2003;23:1881–8.

[32] Kontush A, de Faria EC, Chantepie S, Chapman MJ. Antioxidative activity of HDL 
particle subspecies is impaired in hyperalphalipoproteinemia: relevance of enzymatic 

and physicochemical properties. Arteriosclerosis, Thrombosis, and Vascular Biology. 
2004;24:526–33.

[33] Frostegard J. Immunity, atherosclerosis and cardiovascular disease. BMC Medicine. 
2013;11:117.

[34] Tabas I, Garcia‐Cardena G, Owens GK. Recent insights into the cellular biology of ath‐

erosclerosis. The Journal of Cell Biology. 2015;209:13–22.

[35] Manduteanu I, Simionescu M. Inflammation in atherosclerosis: a cause or a result of 
vascular disorders? Journal of Cellular and Molecular Medicine. 2012;16:1978–90.

[36] Catapano AL, Pirillo A, Bonacina F, Norata GD. HDL in innate and adaptive immunity. 
Cardiovascular Research. 2014;103:372–83.

[37] Guo L, Ai J, Zheng Z, Howatt DA, Daugherty A, Huang B, et al. High density lipo‐

protein protects against polymicrobe‐induced sepsis in mice. The Journal of Biological 
Chemistry. 2013;288:17947–53.

[38] Levine DM, Parker TS, Donnelly TM, Walsh A, Rubin AL. In vivo protection against 
endotoxin by plasma high density lipoprotein. Proceedings of the National Academy of 

Sciences of the United States of America. 1993;90:12040–4.

[39] Morin EE, Guo L, Schwendeman A, Li XA. HDL in sepsis—risk factor and therapeutic 
approach. Frontiers in Pharmacology. 2015;6:244.

[40] White CR, Smythies LE, Crossman DK, Palgunachari MN, Anantharamaiah GM, Datta 
G. Regulation of pattern recognition receptors by the apolipoprotein A‐I mimetic pep‐

tide 4F. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012;32:2631–9.

[41] Triantafilou M, Manukyan M, Mackie A, Morath S, Hartung T, Heine H, et al. Lipoteichoic 
acid and toll‐like receptor 2 internalization and targeting to the Golgi are lipid raft‐
dependent. The Journal of Biological Chemistry. 2004;279:40882–9.

[42] Labonte AC, Tosello‐Trampont AC, Hahn YS. The role of macrophage polarization in 
infectious and inflammatory diseases. Molecules and Cells. 2014;37:275–85.

[43] Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling 
diversity with identity. Nature Reviews Immunology. 2011;11:750–61.

Role of HDL-Associated Proteins and Lipids in the Regulation of Inflammation
http://dx.doi.org/10.5772/67141

65



[44] Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. 

Frontiers in Bioscience: a Journal and Virtual Library. 2008;13:453–61.

[45] Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nature 
Reviews Immunology. 2008;8:958–69.

[46] Mosser DM. The many faces of macrophage activation. Journal of Leukocyte Biology. 
2003;73:209–12.

[47] Porta C, Rimoldi M, Raes G, Brys L, Ghezzi P, Di Liberto D, et al. Tolerance and M2 
(alternative) macrophage polarization are related processes orchestrated by p50 nuclear 

factor kappaB. Proceedings of the National Academy of Sciences of the United States of 
America. 2009;106:14978–83.

[48] Smythies LE, White CR, Maheshwari A, Palgunachari MN, Anantharamaiah GM, 
Chaddha M, et al. Apolipoprotein A‐I mimetic 4F alters the function of human 

monocyte‐derived macrophages. American Journal of Physiology Cell Physiology. 

2010;298:C1538–48.

[49] Feig JE, Rong JX, Shamir R, Sanson M, Vengrenyuk Y, Liu J, et al. HDL promotes rapid 
atherosclerosis regression in mice and alters inflammatory properties of plaque mono‐

cyte‐derived cells. Proceedings of the National Academy of Sciences of the United States 
of America. 2011;108:7166–71.

[50] Argraves KM, Gazzolo PJ, Groh EM, Wilkerson BA, Matsuura BS, Twal WO, et al. High 
density lipoprotein‐associated sphingosine 1‐phosphate promotes endothelial barrier 

function. The Journal of Biological Chemistry. 2008;283:25074–81.

[51] Keul P, Sattler K, Levkau B. HDL and its sphingosine‐1‐phosphate content in cardiopro‐

tection. Heart Failure Reviews. 2007;12:301–6.

[52] Theilmeier G, Schmidt C, Herrmann J, Keul P, Schafers M, Herrgott I, et al. High‐density 
lipoproteins and their constituent, sphingosine‐1‐phosphate, directly protect the heart 

against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. 
Circulation. 2006;114:1403–9.

[53] Hughes JE, Srinivasan S, Lynch KR, Proia RL, Ferdek P, Hedrick CC. Sphingosine‐1‐
phosphate induces an antiinflammatory phenotype in macrophages. Circulation 
Research. 2008;102:950–8.

[54] Amo T, Yadava N, Oh R, Nicholls DG, Brand MD. Experimental assessment of bioener‐

getic differences caused by the common European mitochondrial DNA haplogroups H 
and T. Gene. 2008;411:69–76.

[55] Fetterman JL, Zelickson BR, Johnson LW, Moellering DR, Westbrook DG, Pompilius M, 
et al. Mitochondrial genetic background modulates bioenergetics and susceptibility to 

acute cardiac volume overload. The Biochemical Journal. 2013;455:157–67.

[56] Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross‐talk 
and redox signalling. The Biochemical Journal. 2012;441:523–40.

Advances in Lipoprotein Research66



[57] Garcia‐Heredia A, Marsillach J, Rull A, Triguero I, Fort I, Mackness B, et al. Paraoxonase‐1 
inhibits oxidized low‐density lipoprotein‐induced metabolic alterations and apopto‐

sis in endothelial cells: a nondirected metabolomic study. Mediators of Inflammation. 
2013;2013:156053.

[58] Sangle GV, Chowdhury SK, Xie X, Stelmack GL, Halayko AJ, Shen GX. Impairment of 
mitochondrial respiratory chain activity in aortic endothelial cells induced by glycated 

low‐density lipoprotein. Free Radical Biology & Medicine. 2010;48:781–90.

[59] Dadabayev AR, Yin G, Latchoumycandane C, McIntyre TM, Lesnefsky EJ, Penn MS. 
Apolipoprotein A1 regulates coenzyme Q10 absorption, mitochondrial function, 

and infarct size in a mouse model of myocardial infarction. The Journal of Nutrition. 
2014;144:1030–6.

[60] Kalakech H, Hibert P, Prunier‐Mirebeau D, Tamareille S, Letournel F, Macchi L, et al. 
RISK and SAFE signaling pathway involvement in apolipoprotein A‐I‐induced cardio‐

protection. PLoS One. 2014;9:e107950.

[61] Lecour S. Multiple protective pathways against reperfusion injury: a SAFE path without 
Aktion? Journal of Molecular and Cellular Cardiology. 2009;46:607–9.

[62] Szczepanek K, Chen Q, Derecka M, Salloum FN, Zhang Q, Szelag M, et al. Mitochondrial‐

targeted signal transducer and activator of transcription 3 (STAT3) protects against isch‐

emia‐induced changes in the electron transport chain and the generation of reactive 

oxygen species. The Journal of Biological Chemistry. 2011;286:29610–20.

[63] Tammineni P, Anugula C, Mohammed F, Anjaneyulu M, Larner AC, Sepuri NB. The import 
of the transcription factor STAT3 into mitochondria depends on GRIM‐19, a component 
of the electron transport chain. The Journal of Biological Chemistry. 2013;288:4723–32.

[64] Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, et al. Function of mitochon‐

drial Stat3 in cellular respiration. Science. 2009;323:793–7.

[65] Frias MA, Lecour S, James RW, Pedretti S. High density lipoprotein/sphingosine‐1‐phos‐

phate‐induced cardioprotection: role of STAT3 as part of the SAFE pathway. Jak‐Stat. 
2012;1:92–100.

[66] Somers SJ, Frias M, Lacerda L, Opie LH, Lecour S. Interplay between SAFE and RISK path‐

ways in sphingosine‐1‐phosphate‐induced cardioprotection. Cardiovascular Drugs and 

Therapy/sponsored by the International Society of Cardiovascular Pharmacotherapy. 
2012;26:227–37.

[67] Zhang J, Honbo N, Goetzl EJ, Chatterjee K, Karliner JS, Gray MO. Signals from type 1 sphingo‐

sine 1‐phosphate receptors enhance adult mouse cardiac myocyte survival during hypoxia. 

American Journal of Physiology Heart and Circulatory Physiology. 2007;293:H3150–8.

[68] Gomez L, Paillard M, Price M, Chen Q, Teixeira G, Spiegel S, et al. A novel role for mito‐

chondrial sphingosine‐1‐phosphate produced by sphingosine kinase‐2 in PTP‐mediated 
cell survival during cardioprotection. Basic Research in Cardiology. 2011;106:1341–53.

Role of HDL-Associated Proteins and Lipids in the Regulation of Inflammation
http://dx.doi.org/10.5772/67141

67



[69] Merkwirth C, Langer T. Prohibitin function within mitochondria: essential roles for 
cell proliferation and cristae morphogenesis. Biochimica et biophysica acta. 2009; 
1793:27–32.

[70] Strub GM, Paillard M, Liang J, Gomez L, Allegood JC, Hait NC, et al. Sphingosine‐1‐
phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 

2 to regulate complex IV assembly and respiration. FASEB Journal. 2011;25:600–12.

[71] de Silva HV, Stuart WD, Duvic CR, Wetterau JR, Ray MJ, Ferguson DG, et al. A 70‐kDa 
apolipoprotein designated ApoJ is a marker for subclasses of human plasma high den‐

sity lipoproteins. The Journal of Biological Chemistry. 1990;265:13240–7.

[72] Park S, Mathis KW, Lee IK. The physiological roles of apolipoprotein J/clusterin in 
metabolic and cardiovascular diseases. Reviews in Endocrine & Metabolic Disorders. 
2014;15:45–53.

[73] Trougakos IP. The molecular chaperone apolipoprotein J/clusterin as a sensor of oxi‐
dative stress: implications in therapeutic approaches—a mini‐review. Gerontology. 
2013;59:514–23.

[74] Jun HO, Kim DH, Lee SW, Lee HS, Seo JH, Kim JH, et al. Clusterin protects H9c2 cardio‐

myocytes from oxidative stress‐induced apoptosis via Akt/GSK‐3beta signaling path‐

way. Experimental & Molecular Medicine. 2011;43:53–61.

[75] Blaho VA, Hla T. An update on the biology of sphingosine 1‐phosphate receptors. 
Journal of Lipid Research. 2014;55:1596–608.

[76] Christoffersen C, Ahnstrom J, Axler O, Christensen EI, Dahlback B, Nielsen LB. The 
signal peptide anchors apolipoprotein M in plasma lipoproteins and prevents rapid 

clearance of apolipoprotein M from plasma. The Journal of Biological Chemistry. 
2008;283:18765–72.

[77] Dahlback B, Nielsen LB. Apolipoprotein M affecting lipid metabolism or just catching 
a ride with lipoproteins in the circulation? Cellular and Molecular Life Sciences: CMLS. 

2009;66:559–64.

[78] Elsoe S, Christoffersen C, Luchoomun J, Turner S, Nielsen LB. Apolipoprotein M 
promotes mobilization of cellular cholesterol in vivo. Biochimica et Biophysica Acta. 
2013;1831:1287–92.

[79] Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnstrom J, Sevvana M, et 
al. Endothelium‐protective sphingosine‐1‐phosphate provided by HDL‐associated apo‐

lipoprotein M. Proceedings of the National Academy of Sciences of the United States of 
America. 2011;108:9613–8.

[80] Duan J, Dahlback B, Villoutreix BO. Proposed lipocalin fold for apolipoprotein M based 
on bioinformatics and site‐directed mutagenesis. FEBS Letters. 2001;499:127–32.

[81] Ormseth MJ, Stein CM. High‐density lipoprotein function in rheumatoid arthritis. 

Current Opinion in Lipidology. 2016;27:67–75.

Advances in Lipoprotein Research68



[82] Hahn BH, Grossman J, Ansell BJ, Skaggs BJ, McMahon M. Altered lipoprotein metabo‐

lism in chronic inflammatory states: proinflammatory high‐density lipoprotein and 
accelerated atherosclerosis in systemic lupus erythematosus and rheumatoid arthritis. 

Arthritis Research & Therapy. 2008;10:213.

[83] Van Linthout S, Spillmann F, Schultheiss HP, Tschope C. High‐density lipoprotein 
at the interface of type 2 diabetes mellitus and cardiovascular disorders. Current 

Pharmaceutical Design. 2010;16:1504–16.

[84] Odden MC, Tager IB, Gansevoort RT, Bakker SJ, Fried LF, Newman AB, et al. 
Hypertension and low HDL cholesterol were associated with reduced kidney function 

across the age spectrum: a collaborative study. Annals of Epidemiology. 2013;23:106–11.

[85] Feingold KR, Grunfeld C. Effect of inflammation on HDL structure and function. Current 
Opinion in Lipidology. 2016;27:521–30.

[86] Holzer M, Wolf P, Curcic S, Birner‐Gruenberger R, Weger W, Inzinger M, et al. Psoriasis 
alters HDL composition and cholesterol efflux capacity. Journal of Lipid Research. 
2012;53:1618–24.

[87] Mehta NN, Gelfand JM. High‐density lipoprotein cholesterol function improves after 
successful treatment of psoriasis: a step forward in the right direction. The Journal of 
Investigative Dermatology. 2014;134:592–5.

[88] Van Lenten BJ, Hama SY, de Beer FC, Stafforini DM, McIntyre TM, Prescott SM, et al. 
Anti‐inflammatory HDL becomes pro‐inflammatory during the acute phase response. 
Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. The 
Journal of Clinical Investigation. 1995;96:2758–67.

[89] Khovidhunkit W, Kim MS, Memon RA, Shigenaga JK, Moser AH, Feingold KR, et al. 

Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms 
and consequences to the host. Journal of Lipid Research. 2004;45:1169–96.

[90] Crowl RM, Stoller TJ, Conroy RR, Stoner CR. Induction of phospholipase A2 gene expres‐

sion in human hepatoma cells by mediators of the acute phase response. The Journal of 
Biological Chemistry. 1991;266:2647–51.

[91] Pruzanski W, Vadas P, Browning J. Secretory non‐pancreatic group II phospholipase A2: 
role in physiologic and inflammatory processes. Journal of Lipid Mediators. 1993;8:161–7.

[92] Navab M, Berliner JA, Subbanagounder G, Hama S, Lusis AJ, Castellani LW, et al. HDL 
and the inflammatory response induced by LDL‐derived oxidized phospholipids. 
Arteriosclerosis, Thrombosis, and Vascular Biology. 2001;21:481–8.

[93] Stocker R. Lipoprotein oxidation: mechanistic aspects, methodological approaches and 

clinical relevance. Current Opinion in Lipidology. 1994;5:422–33.

[94] Pruzanski W, Stefanski E, de Beer FC, de Beer MC, Ravandi A, Kuksis A. Comparative 
analysis of lipid composition of normal and acute‐phase high density lipoproteins. 

Journal of Lipid Research. 2000;41:1035–47.

Role of HDL-Associated Proteins and Lipids in the Regulation of Inflammation
http://dx.doi.org/10.5772/67141

69



[95] Ettinger WH, Varma VK, Sorci‐Thomas M, Parks JS, Sigmon RC, Smith TK, et al. 
Cytokines decrease apolipoprotein accumulation in medium from Hep G2 cells. 
Arteriosclerosis and Thrombosis: A Journal of Vascular Biology/American Heart 
Association. 1994;14:8–13.

[96] Haas MJ, Horani M, Mreyoud A, Plummer B, Wong NC, Mooradian AD. Suppression 
of apolipoprotein AI gene expression in HepG2 cells by TNF alpha and IL‐1beta. 
Biochimica et Biophysica Acta. 2003;1623:120–8.

[97] Navab M, Hama‐Levy S, Van Lenten BJ, Fonarow GC, Cardinez CJ, Castellani LW, et 
al. Mildly oxidized LDL induces an increased apolipoprotein J/paraoxonase ratio. The 
Journal of Clinical Investigation. 1997;99:2005–19.

[98] Van Lenten BJ, Wagner AC, Nayak DP, Hama S, Navab M, Fogelman AM. High‐density 
lipoprotein loses its anti‐inflammatory properties during acute influenza a infection. 
Circulation. 2001;103:2283–8.

[99] Draganov D, Teiber J, Watson C, Bisgaier C, Nemzek J, Remick D, et al. PON1 and oxi‐
dative stress in human sepsis and an animal model of sepsis. Advances in Experimental 
Medicine and Biology. 2010;660:89–97.

[100] He L, Qin S, Dang L, Song G, Yao S, Yang N, et al. Psoriasis decreases the anti‐oxidation 
and anti‐inflammation properties of high‐density lipoprotein. Biochimica et Biophysica 
Acta. 2014;1841:1709–15.

[101] Isik A, Koca SS, Ustundag B, Celik H, Yildirim A. Paraoxonase and arylesterase levels 
in rheumatoid arthritis. Clinical Rheumatology. 2007;26:342–8.

[102] Novak F, Vavrova L, Kodydkova J, Novak F, Sr., Hynkova M, Zak A, et al. Decreased 

paraoxonase activity in critically ill patients with sepsis. Clinical and Experimental 
Medicine. 2010;10:21–5.

[103] Ren K, Tang ZL, Jiang Y, Tan YM, Yi GH. Apolipoprotein M. Clinica Chimica Acta; 
International Journal of Clinical Chemistry. 2015;446:21–9.

[104] Feingold KR, Shigenaga JK, Chui LG, Moser A, Khovidhunkit W, Grunfeld C. 
Infection and inflammation decrease apolipoprotein M expression. Atherosclerosis. 
2008;199:19–26.

[105] Lamant M, Smih F, Harmancey R, Philip‐Couderc P, Pathak A, Roncalli J, et al. ApoO, 

a novel apolipoprotein, is an original glycoprotein up‐regulated by diabetes in human 

heart. The Journal of Biological Chemistry. 2006;281:36289–302.

[106] Turkieh A, Caubere C, Barutaut M, Desmoulin F, Harmancey R, Galinier M, et al. 
Apolipoprotein O is mitochondrial and promotes lipotoxicity in heart. The Journal of 
Clinical Investigation. 2014;124:2277–86.

[107] Panin LE, Shalbueva NI, Polyakov LM. Effects of apolipoproteins C on oxidative phos‐

phorylation in rat liver mitochondria. Bulletin of Experimental Biology and Medicine. 
2000;130:769–71.

Advances in Lipoprotein Research70



[108] Kolmakova A, Kwiterovich P, Virgil D, Alaupovic P, Knight‐Gibson C, Martin SF, et al. 
Apolipoprotein C‐I induces apoptosis in human aortic smooth muscle cells via recruit‐

ing neutral sphingomyelinase. Arteriosclerosis, Thrombosis, and Vascular Biology. 
2004;24:264–9.

[109] Banka CL, Yuan T, de Beer MC, Kindy M, Curtiss LK, de Beer FC. Serum amyloid 
A (SAA): influence on HDL‐mediated cellular cholesterol efflux. Journal of Lipid 
Research. 1995;36:1058–65.

[110] Kontush A, Chapman MJ. Functionally defective high‐density lipoprotein: a new ther‐

apeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. 
Pharmacological Reviews. 2006;58:342–74.

[111] Cai L, de Beer MC, de Beer FC, van der Westhuyzen DR. Serum amyloid A is a ligand 
for scavenger receptor class B type I and inhibits high density lipoprotein binding and 
selective lipid uptake. The Journal of Biological Chemistry. 2005;280:2954–61.

[112] Shao B, Bergt C, Fu X, Green P, Voss JC, Oda MN, et al. Tyrosine 192 in apolipopro‐

tein A‐I is the major site of nitration and chlorination by myeloperoxidase, but only 

chlorination markedly impairs ABCA1‐dependent cholesterol transport. The Journal of 
Biological Chemistry. 2005;280:5983–93.

[113] Zheng L, Settle M, Brubaker G, Schmitt D, Hazen SL, Smith JD, et al. Localization of 
nitration and chlorination sites on apolipoprotein A‐I catalyzed by myeloperoxidase 

in human atheroma and associated oxidative impairment in ABCA1‐dependent cho‐

lesterol efflux from macrophages. The Journal of Biological Chemistry. 2005;280:38–47.

[114] Curtiss LK, Bonnet DJ, Rye KA. The conformation of apolipoprotein A‐I in high‐density 
lipoproteins is influenced by core lipid composition and particle size: a surface plas‐

mon resonance study. Biochemistry. 2000;39:5712–21.

[115] Azzam KM, Fessler MB. Crosstalk between reverse cholesterol transport and innate 
immunity. Trends in Endocrinology and Metabolism: TEM. 2012;23:169–78.

[116] deGoma EM, deGoma RL, Rader DJ. Beyond high‐density lipoprotein cholesterol lev‐

els evaluating high‐density lipoprotein function as influenced by novel therapeutic 
approaches. Journal of the American College of Cardiology. 2008;51:2199–211.

[117] Luscher TF, Landmesser U, von Eckardstein A, Fogelman AM. High‐density lipo‐

protein: vascular protective effects, dysfunction, and potential as therapeutic target. 
Circulation Research. 2014;114:171–82.

[118] Brousseau ME, Schaefer EJ, Wolfe ML, Bloedon LT, Digenio AG, Clark RW, et al. 
Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. The New 
England Journal of Medicine. 2004;350:1505–15.

[119] Morehouse LA, Sugarman ED, Bourassa PA, Sand TM, Zimetti F, Gao F, et al. Inhibition 
of CETP activity by torcetrapib reduces susceptibility to diet‐induced atherosclerosis in 
New Zealand White rabbits. Journal of Lipid Research. 2007;48:1263–72.

Role of HDL-Associated Proteins and Lipids in the Regulation of Inflammation
http://dx.doi.org/10.5772/67141

71



[120] Tabet F, Vickers KC, Cuesta Torres LF, Wiese CB, Shoucri BM, Lambert G, et al. HDL‐
transferred microRNA‐223 regulates ICAM‐1 expression in endothelial cells. Nature 

Communications. 2014;5:3292.

[121] Rayner KJ, Moore KJ. MicroRNA control of high‐density lipoprotein metabolism and 

function. Circulation Research. 2014;114:183–92.

Advances in Lipoprotein Research72


