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Abstract

Reproduction and early development in domestic animals are biological processes in 
which complex genetic events like formation of the germ cells, meiosis, syngamy, zygote 
formation, cleavage, midblastula transition, dose compensation of sex chromosomes, 
genetic imprinting, and multiple cell differentiation take place. Many of these processes 
have great impact in veterinary reproductive medicine and are influenced by the assisted 
reproductive techniques applied. Altered environmental and metabolic conditions 
caused by intensive livestock farming influence reproductive success by altered gene 
expression via epigenetic changes.

Keywords: reproductive genetics, developmental genetics, domestic animals

1. Genetics during germ cell production

Genetics during germ cell production: Mammalian oocytes and sperms originate from the 
primordial germ cells (PGCs) located in the embryonic mesoderm. Their development is initi-
ated by signals from the extra embryonic ectoderm and the visceral endoderm. In mammals 
the primordial germ cells invade the genital ridge where they proliferate by mitosis and give 

rise to either oogonia or spermatogonia. Migration, proliferation, and colonization of PGCs to 
the developing gonads are controlled by many factors and depend as well on the interaction 

of PGCs and their surrounding somatic cells. Around the period of PGC migration into the 
genital ridges sex determination starts. Absence of the expression of the Y-linked gene “sex 
determining region of Y” (SRY, a transcription factor of the high mobility group box fam-

ily) leads to female differentiation, therefore the gonads develop into ovaries [1]. Presence 
of SRY gene expression leads to differentiation of the gonads into testes. As soon as PGCs 
are formed, the initially bi-potential gonad will continue its differentiation mostly under the 
influence of somatic cell-derived transcription factors. In female animals after colonization 
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of the gonad, PGCs will undergo a phase of mitotic proliferation leading to the formation 

of germ cell nests. Following this event, around birth, the germ cell nests break down and 
mitotic divisions stop. Germ cells initiate meiosis, become primary oocytes which are sur-

rounded by somatic cells leading to the formation of primordial follicles which continue the 

female program of development.

Meiosis can be divided into two divisions: meiotic division I and II. The prophase of mei-
otic division I is extended and can be divided into the following parts: leptotene, zygotene, 
pachytene, diplotene, and diakinesis. During leptotene, progressive condensation of the chro-

mosomes takes place and the telomeres become associated with the inner nuclear membrane. 
In zygotene, the homologous chromosomes pair due to the formation of the synaptonemal 
complex in a zipper-like way. The pachytene is characterized by further condensation of the 
chromosomes and by occurrence of cross-over events leading to intrachromosomal recombi-

nation. In the course of the diplotene, the chromosomes separate again except small anchor-

ing regions the so-named chiasmata. Oocytes progressed to the diplotene stage enter into a 
prolonged resting phase called dictyotene. Oocytes remain at the dictyate stage of meiosis 
I throughout oogenesis, until luteinizing hormone (LH) induces final oocyte maturation to 
metaphase II [2]. Cell division during oocyte meiosis is asymmetrically leading to one oocyte 
containing most of the cytoplasm and three polar bodies. Formation of the second polar body 
is a requisite of oocyte maturity.

Spermatogenesis, the process that gives rise to fertile sperm, occurs in a similar manner in 
many animal species, including domestic mammals and birds. Male germ cell development 
starts with emergence of primordial germ cells (PGCs), which migrate and associate with 

somatic cells that form the testes. Within the gonad, PGCs localize to regions that are com-

petent to serve as stem cell (SC) niches, where they develop into spermatogonial SCs (SSCs). 
SCs divide to form new SCs and spermatogonial daughter cells. The daughter cells prolifer-

ate, undergoing sequential rounds of mitosis and incomplete cytokinesis to form syncytial 

groups of spermatogonia. Following a series of synchronous mitotic amplification divisions, 
spermatogonia differentiate into spermatocytes, which then undergo meiosis. As in the earlier 
mitotic divisions, meiotic cytokinesis is incomplete, resulting in syncytia of interconnected 

haploid spermatids. Postmeiotic spermatids undergo an extensive period of differentiation, 
or spermiogenesis, in which they form sperm-specific organelles, including the sperm head, 
acrosome, basal body, specialized mitochondria, and flagellum. At the end of spermiogenesis, 
mature sperm are separated from each other by removal of the remnants of incomplete cyto-

kinesis, released from the gonad, and stored prior to delivery by ejaculation.

In both, oogenesis and spermatogenesis meiosis leads to intrachromosomal recombination 
(cross-over occurring in prophasis of meiosis I) and in interchromosomal recombination 
(random mixture of maternal and paternal chromosomes during both meiotic divisions), 

reducing the diploid chromosome complement to a haploid level. As a result of oogenesis, 
one haploid oocyte and three haploid polar bodies develop. In spermatogenesis four hap-

loid sperm come into being. In female eutherian mammals meiosis is continued by luteal 
hormone stimulation and finished during fertilization. In male eutherian mammals meiosis 
takes place all the time.
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2. Genetics during fertilization

During their active and passive migration in the femal genital tract, the sperms obtain their 
fertilization capacity by capacitation and hyper activation two processes which seem to pro-

ceed largely independent. The glycoprotein composition changes during capacitation of the 
cell membrane. In domestic mammalian species fertilization takes place in the ampulla of 
the oviduct where the metaphase II oocyte surrounded by the acellular zona pellucida and 
the cellular cumulus (corona radiata) is present. The sperm leading to fertilization has to 
fulfill its acrosomal reaction. This is mediated by partial fusion of the cell membrane with 
the outer acrosomal membrane leading to the release of hyaluronidase. This enzyme enables 
the sperm to cross the corona radiata. At the zona pellucida binding to species specific zona 
proteins is necessary (species specificity). After detachment of the cell and outer acrosomal 
membrane the inner acrosomal membrane rises to the top delivering the protease Acrosin 
which enables the penetration of the zona pellucida. Now the sperm enters to the perivitel-
line space and the inner acrosomal membrane and the cell membrane of the oocyte fuse. In 
natural fertilization, only the head of the sperm enters the cytoplasm of the oocyte meaning 

that no mitochondria from the sperm can participate (maternal inheritance). After entrance of 
the first sperm, depolarization of the cell membrane, degranulation of the corticalis granula, 
shrinkage of the ooplasm, and zona hardening takes place in order to avoid multiple fertiliza-

tions. Fertilization by more than one sperm would lead to aneuploid (n = 3, 4, 5…) chromo-

some complement. These embryos stop development before reaching the blastocyst stage. 
After entrance of the sperm the oocyte finishes the second meiotic division. Female and male 
pronuclei form and fuse to form a diploid nucleus in a process named syngamy leading to the 

zygote entering now into cleavage.

3. Genetics of eutherian sex determination and dose compensation

Sex determination in eutherian mammals is mediated by the chromosomes X and Y. Absence 
of the Y chromosome (SRY gene) leads to female development. Male genital development is 
mediated by production of the anti-Müllerian hormone (AMH) produced by the Sertoli cells 
of the embryonal testes. This peptide hormone, belonging to the transforming growth factors 
(TGF) family, leads to the regression of the Müllerian duct from which in the female the ovi-
duct, the uterus, and the vagina are formed.

Aberrant sex chromosome numbers can arrive by false segregation during meiosis leading 
to multiple X or Y chromosome numbers. If one or more Y chromosomes are present the sex 
is male, if no Y chromosome is present the sex is female. Additional X chromosomes will 
be inactivated to a large extend (only a few genes escape from this inactivation) according 

to the Lyon hypothesis. This inactivation is mediated by the noncoding X inactive-specific 
transcript (XIST) RNA. The corresponding gene is located at the X Inactivation Center (XIC) 
at the X chromosome. Coating of the X chromosome to be inactivated by the XIST RNA leads 
to the deactivation of most of the genes: Only the XIST gene itself and about one quarter 
of the genes present mainly in the pseudo autosomal regions of the X chromosome escape 
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from this inactivation. Before inactivation starts small quantities of XIST RNA are produced 
by both X chromosomes. After inactivation XIST is expressed from the inactivated X chro-

mosome, whereas XIST expression from the active X chromosome ceases. Cytologically the 
inactivated X chromosome can be visualized as Barr body. The XO syndrome named Turner 
syndrome is sometimes observed in mares which are not fertile. In cats, the coat color gene 
is located at the X chromosome leading to the absence of tortoiseshell and calico coats in the 
X0 (Turner syndrome) female cat. In male cats, this coloring is only possible in the rare case 
of the Klinefelter syndrome [3]. These animals typically have an extra X chromosome (XXY) 
and their cells undergo an X-inactivation process like that in females. Additional Y chromo-

somes are described in humans as a result of a nondisjunction in meiosis II. This chromosomal 
aberration seems to have less influence since only a few genes are transcribed from the Y 
chromosome. Nevertheless, in humans, a higher testosterone concentration was observed in 
chromosome pair in their pseudoautosomal region(s) (PAR). In the horse this region was very 
helpful in mapping of the euchromatic region of the equine Y- chromosome. These investiga-

tions were very helpful for the prediction of male fertility in horses and are therefore consid-

ered in horse breeding [4, 5].

Rarely as a consequence of a translocation, the SRY region containing the testes determining 
factor (TDF) to the X chromosome during meiosis a male cytological having two X chromo-

somes can be created. These XX men are infertile since they lack other genes necessary for the 
production of mobile spermatozoa [6].

Before fertilization the XIST gene in the ripe oocyte is inactive, meaning that the X chromo-

some is active. Fertilization by a male (Y) sperm does not change this status. If a femal (X) 
sperm enters the oocyte one active XIST gene is now present producing XIST RNA which 
inactivates also the second X chromosome. This status is not stable since for maintenance of 
inactivation a protein named EED (polycomb protein EED, responsible for maintaining the 
transcriptional repressive state of genes over successive cell generations) also coded at the 

X chromosome is necessary [7, 8]. Therefore, both X chromosomes and also the XIST genes 
become active again at the morula stage leading to random inactivation of either the matenal 

or paternal X chromosome. That means that female eutherian mammals are mosaics in rela-

tion to maternal or paternal X inactivation, a phenomenon which becomes evident in X coded 
genes like coat color of the domestic cat.

4. Genomic imprinting

Genomic imprinting became evident by nuclear transplantation experiments at the pronu-

clear stage in mice [9]. Enucleated oocytes reconstructed with either only two femal or two 
male pronuclei exhibited different developmental potential concerning the embryo proper 
and the extraembryonic tissue. Further investigations revealed the nature of this phenom-

enon: In imprinted genes the female and male promotor regions have different methylation 
status leading to different gene expression in the early embryo. In humans and mice about 80 
imprinted genes are known many of which are involved in embryonic and placental growth 

and development. Sometimes hybrid offspring of two different species may exhibit unusual 
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growth due to the novel combination of imprinted genes. This becomes especially evident in 
reciprocal Lion-Tiger crosses [10]. The majority of imprinted genes are found in clusters, the 
so-called imprinted domains, suggesting a high degree of coordinated regulation. Imprinting 
is a dynamic process: imprints can be generated and removed at different time points of 
development from one generation to the other. In the germ line the imprints are erased and 
then reestablished according to the sex of the individual. In the developing sperms (during 
spermatogenesis), paternal imprints are established, whereas in developing oocytes (during 

oogenesis) a maternal imprints are established. In mammals genomic imprinting is present in 
therian mammals (marsupials and placental mammals) [11, 12].

5. Genetics during preimplantative eutherian embryo development

 The eutherian oocyte is oligolecithal. After fertilization, the femal and male pronuclei fuse 
to establish the diploid zygote nucleus. The eutherian zygote undergoes now rotational holo-

blastic cleavage. These fast cell divisions consist only in synthesis phase and mitosis and sub-

divide the former ooplasm onto the blastomeres. Zygotic transcription starts dependent on 
the species at the two-, four-, or eight-cell stage. This process is named midblastula transition 
(MBT). So far the early embryo translates only maternally inherited mRNAs just present in 
the oocyte. So far the zygotic chromatin is hypo-acetylated and methylated, which means that 
most of the genes are repressed in a heterochromatic state. Now embryo starts to transcribe its 
own DNA and its cells become motile and the cell divisions loose synchrony. At the eight-cell 
stage most of the blastomeres become polarized and develop tight junctions with the other 

blastomeres. At the 16-cell state, the embryo is named morula. The outer cells become bound 
tightly together by the formation of cell junctions (compact morula). This process initiates the 
differentiation of two distinct cell populations: outside cells characterized by polarity and 
undifferentiated inside cells. The outer cells develop into trophoblast cells, which are epithe-

lial cells connected by tight junctions in order to seal the extracellular passage. They express 
Na+/K+ ATPases and aquaporins at the apical and basal membranes in order to exchange 
sodium in from the outside by cellular potassium. This leads to electrochemical gradient 
which is equalized by water influx from the outside leading to blastocoel formation. The 
embryo is now called a blastocyst. At least in the horse expansion of the blastocyst seems to be 
under hormonal control [13, 14]. After implantation the trophoblast cells will develop into the 
fetal part of the placenta. The undifferentiated inner cells are displaced by the water influx to 
one side of the cavity to form the inner cell mass (ICM). It will develop into the embryo proper 
and some extraembryonic membranes.

So far the blastocyst like all previous embryonic stages are still surrounded by the acellular 
zona pellucida since the size of the embryos increased only marginally. Now a rapid expan-

sion mainly due to fluid accumulation takes place and therefore the embryo hatches (human, 
mouse, pig, cow, sheep, goat, camels) or the zona pellucida is replaced by an embryonic cap-

sule participating in enlargement. Hatched embryos show early placenta formation whereas 
encapsulated embryos exhibit prolonged preimplantative phase. At that time in most species 
the maternal recognition of pregnancy (MRP) takes place ensuring the maternal changes nec-

essary for further development.
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6. Genetics during mammalian placentation and fetal development

Mammalian placentation can be rated according to the implantation depth and surface expan-

sion. Concerning implantation depth the invasiveness of the chorion is the crucial factor: epi-
theliochorial (pig, horse, ruminants), endotheliochorial (dog, cat), or hemochorial (human) 

describe implantational depth. Surface expansion is also influenced by placental capacities 
and number of fetuses: diffuse, cotelydonaria, zonaria, and discoidal. Implantational depth 
influences the quality of exchange of substances: The human hemochorial placenta enables 

the transfer of maternal antibodies into the fetal blood which is very important during the 

first weeks after birth. From the fetal face also a transfer of fetal cells into the maternal blood 
stream is probable. This microchimerism can persist even for some years and might be respon-

sible for occurrence of autoimmune diseases in women [15]. In carnivoral placentation, such a 
microchimerism seems to be probable but was not investigated so far. The circumstances con-

cerning the antibodies seem to be similar like in humans: “In carnivora and rodentia the blood 
of the newborn has roughly the same globin content as the maternal blood, whereas in those 

animals in which the placental barrier is relatively thick, such as the cow and pig, the fetus 

receives few if any antibodies before it is born” [16]. In horses despite their epitheliochorial 
placentation a microchimerism was proven recently by detection of SRY by means of digital 
PCR [17]. One of the most probable explanations for this microchimerism seems to consist in 
the migration of the chorionic girdle cells forming the endometrial cups.

Another form of microchimerism often arrives in cattle during twin pregnancies with dif-
ferent fetal sex named Freemartin syndrome: In most bovine twin pregnancies anastomoses 
form between the fetal circulations leading to exchange of male hormones (anti-Müllerian 
hormone, testosterone). Depending on the time of anastomose formation during pregnancy 
the femal fetus becomes masculinized resulting in intersexuality and infertility. In other 
domestic ruminantia the occurrence of freemartin syndrome is very rare [18].

7. Genetic alterations caused by assisted reproduction techniques

During in vitro maturation (IVM) and in vitro fertilization (IVF) the gamets respectively the 
early embryo are exposed to artificial environments which can differ in both directions from 
the natural conditions. Absence of essential substances often leads to the termination of 
development, whereas supernutrition can result in epigenetic changes which manifest later 

in pregnancy and during birth. One of the most frequent abnormities connected with IVF is 
the large offspring syndrome in cattle and sheep resulting in oversized fetuses [19].

Somatic nuclear transplantation of domestic animals can cause incomplete epigenetic repro-

gramming of the somatic nucleus leading to incapacity of blastocyst formation. Therefore, 
blastocyst rates are relatively low around 2–3%. High rates of embryonic loss, abortions due to 
placental aberrations, and high postnatal mortality were observed in cloned animals. Directed 
epigenetic changes during somatic cell culture can ameliorate the blastocyst rate obtained (up 

to 10%) and reduce the problems during pregnancy and birth [20].
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During intracytoplasmic sperm injection (ICSI) a mature oocyte is injected with one sperm or 
a haploid progenitor of the sperm. This leads to omission of the natural selection of sperms in 
the femal genital tract and sometimes to fertilization with a sperm that under natural condi-

tions never would be able to fertilize an oocyte. Using ICSI no acrosomal reaction and hyper-

activation is necessary. Even dead sperms can be used if the nucleus is intact. Different from 
natural fertilization the whole sperm is injected into the oocyte leading to a mixture of mito-

chondria. There seems to be a mechanism to favor the mitochondria originally contributed by 
the oocyte (also in cloned animals). Nevertheless also coexistence and the reverse are possible 
[21]. In humans oocytes from aged women can be ameliorated by cytoplasma donation from 
an oocyte of a young women leading to a mixture of different mitochondria similar to the 
situation after nuclear transplantation.

In all these techniques applied in animal-assisted reproduction, the ability of blastocyst for-

mation is the critical point to rate the success of the method. In human-assisted reproduc-

tion, earlier stages are transferred in multiple numbers often leading to twin and multiple 

pregnancies.

Different other techniques like oocyte transfer (OT) gamete intrafollopian transfer (GIFT), and 
zygote intrafollopian transfer (ZIFT) have been developed. Depending on the time of incuba-

tion of the gametes and the abandonment of embryo culture these techniques have reduced 

potential for epigenetic alterations.

PCR techniques using genetic material from blastomeres after the puncture of the embryo 

before transfer can be used for sex determination, preimplantative diagnostic, and marker-

assisted selection in animal breeding.

8. Genetics in poultry reproduction

In birds and monotremes the sex is determined genetically but the exact mechanism is still 
unknown. All species show a ZZ/ZW sex chromosome system. Contrary to therian mammals 
it is characterized by female (ZW) heterogamety and male homogamety (ZZ). So far differ-

ent hypothesis exist: Avian sex might be determined by dosage of a Z-coded gene or by a 
W-coded gene or may be both. A SRY gene or homolog is absent in birds and monotremes 
[22–24].

High performance chickens are bred by heterosis breed: In grandparent linages different 
traits (like high laying performance or good eggshell quality) are fixed by linage breed. In 
the parent generation the most suitable crossing between those linages will be determined. 
In case of the recurrent selection one father or mother line will be mated to a standard line. In 
the reciprocal recurrent selection each parent combination will be tested as mother and father 

line and rated according to the performance of the progeny.

Due to the chicken genome sequencing finished in 2005 many genes affecting vitality and dis-

ease resistance are going to be identified and become focused by the breeding organizations. 
This might lead to a reduction of therapeutic agents in poultry production.
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9. Genetics in fish reproduction

Most of the fishes fostered in aquaculture belong to the teleosts. Many of them show her-

maphroditism meaning that both sexes are present in one individuum but active at a different 
time during life. Most of the farmed fishes in aquaculture just release their eggs and sperms at 
the same time nearby in the water. In farms the eggs and sperms will be delivered artificially 
by abdominal massage and admixed together. This is the most suitable state for artificial 
manipulation like chromosome manipulation and gene transfer. Egg size is very important 
in fish breeding since large fry have to be fed later. Fertilization takes place by entering of 
the sperm through the micropyle of the fish egg, a narrow channel through the outer egg 
membrane. It is accomplished by the fish sperm swimming to the egg surface, locating the 
entry to the micopyle, and swimming down it to make contact with and penetrating the inner 

egg membranes. The membrane lifts after penetration of the first sperm which seems to be 
the mechanism for avoidance of polyspermy. Generation of triploid teleosts has become a 
widely used tool in order to protect wild fishes from hybridization since these animals are 
sterile. Production of monosex individuals has a similar effect [25]. Genetic engineering will 
have a great potential for the generation of disease resistance and low oxygen tolerating fish 
in the future. Interestingly somatic nuclear transplantation in teleosts leads to nucleocytoplas-

mic hybrids, meaning that the cytoplasm of the oocyte is able to inherit certain features. The 
molecular basis of this phenomenon is not elucidated so far [25].

10. Further perspectives of genetics in domestic animal reproduction

In many of the domestic animal species genome projects are ongoing or just finalized mean-

ing that genes important for reproduction can be detected easier in order to investigate their 

specific role and the influences by the environment and metabolic state of the animal. In 
dairy cows classical selection has shown a negative correlation between daily milk yield and 

fertility parameters. In this regard, the metabolic state of the animal might be the limiting 
factor; therefore, the expression of reproductive genes under these conditions should be of 

high interest [26]. Modulation of gene expression is mediated not only by epigenetics (DNA 
methylation, histone modulation) but to a large extent also by micro-RNAs affecting mRNA 
stability. In this context the reproductive performance is influenced by the quality of the allele 
inherited, their epigenetic status, as well as the metabolic status of the animal.

In assisted reproduction sexing of sperms and embryos will become more important. 
Improvement of sexing technologies will allow a wider use also in domestic species which 
so far were excluded due to reproductive necessities (insemination doses, sensitivity of the 

sperm cells, survival time of the sperm cells). In embryos noninvasive techniques for sexing 
and preimplantative diagnostic may be possible in the near future. Selection of the sperm 
used for fertilization in intracytoplasmic sperm injection (ICSI) might change from motility 
alone to other, more complex criteria. In vitro culture conditions will be improved by adap-

tion to natural conditions avoiding aberrant gene expression leading to phenomenon like the 
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large offspring syndrome. In animal cloning the reprogramming of the donor cells will be 
improved in order to reach blastocyst rates around 20%.

In the social context the techniques applied in assisted reproduction should be rated in the 
correct light by understanding their way of action and their advantages in comparison to the 

objective risks.

Author details

Sven Budik (Mag. rer. nat., Dr. rer. nat., Mag. med. vet.)

Address all correspondence to: sven.budik@vetmeduni.ac.at

Platform for Artificial Insemination and Embryo Transfer, University of Veterinary Medicine, 
Vienna, Austria

References

[1] Sex determination in mammalian germ cells. Spiller CM, Bowles J, Asian Journal of 
Andrology (2015) 17, 427–432; doi: 10.4103/1008-682X.150037

[2] Molecular control of oogenesis. Sánchez F, Smitz J, Biochimica et Biophysica Acta – 
Molecular Basis of Disease (2012) 12, 1896–1912.

[3] A tortoiseshell male cat: Chromosome analysis and histologic examination of the testis, 
Pedersen AS, Berg LC, Almstrup K, Thomsen PD, Cytogenetic and Genome Research 
(2014) 142, 107–111; doi:10.1159/000356466

[4] The pseudoautosomal region and sex chromosome aneuploidies in domestic species. 
Raudsepp T, Das PJ, Avila F, Chowdhary BP, Sexual Development (2012) 6, 72–83; 
DOI:10.1159/000330627

[5] A gene catalogue of the euchromatic male-specific region of the horse Y chromosome: 
comparison with human and other mammals. Paria N, Raudsepp T, Pearks Wilkerson 
AJ, O'Brien PC, Ferguson-Smith MA, Love CC, Arnold C, Rakestraw P, Murphy WJ, 
Chowdhary BP, PLoS One (2011) 6(7), e21374; doi: 10.1371/journal.pone.0021374. Epub 
2011 Jul 25.

[6] 46 XX karyotype during male fertility evaluation; case series and literature review. 
Majzoub A, Arafa M, Starks C, Elbardisi H, Al Said S, Sabanegh E. Asian J Androl 
[Epub ahead of print] [cited 2016 Dec 30]. Available from: http://www.ajandrology.
com/preprintarticle.asp?id=181224

[7] Xist localization and function: new insights from multiple levels. Cerase A, 
Pintacuda G, Tattermusch A, Avner P, Genome Biology (2015) 16, 166; doi: 10.1186/
s13059-015-0733-y

Genetics in Domestic Animal Reproduction
http://dx.doi.org/10.5772/67132

25



[8] Origin and evolution of X chromosome inactivation. Gribnau J, Grootegoed JA, Current 
Opinion in Cell Biology (2012) 24(3), 397–404; doi:10.1016/j.ceb.2012.02.004

[9] Role of paternal and maternal genomes in mouse development. Barton SC, Surani MAH, 
Norris ML, Nature (1984) 311, 374–376; doi:10.1038/311374a0

[10] Ligers and tigons and…..what?….oh my! McKinnell Z, Wessel G, Molecular Reproduction 
and Development (2012) 79(8), Fm i; doi: 10.1002/mrd.22074.

[11] Mammalian genomic imprinting. Bartolomei MS, Ferguson-Smith AC, Cold Spring 
Harbor Perspectives in Biology (2011) 3(7).

[12] Genomic imprinting: parental influence on the genome. Reik W, Walter J, Nature 
Reviews Genetics (2001) 2(1), 21–32; doi:10.1038/35047554.

[13] Significance of aquaporins and sodium potassium ATPase subunits for expansion of 
the early equine conceptus. Budik S, Walter I, Tschulenk W, Helmreich M, Deichsel K, 
Pittner F, Aurich C, Reproduction (2008) 135(4), 497–508; doi: 10.1530/REP-07-0298

[14] Increasing expression of oxytocin and vasopressin receptors in the equine concepts 
between Days 10 and 16 of pregnancy. Budik S, Palm F, Walter I, Helmreich M, Aurich 
C, Reproduction, Fertility, and Development (2012) 24(5), 641–648; doi: 10.1071/RD11167

[15] Pregnancy-acquired fetal progenitor cells. Seppanena E, Fiska NM, Khosrotehrania K, 
Journal of Reproductive Immunology (2013) 97(1), 27–35; doi: 10.1016/j.jri.2012.08.004

[16] Vertebrate Reproduction. Blüm V, (1985) Springer, ISBN 978-3-642-71074-2

[17] Equine fetal sex determination using circulating cell-free fetal DNA (ccffDNA). Moura 
de Leon PM, Campos VF, Dellagostin OA, Deschamps JC, Seixas FK, Collares T, 
Theriogenology (2012) 77, 694–698; doi: 10.1016/j.theriogenology.2011.09.005

[18] The freemartin syndrome: an update. Padula AM, Animal Reproduction Science (2005) 
87, 93–109.

[19] Large offspring syndrome in cattle and sheep. Young LE, Sinclair KD, Wilmut I, Reviews 
of Reproduction (1998) 3, 155–163.

[20] A New, Dynamic Era for Somatic Cell Nuclear Transfer? Loi P, Iuso D, Czernik M, Ogura A, 
Trends in Biotechnology (2016) pii, S0167–7799(16)30003-8; doi: 10.1016/j.tibtech.2016.03.008.

[21] Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell 
nuclear transfer. Burgstaller J, Schinogl P, Dinnyes A, Müller M, Steinborn R, BMC 
Developmental Biology (2007) 7, 141; doi: 10.1186/1471-213X-7-141

[22] Avian sex determination: what, when and where? Smith CA, Roeszler KN, Hudson QJ, 
Sinclair AH, Cytogenetic and Genome Research (2007) 117, 165–173; doi:10.1159/000103177

[23] Genetics of the Fowl: The Classic Guide to Poultry Breeding and Chicken Genetics. Hutt 
FB, ISBN: 978-0972177030

Trends and Advances in Veterinary Genetics26



[24] Poultry Genetics, Breeding and Biotechnology. Muir WM, Aggrey Stylus Pub Llc, (2003) 
SE, ISBN 0851996604

[25] A Review of “Aquaculture and Fisheries Biotechnology, Genetic Approaches, Dunham 
RA, Stylus Cabi Publishing (2010) 2nd Edition,” ISBN: 978-1-84-593651-8

[26] Novel approaches to genetic analysis of fertility traits in New Zealand dairy cattle. 
Bowley FE, Green RE, Amer PR, Meier S, Journal of Dairy Science (2015) 98, 2005–2012; 
http://dx.doi.org/ 10.3168/jds.2014-8266

Genetics in Domestic Animal Reproduction
http://dx.doi.org/10.5772/67132

27




