
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 1

Study of Stability Changes of Model Fuel Blends

Małgorzata Odziemkowska, Joanna Czarnocka and
Katarzyna Wawryniuk

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67056

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Małgorzata Odziemkowska, Joanna 
Czarnocka and Katarzyna Wawryniuk

Additional information is available at the end of the chapter

Abstract

Fuel during long-term storage, even at low temperatures, undergoes oxidation to vari-
ous products, which are further converted into high molecular compounds precipitating 
from the liquid. The stability of the stored fuel depends on its chemical composition and 
storage conditions. Chemical conversions associated with the degradation of fuel are not 
well recognized, so it is difficult to predict the storage duration of such fuel and control 
the rate of ageing. Because of the variety of hydrocarbon composition of commercial fuels 
resulting from the diversity of crude oil and oil processing methods, surrogate fuels are 
used for simulating behaviour of commercial fuels in the various tests. In this paper, the 
type and dose of model components of fuel were chosen. To determine the degradation 
degree of model blends, few tests of accelerated ageing were selected. These methods 
were used to determine induction period, content of deposits and resistance to oxidation. 
Effect of inhibiting and catalyzing compounds on fuel oxidation was verified. An infrared 
spectroscopy analysis of the oxidized model blends was also performed. The results of 
this study showed slight changes of selected properties of the surrogate fuels. The most 
significant changes occurred for the model blends containing substances initiating radi-
cal autoxidation reactions and bio-components.

Keywords: model fuels, hydrocarbons, oxidative stability, induction period, accelerated 
ageing test

1. Introduction

Chemical stability of fuel, in terms of resistance to changes during storage and distribution, 

is an important parameter determining its quality. Processes deteriorating the fuel properties 

include, among others, oxidation. The oxidation products are chemically active substances 

and undergo further transformations to non-volatile macromolecular substance (resin), and 

the particulates precipitate in the form of deposits/sediments. Fuels, even under stable storage 
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conditions, can undergo autoxidation, where the hydrocarbon molecules react with atmo-

spheric oxygen or with themselves [1].

There is an abundance of literature on fuel instability [2–13]. Nevertheless, reactions related 

with the degradation of the fuel are not well researched, so it is difficult to predict the rate 
and direction of changes of the fuel properties during storage and distribution. In addition, 

the diversity of the composition of hydrocarbon in commercial fuel species resulting from the 

variety types of processed crude oil and refinery technologies makes it difficult to determine 
the mechanisms of these changes. There are many theories describing the mechanisms of 

oxidation of petroleum products [14].

Generally, it is assumed that the fuels are oxidized by a radical mechanism, whereby the 

hydrocarbons are involved in radical chain reactions in the following sequence: initiation, 

propagation, branching and chain termination. The initiation reaction known as the initiation 
of an oxidative chain reaction begins with an attack of oxygen molecules from the air on the 
C-H bond in the hydrocarbon molecules. As a result, alkyl radicals (the radicals react with 
oxygen to hydroperoxides, which are aggressive oxidants) are formed. Decomposition prod-

ucts of peroxides are active alkoxy and hydroxyl radicals, which in the following reaction 
steps detach another hydrogen atoms from the hydrocarbons (propagation phase and chain 

branching). The last phase of hydrocarbon oxidation is termination, which is the completion 

of the reaction, where due to the recombination of hydrocarbon and peroxide, free radicals 

become deactivated creating non-radical products, for example, alcohols, ketones and acids, 
which can undergo further transformations to macromolecular substances. Among others, 
Denisov [15] described in detail oxidation of hydrocarbons in the liquid phase. However, 

we still do not know how an oxidation chain, in the absence of oxidation promoters such as 
sunlight, a source of free radicals and metal ions, is formed.

It is considered that the chemical structure of hydrocarbons has an influence on the rate of oxi-
dation processes of petrol. The studies presented in the article [5] have shown that in petrol the 

tendency to produce resins depends on the amount and type of unsaturated hydrocarbons. 

In the case of petrol fractions from the cracking process, the presence of active radicals and 
trace amounts of metal ions originating from the catalyst was found. Pereira et al. [6] proved 

that not all of the olefins presented in the fuel are transformed equally to resins. Among tested 
olefins, those that formed the secondary allyl radicals (2,4-hexadiene and cyclohexene) had 
the largest share in the formation of macromolecular substances. These compounds are classi-

fied, respectively, to the unsaturated hydrocarbons with conjugated bonds and cyclic olefins. 
The considerations regarding to the stability of allyl and alkyl radicals and autoxidation reac-

tion mechanism confirming the radical chain reactions were presented. Research of effect of 
ethanol and copper presence on the stability of petrol [7] showed that the addition of alcohol 

does not deteriorate fuel stability, whereas copper in the system is undesirable because it 

accelerates the oxidation processes.

However, in the case of diesel fuels, chemical instability is caused by the presence in the 

fuel compounds containing nitrogen and sulphur, reactive olefins and organic acids which 
are precursors of macromolecular structures having a limited solubility. One of the well-

recognized mechanisms generating insoluble precipitates in the diesel fuel is conversion of 
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 phenalenes and indoles to indole/phenalene salt complexes, described by Marshman and 

Davia [8]. An acidic environment is conducive to the reactions. Phenalenes are formed as a 
result of the oxidation of active olefins, and indoles are a natural component of the fuel. The 
organic acids (necessary to catalyze the reaction) are typically presented in the fuel compo-

nents or are formed by oxidation of the mercaptans to sulfonic acids. Li et al. [10] conducted 

research on the thermo-oxidative stability of aviation fuel. Oxidation processes were followed 

by determination of hydroperoxides and FTIR spectral analysis. The results confirmed the 
theory presented by Zabarnick [11] that the fuel oxidation occurs according to the mechanism 

of free radical chain reactions in which the hydroperoxides can be considered as intermedi-

ates for subsequent reactions of hydrocarbon autoxidation. During the tests it was observed 

that the fuel that contains more polar components is more readily oxidized. Normally, the 

presence of polar components is the main factor of instability.

The complexity of the hydrocarbon fuel oil composition is a difficult in-depth analysis of 
the degradation process of the fuel components and consequently the finished fuel which 
is a mixture of hundreds of compounds. The chemical composition of the fuel determines 

the physicochemical properties and influences on the engine operating characteristics [16]. 

Commercial fuels, depending on a producer, may differ from each other in terms of composi-
tion and physicochemical properties. Fuel oxidation and its stability issues were studied by 

numerous scientists for simple systems using pure hydrocarbons, representative for each fuel 

type or model mixtures. A key decision about the composition of the model fuel is a selec-

tion of the individual compounds—most often pure components representing a hydrocarbon 

groups (it is assumed that their chemical interactions are typical of other similar chemical 

structures) are selected for the composing process.

Gernigon et al. [17] conducted a study aimed at recognition of the oxidation mechanisms of 

aviation fuel. The research was performed for model mixtures containing such mono-com-

pounds as n-dodecane, 1,3-diisopropylbenzene, cyclohexylbenzene and 2,2,4,4,6,8,8-heptam-

ethylnonane in characteristic proportions of the natural composition of the fuel. Studies of the 

decomposition kinetics of hydrocarbons showed that after 48 hours, test diminished from 40 
to 80% of each of mono-compounds. For all hydrocarbons, two stages of degradation were 

recorded: the first is the rapid decrease in the hydrocarbon content during the first hour of 
the experiment; a second step, after approx. 8 hours, is characterized by slow ‘consumption’ 

of hydrocarbon and has an almost linear behaviour. IR spectrum analysis indicated that the 
new structures are formed, because with increasing time, the degradation of characteristic 

band intensity, for the compounds formed by the oxidation (OH, C-O, C=O), increases. The 

antioxidants used during the tests slowed down the hydrocarbons degradation.

Li et al. [10] used n-cetane of 99% purity as a reference fuel for spectroscopic studies of oxi-

dized fuels. Natelson et al. [18] conducted a comparative study of aviation fuel and diesel 

reactivity with respect to mixtures of chemical compounds that have been selected as a model 

fuel (surrogate of diesel and aviation fuel). The studies described herein have focused on 

three substitutes, from three hydrocarbon groups (paraffins, naphthenes, aromatics), which 
are in the aircraft fuel and diesel. In order to maintain the small number of elements for mod-

elling, one component from each of these groups was selected. N-decane (C
10

H
22

) was the 
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 representative of paraffins, n-butyl cyclohexane (C
10

H
20

) was representative of naphthenes, 

and n-butylbenzene (C
10

H
14

) was a representative of aromatics. The surrogates have been 

used in respective proportions, depending on the structure and key features of the real fuel. 
The surrogate reactivity was compared to the average of ordinary aviation fuel and commer-

cial diesel used in the United States.

The authors of following research conducted the study on the stability of diesel fuel dur-

ing long-term storage and the results presented in the work [1]. In the case of petrol, after 

6-month storage, in the IR spectra, slight change in the chemical composition was found. The 
oxidation-promoting substances, i.e. cyclic olefins and hydroperoxide intentionally added to 
the stored fuel, slightly influenced on intensification of transformation process. The study of 
induction period and potential resins content showed the potential adverse changes in pet-

rol stability, which were poorly correlated with changes demonstrated by IR spectroscopy. 
However, in diesel fuel samples after 3–4 months of storage, there was a significant increase in 
the content of sediments. The IR spectra confirmed the changes in the chemical composition 
of the fuel. In the stored samples appeared degradation products of hydrocarbons, contain-

ing functional groups characteristic for acids, aldehydes, ketones and phenols, conducive to 
further reactions leading to the formation of indole/phenalenes.

Aforementioned studies were carried out for commercial fuels containing hundreds of chemi-
cal components of different elemental compositions and structures. Standard tests deter-

mining the petrol stability which include induction period [19] and resins content [20] are 

laborious and time-consuming. Also, the tests do not allow for early detection of changes in 
the fuel stability, which are visible on the IR spectra. The situation is similar in the assess-

ment of stability of middle distillates; the scientists have much more methods to evaluate this 

parameter [21–24]. The authors have attempted to assess the stability of petrol using a quick 
and simple method of induction period at the micro level. To eliminate the influence of a large 
number of compounds presented in petrol and the interactions between them, the study was 

carried out for the model mixture replacing commercial petrol. Furthermore it was checked 
how the presence of the chemically unstable component (cyclohexene) changes the oxidation 

stability of model petrol. The induction period for the model mixture with the addition of 

oxygenated compound (ethanol) that improves the octane number was also determined. The 

studies relating to the stability was conducted for the model fuel replacing diesel. Due to the 

fact that during storage, middle distillates more rapidly degraded than petrol fractions, in 

addition to conventional ageing tests to assess the stability of the fuel at the time of storage, 

an accelerated ageing test at 45°C based on ASTM D 4625 [25] was conducted. The increased 

temperature helps to speed up the reactions occurring in the fuel during storage under con-

ventional conditions.

2. Tests of chemical stability research of model blends

The induction period (micro method) based on the EN 16091 [24] standard was used to 

evaluate the chemical stability of model fuels (replacing petrol). In the micro method, induc-

tion period is defined as the time elapsed from the start of the study to the critical point 
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 determined by the pressure drop of the test system by 10% compared to the maximum pres-

sure registered during oxidation. The fuel ageing process was performed at 140°C, the initial 

oxygen pressure at 500 kPa and the amount of sample at 5 ml. The principle of measurement 
in the above-mentioned norm is similar to the principle used in the Standard ISO 7536 [19]. 

The micro method is less labour intensive than the ISO 7536 standard, which normally is used 

to assess the stability of commercial petrol.

The chemical stability of selected petrol model mixtures was also evaluated by the ASTM 
D 873 method [26]. It determines the fuel potential to create resins and sediments. In this 

method, petrol is oxidized by 4 hours at 100°C in oxygen atmosphere at a pressure of 690–705 

kPa. The test result is given as the contents of potential resins (the total amount of insoluble 
and soluble resins). Insoluble resins—precipitate adjacent to the glass wall of the test cell, 
from which the oxidized fuel was removed, precipitation and soluble resins—are determined 

by weight gain of test cell after the study, compared to the mass of clean test cell before the 

examination. The oxidation products present in the fuel after ageing in dissolved form in the 

oxidized fuel or as deposits adhering to the walls of the test cell, soluble in toluene-acetone, 

are soluble resins.

Four most commonly used methods of testing the degree of diesel oils and their surrogate 

degradation were selected. All of them are methods of accelerated ageing. Since one of the 
characteristics of the fuel ageing process is the deposit formation, two of this type of tests 

were selected for the research, including ASTM D 5304 [21] and EN ISO 12205 [22], where the 

amount of insoluble filterable sediments precipitated during the test and retained on the filter 
and the resin adhering to the walls of the test cell is determined. At the same time, to verify the 
theory of the possibility of the fuel degradation without producing deposits, it was decided 

on two another oxidation stability tests EN 16091 [24] and EN 15751 [23], where the result is 

presented in minutes or hours. The EN 15751 test is dedicated to a fuel containing at least 2% 

v/v of fatty acids methyl esters, and the induction period measured by this method is the time 
from the start of measurement to the moment, where the formation of oxidation products 

recorded by changes in conductivity begins rapidly increase.

The tests conditions were as follows:

ASTM D 5304—temperature, 90°C; oxygen atmosphere at a pressure of 800 kPa; time, 16 hours

EN ISO 12205—temperature, 95°C; oxygen barbotage; time, 16 hours

EN 16091 (called PetroOxy test)—temperature, 140°C; oxygen pressure of 700 kPa

EN 15751 (called Rancimat test)—temperature, 110°C; air flow

Spectrophotometric analysis of model samples or their components, before and after acceler-

ated ageing by PetroOxy test, was carried out using a Magna 750 FT-IR spectrophotometer 
(Nicolet). The spectra measurements were performed in KBr cuvette having a thickness of 
0.065 mm in the range of 4000 to 400 cm−1.

Long-term ageing test was carried out to determine the oxidative stability of the fuel during 

the long-term storage. The fuel samples were placed in a thermostatic chamber at 45°C in 
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vented glass bottles. At set intervals, another bottle with the fuel was removed from the cham-

ber and deposit content was determined.

2.1. Model blend replacing petrol: stability test results

For the preparation of model petrol, the following hydrocarbons were used: n-heptane rep-

resenting paraffins; isooctane, branched-chain alkanes; cyclohexane, cyclic alkane; toluene, 
aromatic compound; and cyclohexene, olefin. A non-hydrocarbon component—anhydrous 
ethanol—which is added to petrol to increase the octane number was also used. The organic 

peroxide (tertiary—butyl hydroperoxide TBHP) dosed in an amount of 50 mmol/l was used 

to prepare and simulate the oxidized fuel [27]. The two antioxidants, one being a mixture of 

sterically hindered phenols (AO-1) and the second—phenylenediamine (AO-2)—were used 
to improve the oxidation resistance of the selected compositions.

In addition, commercial petrol with research octane numbers 95 (95 RON) and 98 (98 RON) 
and fuel fractions used for petrol composing, i.e. cracked naphtha, alkylate and reformate 
were studied. Petrol 95 RON contained ethanol.

The composition of tested model petrol for ageing tests is shown in Table 1. Data concern-

ing the major components of the commercial petrol in Europe presented in the publica-

tion [28] were used to determine the volume fractions of various hydrocarbons. The MP_2 

mixture was prepared by mixing a volume ratio of 95:5 MP_1 petrol with anhydrous etha-

nol. Similarly, the MP_3 and MP_4 fuels were prepared, whereby cyclohexane was added 

instead of alcohol. The MP_5 fuel consisted of 90% v/v MP_1, 5% v/v ethyl alcohol and 5% 

v/v cyclohexene.

Symbol Composition Components (% v/v)

Heptane Isooctane Cyclohexane Toluene Cyclohexene Ethanol

MP_1 – 14.5 36.5 11.7 37.3 – –

MP_2 95% v/v MP_1

5% v/v 

Ethanol

13.8 34.8 11.1 35.4 – 5.0

MP_3 95%v/v MP_1

5% v/v 

Cyclohexene

13.8 34.8 11.1 35.4 5.0 –

MP_4 93%v/v MP_1

7% v/v 

Cyclohexene

13.5 34.0 10.8 34.7 7.0 –

MP_5 90%v/v MP_1

5% v/v 

Cyclohexene

5% v/v 

Ethanol

13.0 32.9 10.5 33.6 5.0 5.0

Table 1. Chemical composition of model petrol for ageing tests.
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Induction period of hydrocarbons and ethyl alcohol is shown in Table 2. Among the tested 
compounds, the induction period using micro method was determined for cyclohexane, 

cyclohexene and ethanol. In the case of other pure compounds, after 360 min (6 hours) of test, 

there was no pressure drop meeting the criteria of the critical point. For comparison, induction 

period of fuel fractions, which are used for composing petrol, was determined. The tests were 

performed for three refinery fractions—the cracked fractions comprising about 20% v/v of ole-

fins and aromatics, alkylate consisting only of paraffins and reformate—which the major com-

ponent was aromatic compounds. The test results indicate that, among petroleum fractions, 

the cracked fraction containing unsaturated hydrocarbons undergoes the fastest oxidation.

The values of the induction period for model mixtures determined by a micro method are 

shown in Table 3. Comparatively, the results for the commercial petrol of 95 research octane 

numbers (95RON) and (98RON), to which deliberately introduced 3% v/v cyclohexene 
(OLEF), were presented in the article. Petrol 95 RON contained 5% v/v ethanol.

The MP-1 hydrocarbon fuel was chemically stable. The addition of cyclohexene, which, 

according to the literature [6], is easily oxidized, affects the chemical stability of the MP-1 
model fuel. The higher the content of this compound, the shorter the induction period of 

MP-3 and MP-4 mixture. The effect of oxygen compound (ethanol) to this parameter was also 

Components Induction period at 140°C, (EN 16091) min

Heptane Not determined*

Isooctane Not determined*

Cyclohexane 311.12

Toluene Not determined*

Cyclohexene 11.31

Ethanol 298.17

Cracked naphtha 33.5

Alkylate 63.5

Reformate 79.9

*Recorded pressure drop was less than 10% after 360 min of the test.

Table 2. Induction period of pure hydrocarbons, ethanol and fuel fractions.

Model petrol Commercial petrol

MP-1 MP-2 MP-3 MP-4 MP-5 95RON 95RON + OLEF 98RON 98RON + OLEF

Induction 

period, min

Not determ* Not determ* 91.5 88.75 Not determ* 44.1 34.9 47.9 39.8

*Recorded pressure drop was less than 10% after 360 min of the test.

Table 3. Induction period determined by micro methods according to PN-EN 16091.
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checked. Ethanol did not deteriorate stability of the MP-1 fuel, moreover positively affected 
the stability of the fuel comprising cyclohexene—the MP-3 mixture broke after 91.5 min, and 
for the mixture containing both cyclohexene and ethanol (MP-5), after 6 hours (360 min) of 

the test decrease in oxygen pressure in the system was less than criterial 10%. In the case of 

 commercial fuels, tested samples were characterized by a much shorter induction period than 

the model fuel. The addition of di-olefins (OLEF) in the amount of 3% v/v caused a sharp 
decline in the value of this parameter.

The obtained results of the induction period were confirmed by the tests of potential resins 
according to ASTM D 873, as shown in Table 4. As a result of the oxidation, the insoluble 
deposits have formed only in the case of MP-3 mixture (containing cyclo-olefin). The presence 
of soluble deposits has been found for all tested mixtures; the lowest value was observed for 

the base composition containing neither cyclohexene nor ethanol. Comparatively the oxida-

tion of fuel samples available on the market was carried out.

Induction period of model petrol and the commercial petrol, where the oxidation effect was 
simulated by the addition of TBHP as a source of radicals, was examined using micro method 

mixtures. The obtained results are shown below (Table 5):

The addition of peroxide to the model mixture resulted in a deterioration of oxidation resis-

tance of samples containing the cyclic olefin (MP-3, MP-5). The samples without the addition 
of cyclohexene did not ‘break’ during the test run for 6 hours. In contrast, commercial fuels 
with intentionally introduced TBHP are characterized by significantly lower induction period 
when compared to fuel without the addition of this substance.

 

Parameter Unit Model petrol Commercial petrol

MP-1 MP-2 MP-3 MP-5 95RON 95RON + OLEF 98RON 98RON + OLEF

Soluble gum mg/100 ml 0.1 0.3 0.3 0.2 31.9 33.9 22.3 25.5

Insoluble gum 0.0 0.0 0.4 0.0 0.2 1.1 0.3 1.2

Potential gum 0.1 0.3 0.7 0.2 32.1 35.0 22.6 26.7

Table 4. Content of potential resins in the model mixtures according to ASTM D 873.

 

Parameter Model petrol Commercial petrol

MP-1 

+ TBHP

MP-2 

+ TBHP

MP-3 

+ TBHP

MP-5 

+ TBHP

95RON 95RON 

+ TBHP

98RON 98RON 

+ TBHP

Induction  

period, min

Not determ* Not determ* 22.3 52 44.1 17.5 47.9 26.2

*Recorded pressure drop was less than 10% after 360 min of the test.

Table 5. Induction period of model fuels and petrol with TBHP determined by the micro method.
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Two antioxidants were used in order to improve the oxidation resistance of the MP-3 sample. 

One of them, defined as AO-1, comprises a mixture of mono-tert-butylphenol, di-tert-butyl-

phenol and tri-tert-butylphenol as active substance; the second (AO-2) comprises N,N′-di-sec-

butyl-p-phenylenediamine as the active ingredient. The effect of antioxidants was evaluated 
by the induction period using the micro method. The activity of antioxidants in petroleum 

fractions was checked. The results, given in Table 6, clearly show that in the tested systems, 

the addition of an amine is more effective.

The induction period of the MP-3 mixture with the addition of antioxidants, for which condi-

tions of oxidized fuel were simulated by the addition of TBHP, was also studied. The tests 

were performed in two variants: (1) antioxidant and peroxide were added to the model mix-

ture, and (2) an antioxidant was introduced to oxidized by peroxide sample. Similar results 

were obtained, regardless of the order of addition of the additive and peroxide. Table 7 con-

tains the induction period for option 2.

Antioxidants, both phenolic and amine, advantageously improved chemical stability of the 
fuel. However, their effectiveness was influenced by the presence of superoxide radicals, 
which is confirmed by the test results shown in the table above. It can be assumed that anti-
oxidants introduced into the fuel, which is already occurring processes associated with oxida-

tion, do not fulfil their protective function.

2.2. Model blend replacing diesel oil: stability test results

Diesel fuel, same as petrol, is a mixture of many hydrocarbons of various structural features. 

The following hydrocarbon groups are in the oil: n-alkanes, iso-alkanes, cycloalkanes, ole-

 

Induction period, min

Without  

additives

+60 mg AO-1/1 kg 

MP-3

+100 mg AO-1/kg 

MP-3

+25 mg AO-2/1 litre 

MP-3

+43 mg AO-2/1 litre 

MP-3l

MP-3 91.5 Not determined* – Not determined* –

Cracked naphtha 33.5 48.7 67.3 60.3 87.3

Alkylate 63.5 73.5 86.8 205 Not determined*

Reformate 79.9 114.4 149.4 Not determined* Not determined*

*Recorded pressure drop was less than 10% after 360 min of the test.

Table 6. Induction period of MP-3 model mixture and petroleum fractions with addition of antioxidants.

Model fuel MP-3

+ TBHP + TBHP+60 mg/kg 

AO-1

+ TBHP+100 mg/kg 

AO-1

+ TBHP+25 mg/l  

AO-2

+ TBHP+43 mg/l 

AO-2

Induction period, min 22.3 22.5 23.5 32.1 36.0

Table 7. Induction period of MP-3 model mixture containing antioxidant additive and TBHP.
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fins, aromatics and polyaromatics. Most of hydrocarbons have 15–17 carbon atoms in the 
molecule, the least hydrocarbons containing less than 9 and more than 23 carbon atoms in 

the molecule. Diesel fuel usually contains 40–50% by weight of paraffins, 20–30% by weight 
of cycloparaffins, 5–15% by weights of aromatics, 2–7% by weight of olefins and up to 7% by 
weight of fatty acid methyl esters (FAME). A disadvantage of esters is their low resistance to 
oxidation. In contrast to the ‘pure’ diesel fuel, esters added to the fuel make it more suscep-

tible to oxidation or autoxidation during prolonged storage.

In the present study, n-hexadecane (n-cetane), n-butyl cyclohexane, n-butyl benzene and fatty 
acid methyl esters were used to compose the model diesel fuel.

The first stage of the study included accelerated oxidation tests of hydrocarbons and fatty acid 
methyl esters. An induction period examination (according to EN 16091 standard) has been used 
for this purpose. The analysis of possible changes in the quality of oxidized samples of mono-

compounds on the basis of the IR spectrum was also conducted. The induction period results are 
shown in Table 8.

For all the tested substances, there was a 10% decrease in oxygen pressure in the measuring 

chamber (on this basis the induction period was determined). N-butyl cyclohexane (saturated 

cyclic hydrocarbon) was the least resistant to oxidation at elevated temperature. N-butyl ben-

zene (aromatic hydrocarbon with an aliphatic side chain) was the most stable compound. 

Among the four tested components, fatty acid methyl esters demonstrated the lowest resis-

tance to oxidation. The changes that occurred as a result of accelerated oxidation of each model 

hydrocarbons were visible in IR spectrum. Products of hydrocarbons oxidation occurred in 
two spectral ranges. For a hydroxyl group, a broad band was from 3600 to 3300 cm−1 (with a 

maximum of about 3500 cm−1), whereas for the carbonyl group, bands were in the range from 

1750 to 1650 cm−1 (characteristic for oxidation products such as carboxylic acids, aldehydes, 

esters, ketones). Each position of the bands may undergo some shifts depending on the struc-

ture of the compound and the proximity of other groups. Figure 1 shows an example of one 

of the tested hydrocarbon (n-cetane) spectra, before and after accelerated oxidation.

In the spectrum of n-cetane after oxidation, there are three peaks at a wavelength of 1710 cm−1, 

1714 cm−1 (area A) and 3558 cm−1 (area B). These peaks are not present in the spectrum of the 
n-cetane before oxidation. Peaks at 1710 cm−1 and 1714 cm−1 are characteristic for carbonyl 

groups (C═O) and are evidence of carbonyl compound formation in the n-cetane, while the 

third band at 3558 cm−1 indicates the formation of hydroxy compounds (─OH). A similar spec-

 

Component Induction period at 140°C (EN 16091) min

n-Cetane 80.57

n-Butyl cyclohexane 61.83

n-Butyl benzene 175.55

FAME 27.33

Table 8. Induction period of pure ingredients and FAME.
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trum was obtained for the oxidized n-butyl cyclohexane, with the difference that was only one 
characteristic carbonyl peak. In the spectrum of the n-butyl benzene, changes were observed 
only in a range of the carbonyl band, and compounds with hydroxyl group were not formed. 

In the spectra of fatty acid methyl esters, there were no changes within the carbonyl band (the 
band is characteristic for esters), whereas area under the hydroxyl peak significantly increased.

The model mixtures (the composition is given in Table 9) were prepared for the tests of resis-

tance to oxidation. Two mixtures were selected: the first mixture composed exclusively of 
hydrocarbons (M0) and the second one composed of hydrocarbons enriched with biocompo-

nent—fatty acid methyl esters (M7).

 Figure 1. Comparison of the n-cetane before oxidation IR spectra (solid line) and after oxidation (dashed line).

 

Components Model fuel M0, %(v/v) Model fuel M7, %(v/v)

n-Cetane 50 46.5

n-Butyl cyclohexane 28 26.0

n-Butyl benzene 22 20.5

FAME 0 7.0

Table 9. Composition of the model blends.
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The test of accelerated oxidation according to the previously described EN 16091 standard 

(PetroOxy test) was used for the mixture oxidation. In the case of the M7 mixture (containing 

FAME), additionally the oxidative stability examination according to EN 15751 (Rancimat 
test) was performed. The results are shown in Table 10.

For the both studied mixtures, there was a 10% decrease in oxygen pressure in the measur-

ing chamber; therefore, the induction period has been determined. The M7 mixture, due to 

the presence of methyl esters, was less resistant to oxidation than M0 blend. Comparative 

analysis of the IR spectra showed that in the M0 mixture after oxidation carbonyl compounds 
with characteristic bands 1715 cm−1 and 1743 cm−1, shown in Figure 2 within D area and wide, 

expanding bands characteristic for hydroxyl groups (C area). In the spectrum of oxidized M7 

mixture containing fatty acids methyl esters are not substantially changed within the carbonyl 
band, because in this spectral range lies peak characteristic for esters. There was however a 
slight increase of the area of 1743 cm−1 the carbonyl band with a typical inflexion point of the 
peak at 1743 cm−1, which indicates the formation of oxidation products. In Figure 2 the spectra 

of the M0 mixture before and after oxidation are shown.

 

Model fuel Oxidative stability (EN 15751), h Induction period (EN 16091), min

M0 – 110.90

M7 38.20 92.58

Table 10. Results of the oxidative stability of the blends of M0 and M7.

 Figure 2. Comparison of the M0 mixture before oxidation (solid line) and after oxidation (dashed line) IR spectra.
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2.2.1. Long-term ageing test

2.2.1.1. Model diesel oil

The M0 and M7 model mixtures were stored for 6 months. Every 30 days, measurements 

of oxidation stability (according to EN 16091 and EN 15751) have been performed, and the 

amount of sediment has been determined (according to ASTM D5304) for the batch of stored 
mixtures. The results are shown in Table 11.

The M0 and M7 model mixtures had a high stability during conducting long-term ageing test. 

Induction period measured by PetroOxy test varied slightly for both samples M0 and M7. At 
the end of the test, threefold increase of the total sediment for the M7 sample was observed. 

The M0 mixture (without FAME) contained the amount of sludge at a similar level. The M7 
mixture had high oxidation stability, 38.2 hours, which decreased slightly during 180 days of 

storage to 36.4 hours.

2.2.1.2. Diesel oil with various content of FAME

Two samples of commercial diesel fuel containing various amounts of fatty acid methyl esters 
were examined. The sample A contained 1% by weight of FAME, while sample B, 7% by 
weight of FAME. The samples were stored at 45°C for 6 months in a dark place and at 30-day 
intervals were collected for testing in order to determine the amount of deposits formed dur-

ing fuel storage (ASTM D 5304 test) and determine the induction period (EN 16091 test, EN 
15751 test). The results are shown in Table 12.

In addition to the above-mentioned tests, the oxidation stability test (according to EN ISO 

12205) was performed. The test was performed at the beginning and after 180 days of storage 

the samples A and B.

At the beginning of the study of the A sample, 7 g/m3 total sludge including 4 g/m3 filterable 
sludge and 3 g/m3 resins were produced while for the same sample after 6 months of storage, 

25 g/m3 filterable sludge and 2 g/m3 resins, 27 g/m3 total.

Storage time, day Model fuel M0 Model fuel M7

Induction period 

EN 16091, min

Deposit content 

ASTM D 5304, 

mg/100 ml

Induction period 

EN 16091, min

Oxidation stability 

EN 15751, hr

Deposit content 

ASTM D5304, 

mg/100 ml

0 110.90 0.6 92.58 38.2 0.9

30 109.45 0.4 91.90 38.0 0.7

60 110.25 0.6 91.25 37.7 1.1

90 108.83 0.8 90.84 37.8 1.5

120 108.30 0.7 88.55 37.3 2.8

150 107.15 1.0 88.05 37.1 2.6

180 105.52 0.9 86.62 36.4 3.5

Table 11. Results of model fuels storage stability test at elevated temperature.
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The same for the B sample, at the beginning of the test, the amount of filterable sludge was 7 g/m3, 

and 1 g/m3 resins, 8 g/m3 total while for the same sample after 6 months of storage, 56.2 g/

m3 filterable sludge and 2 g/m3 resins, 58.2 g/m3 total. The presented data show that with the 

increase of the sample storage period, the total amount of deposits increases several times. 

The increase of sediments was mainly caused by the formation of filterable deposits, while the 
amount of resins did not change.

After 6 months of fuel storage, induction period determined by EN 16091 was lower than 
at the beginning of the study, for both samples A and B. For A sample the induction period 
dropped from 41.9 to 32.8 min and for the B sample from 31.1 to 26.6 min. The induction 

period measured by Rancimat test for B sample containing 7.2% FAME was constant during 
180 days of storage fuel.

3. Conclusions

The model fuel as a petrol substitute composed of four hydrocarbons (heptane, isooctane, 

cyclohexane, toluene) was chemically stable at elevated temperature and oxygen pressure. 

The addition of a reactive olefin, i.e. cyclohexene caused a noticeable reduction in oxidation 
resistance determined by an induction period—the higher the content of this compound in 

the fuel, the lower the chemical resistance. The results of the induction period were confirmed 
by the study of potential resin content—as a result of oxidation, most deposits were formed in 

fuels with cyclohexene. Ethanol introduced in an amount of 5% v/v to the model fuel does not 

have a negative effect on the induction period, whereas the fuel with a cyclic olefin improved 
the value of this parameter. Antioxidants (phenolic and amine) added to the fuel with cyclo-

hexene improved effectively oxidation resistance. The test of induction period of model fuels, 
where oxidation was simulated by the addition of TBHP as a source of reactive radicals, 

showed deterioration of the parameter sample cyclohexene.

Comparative studies conducted using commercial petrol have shown that the model fuel 

reflects behaviour of real fuel to a limited extent. The main drawback is the lack of a ‘breaking’ 

 

Storage time, 

day

Sample A (diesel fuel with 1% FAME) Sample B (diesel fuel with 7% FAME)

Induction period 

EN 16091, min

Deposit content 

ASTM D 5304, 

mg/100ml

Induction period 

EN 16091, min

Oxidation stability 

EN 15751, hr

Deposit content 

ASTM D5304, 

mg/100ml

0 41.9 1.4 31.1 27.5 1.9

30 38.8 2.4 29.9 27.8 3.7

60 39.7 3.7 25.5 26.4 3.5

90 40.7 4.4 27.8 27.9 11.5

120 37.5 8.2 26.9 27.7 12.8

150 39.5 5.7 26.7 27.7 8.6

180 32.8 7.7 26.6 27.5 9.5

Table 12. Results of commercial diesel oil storage stability test at elevated temperature.
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of MP-1 model fuel designating the induction period of accelerated oxidation tests in micro-

scale. It can be assumed that in the model, fuel lacked representative olefin susceptible to 
oxidizing agents but less reactive than cyclohexane.

The diesel fuel was replaced by the model mixtures, which were prepared from three to four 

compounds, representative for hydrocarbon groups presented in commercial fuel. Applied 
hydrocarbons are characterized by a high resistance to oxidation (the induction period was 

over 60 min). Fatty acid methyl esters, which have been used in studies as components from 
renewable sources, were the least resistant to oxidation. The IR spectrophotometric analysis of 
individual hydrocarbons and model mixtures showed that oxidized products with carbonyl or 

hydroxyl binding (carboxylic acids, aldehydes, ketones) were formed as a result of oxidation.

During long-term ageing tests at elevated temperature, the M0 and M7 model mixtures are 

characterized by high stability, and the induction period varied slightly with time. Only for 

the M7 mixture was an increase in the amount of deposits after 6 months of storage, which 

probably was related with the presence of fatty acid methyl esters in the studied system.

In the case of long-term ageing test of commercial A and B fuels, an increase in the amount 
of deposits according to ASTM D5304 after 4 months of storage was observed. In contrast, 
the oxidative stability study using EN ISO 12205 method showed a fourfold and sevenfold 

increase in amount of deposits, respectively, for A and B samples, indicating that the degra-

dation proceeds more quickly in the fuels with the higher FAME. The oxidation stability of A 
and B samples decreased with increasing time of storage.

Based on the obtained results, it can be concluded that the model blends of diesel fuel of the 

composition shown in Table 9 may be used to predict the oxidative stability of diesel fuels 

using the method of the induction period EN 16091, and for the samples containing fatty acid 
methyl esters, the EN 15751 method can also be used. However, model mixtures cannot be 

used to predict the rate of degradation of diesel fuel expressed as the amount of filterable 
sediments and resins. The model mixtures, during long-term ageing process, generate a small 

amount of sediments constant at the same level.
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