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Abstract

Magnesium (Mg) as a biodegradable implant brings a revolution in medical field applica-
tion, especially in bone implant and stent application. Biodegradability of Mg has attracted
attentions of researchers to avoid secondary surgery to remove the implant materials after
healing process. Various advantages of Mgmake it suitable for medical application such as
density, good mechanical properties and biodegradation. However, Mg biodegradability
must be controlled to meet tissue-healing period of time because of the high degradation
in a physiological environment. Fast corrosion and high alkalinity due to hydrogen release
induce tissue inflammation, which limits its clinical applications. Many techniques are
applied to the Mg surface to improve surface biocompatibility and control its biodegrad-
ability. This chapter focuses on anodization of Mg and its alloys to improve corrosion
resistance and biocompatibility for orthopedic application. Mg coating with thin film
apatite could enhance the biocompatibility and increase osseointegration formation in the
bone fracture side. Evaluation of the required anodized film discussed in the chapter such
as chemical composition, biodegradability and biocompatibility.

Keywords: magnesium, anodization, SBF, b106048iocompatibility, biodegradable
metals

1. Introduction

Biodegradable metallic implant material has received considerable attention in biomedical

field such as blood vessels or orthopedic application as load-bearing implant [1, 2]. Mg is

suitable for implant application in human body, for example, Mg stent, bone fixation screw,

microclips in laryngeal microsurgery, bone fixation and wound-closing devices, as shown in

Figure 1. Mg has many appealing properties such as light weight, high strength-to-weight

ratio, good castability and osteoconductivity [3]. However, Mg has limitations mainly due to

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



its high surface chemical reactivity resulting in high degradation rate [4]. The poor corrosion

resistance of Mg limits its clinical applications, as hydrogen evaluation is one of the corrosion

products that increase alkalinity of the surrounded media and causing inflammation of the

surrounding tissues due to the formation of gas pockets [5, 6]. The high degradation rate may

eventually hinder the bone formation and hamper the long-term success of the implants and

decrease its bioactivity as well as loss its mechanical properties [7]. Mg-based implants

exhibited rough surfaces as well as shallow pits and small cavities after one day of implanta-

tion, which formed during the on-going corrosion process to form cracks until the implant

totally dissolves [8]. The high purity of Mg finds to corrode uniformly in vivo [9]. Biodegrad-

able metals (BMs) are typically degraded through the corrosion process when exposed to a

corrosive media. For example, when BMs especially Mg implanted in human body, the corro-

sion/degradation process generated electrochemically in different reactions of metals with an

electrolyte and produced metal oxides and hydroxides [7]. Moreover, hydrogen gas evaluation

is a combined corrosion product; these reactions could be represented in the following chem-

ical equations at anodic dissolution of Mg and the cathodic reaction [10].

Mg ! Mg2þ þ 2e− ðanodic reactionÞ (1)

2H2Oþ 2ne− ! H2 þ 2OH ðcathodic reactionÞ (2)

2H2OþO2 þ 4e− ! 4OH− ðcathodic reactionÞ (3)

Mgþ 2H2O ! MgðOHÞ2 þH2 ðoverall reactionÞ (4)

Figure 1. Different applications of Mg-based implant material: (a) cardiovascular Mg stents, (b) MAGNEZIX screw, (c)

microclip for laryngeal microsurgery (pure magnesium), (d) biodegradable orthopedic implants and (e) wound-closing

devices (WZ21) [11].
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Surface modification is considered one of the most useful and effective methods to

control the initial degradation of Mg and its alloys [12]. Table 1 summarizes the

previous research on Mg coating with different applied techniques and chemical com-

position. Among these techniques, anodization is a widely and traditional process for

metal surface modification to improve the physiochemical properties of metals [13]. A

suitable electrolyte of anodization for the specific application of Mg is one of the

essential requirements when it employed. For example, hydroxyapatite (HA) is a bioac-

tive ceramic material which widely used in bone application [14]. HA could be

engineered to mimic the three-dimensional inorganic component of the bone which is

composed of 65% of bone. The structure of HA could provide the space and area

necessary for vascularization and tissue regeneration. In this chapter, HA coating with

different nanostructures (nanoplates/nanospheres) by means of anodization is discussed

with the associated mechanical integrity, biodegradability and biocompatibility. Forma-

tion of nanoplates could promote the osseointegration and eliminate the mismatching

of the implant material. Accordingly, using stimulated body fluid (SBF) finds to form

apatite film on the surface of Mg in a short duration.

Substrate Experimental and coating type Reference

Mg-Zn-Ca

alloy

Fabrication of hydroxyapatite nanorod on MAO coating to increase bioactivity and improve

the biodegradation behavior

[15]

Mg-1.0Ca

alloys

Sodium phytate (Na12Phy) used as an electrolyte with anodic coatings fabricated in an organic

phosphate containing solution on the Mg-1.0Ca alloys. In order to achieve a proper

degradation rate, acceptable biocompatibility and good antibacterial ability

[16]

AZ31B Different electrolytes such as KOH, Na2SiO3 and Na2B4O7 were used for pulsed DC micro-arc

oxidation (MAO) process

[17]

Mg-Zn-Ca A porous bioceramic containing tricalcium phosphate in (TCP) coating was prepared by

(MAO) at different voltages

[18]

Pure Mg Anodic oxide coatings were prepared using 0.3 M NaOH + 15 g/l ZrO2 and 3 M NaOH + 15 g/l

ZrO2

[19]

AZ31B A chemical conversion film on magnesium alloys is proposed based on the interaction of a

deep eutectic solvent (DES) with the substrate

[20]

Mg-3Zn A nanostructured hydroxyapatite (HA) coating was grown on through the electrophoretic

deposition (EPD) technique

[21]

ZK61 MAO coating film with low crystallinity is composed of MgO, Mg2SiO4 and Mg2Si2O6

employed

[22]

AZ31 A dopamine-induced hydroxyapatite coating was successfully developed on the AZ31 alloy [23]

AZ31 Use of a microwave-assisted coating technology to improve the in vitro corrosion resistance

and biocompatibility of AZ31Mg alloy

[24]

Pure Mg A simple strontium phosphate (SrP) conversion coating process was developed to protect

magnesium (Mg) from the initial degradation postimplantation

[25]

AZ31 A Si-doped calcium phosphate coating was achieved via pulse ED on the AZ31 alloy. A novel

dual-layer structure was observed with a porous lamellar-like and outer block-like apatite

layer

[26]

Table 1. Summary of Mg surface modification techniques.
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2. Anodization process

Anodization is an electrochemical process that converts the metal surface into a decora-

tive, durable, corrosion-resistant and anodic oxide finish [27]. The coating thicknesses can

range from 5 to 200 μm. Typically, anodic oxide layers grow depending on the process

time and applied voltages [28], leading to a direct dependence of the oxide thickness on

the applied voltage as shown in Figure 2. For metals and alloys with barrier-type anodic

oxide films, blocking electron conduction under anodic polarization an anodization can be

carried out at high voltages in aqueous solution [29]. Therefore, thick oxides that can be

grown on the conductive oxide layers on the metal surface by means of anodization are

limited to the applied voltage. The applied voltage is lower than that at which water can

dissociated with evaluation of oxygen, whereas, above that potential water tends to

decompose rather than thickening of the oxide layer. For example, Mg has potential and

conductivity; therefore, the resulting potential while anodization applied depends mainly

on the electrolyte composition [29]. The incorporation of electrolyte materials with grow-

ing oxide/hydroxide layers can form an oxide layers that have higher blocking efficiency

Figure 2. Illustrative diagram shows the mechanism of anodization technique. Mg acts as an anode where it converted to

Mg2+ then reacts with O2− to formMgO in the presence of OH ions, Mg(OH)2 formation on the metal surface and hydrogen

formed the surrounding cathode part.
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toward the corrosive ions. Therefore, thick and compact film is a challenge for Mg inter-

face anodization treatment, however, obtaining a low Pilling-Bedworth ratio for the

formed anodized film [30]. This could cause an internal stresses on the generated anodic

film and subsequently crack defects [31]. The degree of porosity and oxide layer quality

could be enhanced by anodization parameter adjustment. These parameters include elec-

trolyte composition, anodization voltage, current and time [32]. Anodization performed in

different baths, for example an alkaline electrolyte is based on potassium hydroxide,

phosphate, fluoride, or silicate-containing baths. Electrolyte composition plays a critical

role not only to enable anodization at high voltage but also to reduce Mg dissolution

during the process [33]. There are various methods and techniques with a wide range of

patents to produce such anodic films [34]. In addition to anodization approaches which

are mainly used to thicken the native oxide/hydroxide films on metal surfaces, dedicated

anodization approaches have been explored to obtain nanoporous oxide layers. Therefore,

the appropriate electrolyte composition leads to competition between Mg dissolution

during anodization and anodic oxide film growth. Thus, optimized parameters based on

the electrochemical process self-organized growth of nanoporous or nanotubular oxide

layers could performed; however, it is still at early stage for Mg and its alloys [35, 36].

Table 2 summarizes different Mg alloy anodization/PEO on different electrolytes with the

resulted film thickness and chemical composition and the mainly electrochemical corro-

sion parameters (Ecorr and icorr).

Substrate Electrolyte Thickness Layer composition icorr Ecorr Refs.

AZ91D PEO in NaOH + (NaPO3)6 +

Ca(H2PO2)2 solution

3–5 μm Mg, Al, P and Ca and

little crystallized MgO

X X [40]

AZ91D PEO in Na2SiO3 + (NaPO3)6
+ Ca(H2PO2)2 solution

8–10 μm Mg, Al, Si, P and Ca,

crystallized Mg2SiO4

and MgO

X X [2]

AM50 PEO in CaOH2 + Na3PO4

solution in different mass

ratios

in the range of

20–70 μm

MgO, Mg3(PO4)2,

amorphous Ca-phases,

CaH(PO4)2, CaO2

X X [41]

AZ91 NaOH 1–2 μm MgO and Mg X X [42]

ZK60 100 g/l NaOH + 20 g/l

Na2B4O7�10H2O + 50 g/l

C6H5Na3O7�2H2O + 60 g/l

Na2SiO3�9H2O

10–60 μm MgO and Mg2SiO4 1.829 ×

10−2 (mA/cm2)

−1.46 [43]

AZ31 SBF solution 5–25 μm MgO, Mg and

amorphous apatite

103 to 0.9 μA/cm2
−1.39 to

−1.45

[44]

AZ31 (ZrO2-NPs) dispersed in

SBF

X Mg, MgO, ZrO2, and

Mg2Zr5O12

−1.46 to −1.38 2.796 to

1.9

[45]

AZ31 (SBF solution + HA) then

hydrothermal in 5 M

NaOH at 60°C for 2 h

X Mg, MgO, CaO and

HA

7.6 to 1025 nA/cm2 1.52 to

1.31

[46]

Table 2. Anodization of Mg alloys in different electrolyte.
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3. Surface morphology and composition

The design of surface morphology structure of biodegradable implant is an important factor

since the interconnection of biomaterial interface with surrounding tissues is important for

implant engagement and cell attachment [37]. In bone implant, nanoplate and nanosphere

structure of HA coating as a biomimetic films are considered for the Mg coating interface,

which is characterized by mimicking that of bone [38]. Figure 3a shows the nanoplates

formation on the surface of AZ31 Mg alloy by the anodization method in SBF solution at 50

V and 30 mAwith a process time of 10 min followed by the hydrothermal process in NaOH

solution at 60°C for 2 h. However, adding HA powder to SBF solution resulted in

nanosphere structure. Natural bone consists of HA nanocrystals in a plate-like shape with a

length of 30–200 nm and a thickness of 2–7 nm [39]. As a result, designing HA films with the

specific orientation and morphology is an important approach to improve Mg biological

properties such as bioactivity and mimic that on natural bone. Furthermore, such nanoplates

can promote the porosity of the implant interface, as a result avoid a mechanical mismatch

between the hosts and implant interface, stress shield effect can be eliminated by altering

surface porosity.

The chemical composition of HA coating finds is composed ofMg, MgO, HA and CaO peaks as

shown in XRD peaks in Figure 4a. Furthermore, FT-IR spectra can indicate the outer HA film

formation as shown in Figure 4b. The bands at awave number of around 530 cm−1 is assigned to

PO3−
4 in HA at the vibration of (ν4) and at the vibration of (ν3) around peaks of 1070 cm−1. On the

other hand, hydroxyl group absorption of HA is located at 3703 cm−1 [47], in addition to the

Figure 3. Surface morphology of anodized AZ31 Mg alloy in different electrolytes followed by the hydrothermal process

in NaOH at 60°C for 2 h and SBF for 2 days at 37°C: (a) SBF as an electrolyte resulted in nanoplates morphology and (b)

(SBF-10 g/l HA) resulted in nanospheres structure.
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stretching ν(OH) that is observed at 3550, 3489 and 3412 cm−1. The bands at 1147, 1070, 986 and

877 cm−1 are assigned to the P-O stretching vibration in the HPO2−
4 groups, respectively. The

CO2−
3 group is located at 1386 cm−1 [26].

4. Mechanical integrity

Mechanical tuning is one of the most effective factors for biodegradable Mg implant in load-

bearing application and stent application [48]. Basically, implant materials act as a mechan-

ical support during the healing process thereafter degrade and loss their mechanical prop-

erties. Because of that the chemical and mechanical stabilities of implant materials during

the healing period are critically important. While implants are exposed to human body

fluid, it often experiences considerable loadings and, thus, may undergo environmentally

assisted cracking (stress corrosion cracking (SCC) and corrosion fatigue). Figure 5 shows the

mechanical behavior of Mg implant in vivo for 12 weeks of implantation and the resulted

tensile strength. The coated samples with HA indicated a higher mechanical stability than

uncoated samples. The degradation volumes of the bare and HA-coated Mg specimens after

6 and 12 weeks of implantation find that the coated samples have lower degradation with

addition protection (Figure 5b). The concept of the mechanically tuned with degradation

rate during tissue regeneration is illustrated in Figure 5c. In period of 1–7 days, inflamma-

tion process, hematoma formation with atypical inflammatory response, occurs. Next stage

repairs, hematoma, granulation tissue, connective tissue, cartilage, mineralization, woven

bone, continuous for 3–6 months depend on the fracture position and type. In the final

stage, remodeling, woven bone is replaced by cortical bone and the medullary cavity is

restored, which persists for several years.

Figure 4. XRD patterns and FTIR spectra of the surface treatment samples, two anodized samples in (i) SBF solution and

(ii) SBF/HA solution followed by the hydrothermal process according to reference [46].
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5. Biodegradation evaluation

5.1. Electrochemical evaluation

Electrochemical polarization is an efficient technique used to evaluate metal corrosion poten-

tial in a short duration. Metals are commonly performed using electrochemical corrosion tests

in SBF solution (pH = 7.4) at 37°C to mimic that of human blood plasma. The experimental

setup consisted of three conventional electrodes within a cell, which named as working elec-

trode, a saturated calomel electrode (SCE), or Ag/AgCl as a reference electrode, third is counter

Figure 5. (a) In vivo evaluation of the mechanical and degradation properties of Mg coated with calcium orthophosphate

coatings. (a) Optical images of the HA coated and bare samples at different implantation times at top and tensile strength

of the HA-coated Mg samples comparing to the bare one after interval time. Reprinted from reference [49]. (b) Degrada-

tion volumes of the bare and HA-coated Mg specimens after 6 and 12 weeks of implantation [50]. (c) The schematic

diagram of degradation behavior and the change of mechanical integrity of BM implants during the bone healing process

[51].
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electrode such as a platinum wire. The experiment is conducted and monitored the current

density as a function of the free open-circuit potential using the potentiostat of an electrochem-

ical device. Initially, the samples are exposed to the solution for 10–20 min, a scan rate (mV/s)

of the potentiodynamic polarization test is main parameter when test was performed. Corro-

sion current density (icorr) could be estimated from the linear fit and Tafel extrapolation to the

cathodic and anodic parts of the polarization curves. Thereafter, the corrosion rate can be

calculated based on Faraday's laws.

CR ¼ 3:2710−3
Ewicorr

ρ
(5)

where Ew is the equivalent weight of the corroding species in grams and ρ is the density of the

corroding material in g/cm3.

Faraday’s laws assume a uniform corrosion in terms of the penetration, here the corrosion

current (icorr) is an effective factor in the corrosion rate and therefore the resulted value does

not typically indicate an absolute corrosion rate for Mg. However, it represents indication of

the corrosion distortion, which occurs at a selected point in time, in terms of current density. It

is seldom in Mg and its alloys to degrade uniformly. The corrosion rate expressed with a

current density value is highly accurate and can be considered to have the highest resolution

of all methods. Current could be originating from a different local site on the surface and the

method is considered as short-term and destructive one. In addition to the potentiodynamic

polarization technique, it is essential to understand the mechanism of the corrosion rate; it may

not suitable as a good indication for long-term corrosion rates. Electrochemical impedance

spectroscopy (EIS) is a powerful tool that is used to evaluate a different application such as

biosensors and conductivity as well as corrosion resistance of different metals using the

frequency response of AC polarization [52]. EIS conducted with a range of low magnitude

polarizing voltages that cycle from a peak anodic to peak cathodic voltage spanning a spectra

of voltage frequencies. However, the technique has different components to understand the

corrosion resistance of a metal surface. The components such as capacitance and resistance are

obtained for each frequency and can then be used to explain a number of phenomena and

properties of the metal surface. A determination of the corrosion rate is possible when the EIS

determined polarization resistance (Rpolar) parameter at the zero frequency limit is used. The

Rpolar is inversely proportional to the current density (jcorr) as described by the Stern-Geary

relationship [44].

jcorr ¼
βaβc

2:303Rpolarðβaþ βcÞ
(6)

where βa and βc are the anodic and cathodic Tafel slopes, respectively.

A corrosion rate can be determined by transferring the current using EIS, the primary function

of performing EIS on Mg and its alloys in an electrolytic solution is the identification and

quantification of the formation behavior of corrosion layers which produced by the corrosion

process. However, EIS results have some limitations as it can be affected by the Mg dissolution

at low frequencies and therefore the chosen equivalent circuit. As a result, to employ EIS
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properly, a deep understanding of the corrosion processes takes place through the process

and the best model. Figure 6a shows the potentiodynamic polarization curve of bare samples

and anodized ones in SBF and SBF/ZrO2 NPs as an electrolyte with the resulted potential and

current density. Moreover, EIS results in terms of Nyquist plot and bode diagrams are shown

in Figure 6b and c. Both techniques find corrosion resistance in anodized samples comparing

to the bare samples.

5.2. In vitro immersion test

In this technique, an in vitro degradation rate in terms of mass loss is evaluated, before sample

sterilization the initial weight of the samples was recorded. Then samples were immersed in a

ratio of 30:1 volume to a weight ratio of SBF solution or Dulbecco's modified eagle's medium

(DMEM) supplemented with 10% fetal bovine serum (FBS) for 168 h (1 week) under cell

culture conditions (37°C, 20% O2, 5% CO2 and 95% humidity). The immersion medium

recommended to be changed every 2–3 days to mimic the semistatic immersion test and to

Figure 6. Corrosion evaluation of AZ31 Mg and anodizing samples in the SBF and SBF/ZrO2 NP electrolyte. Test was

performed in SBF solution at 37°C under a three-electrode system where Mg samples act as an electrode, platinum as a

counter electrode and Ag/AgCl as a reference electrode. (a) Potentidynamic polarization curves, (b) Nyquist plot and (c)

Bode plot diagrams.
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avoid saturation effects according to the standard ASTM-G31-72. After immersion time, the

formed corrosion products were removed by treating the corroded disc with chromic acid (200

g/L Cr2O3 + 10 g/L AgNO3) at least for 20 min at room temperature [52].

Finally, the degradation rate (DR) was calculated in mm/year using the equation [53]:

DR ¼ 8:76104
Δg

A:t:ρ
(7)

where Δg is the change in weight by grams, A is the exposed surface area of the sample in cm2,

t is the immersion time in hours and ρ is the density in g/cm3.

While exposure of the Mg substrate to aqueous solution generates H2 and OH− ions along the

process of its degradation reaction with the medium, because of that the fluid pH value tends

to be increase around the Mg surface. However, the instability of Mg occurs at pH values less

than 11, a soluble compound formation with most inorganic ions would inhibits the formation

of passive films of magnesium hydroxide in the biological environment. Moreover, the

released Mg ions are another factor to indicate the dissolution of Mg in the aqueous solution

process according to Eq. (8).

Mgþ 2H2O ! Mgþ2
þ 2OHþH2↑ (8)

There are various corrosion types during the Mg degradation process, including uniform

corrosion [54, 55], localized corrosion [54, 55], flow-induced corrosion [55], erosion corrosion

[56], galvanic corrosion [57], stress corrosion [58], atmospheric corrosion, hydrogen cracking

[59] and intergranular corrosion [60]. It is worth noting that localized corrosion is always a

source of stent fracture. In order to evaluate the biodegradability of Mg implant, a comparison

between the anodized and the bare samples under in vitro conditions using SBF solution at 37°

C up to 30 days usually is carried out. The corrosion rate based on mass loss and Mg2+ ions

release rate and pH value is shown in Figure 7a–c. Both two factors can indicate the biode-

gradability behavior of Mg and its alloys. The tendency of bare samples to corrosion is

significantly different from that of the anodized samples which has more corrosion resistance.

The formation of Mg(OH)2 as a corrosion product in bare samples generated once exposed to

aqueous solution. Similarly, more Mg ions release from bare samples resulted due to the high

degradation and high sensitive surface of Mg. When Mg exposed to a corrosive medium

similar to the human plasma corrosion product such as Mg(OH)2 and hydrogen release effect

on the pH value of the surrounded solution. In short immersion time, Mg interface exhibits

different features especially when treated with the CaP apatite film [61]. For example, when

the surface rich with labile ions of CaP it was found to form HA nanoplates, as shown in

Figure 7e; however, a pours structure formed in the case of apatite film enriched with ZrO2

NPs, as shown in Figure 7f. In contrast, the bare sample exhibits cracks and corrosion occur-

rence. These results can be attributed to the formation of a porous layer of nanoparticles/

plates/rods of the CaP compounds with corrosion products such as magnesium hydroxide

and calcium magnesium phosphate.
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Figure 7. Immersion test results are showing, (a) corrosion rate, (b) Mg ions released and (c) pH value. FESEM images show the surface morphology of (d) bare sample (e)

anodized sample in SBF (f) anodized samples in SBF/ZrO2 NPs after 3 days of immersions in SBF solution at 37°C.
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Magnesium sample employed to the anodization technique is more stable in aqueous solutions

and corrosive media due to the formation of a thin ceramic layer on the Mg interface. There-

fore, Mg biodegradability can be controlled and delayed. An illustrative diagram in Figure 8b

illustrates a corrosion mechanism before and after anodization treatment in 0.9 NaCl solution.

First, the corrosive solution reacts with the substrate interface and starts to corrode and induce

cracks and pitting corrosion. Upon increasing the exposure time, anodized film penetrated and

the solution reached substrate surface. Thereafter, both the Mg(OH)2 andMgO by means of Cl−

ions penetration are converted and degraded according to the chemical equation:

MgOþH2O ! Mgþ2 þ 2OH− (9)

Instantaneously, the corrosive solution contact substrate surface Mg+2 ions released and hydro-

gen gas evaluation occurs. As a result, Mg (OH)2 will deposit and react with Cl− ions to form

MgCl2 leading to corrosion occurrence according to the chemical equation:

MgðOHÞ2 þ Cl− ! MgCl2 (10)

The pitting corrosion on the metal surface is due to chloride ions; therefore, the main

concept of anodization film is to block Cl− ions and retard corrosion occurrence on the Mg

surface [6].

Figure 8. Schematic illustration of the degradation process: (a) bare AZ31 Mg alloy and (b) anodized samples.
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6. In vitro biocompatibility

Biomaterials must be designed to be biocompatible; however, the majority of biomaterials

community has failed to understand the biocompatibility paradigm [62].

Basically, biocompatibility is a characteristic and a complex characteristic at a system and not a

material. There are different effects of materials in biological systems as, tissue processing

involved in wound healing, the endothelium in contact with intravascular implant devices and

the stem cells in bioreactors, the target cells in gene therapy, emphasize that there is no material

with complete biocompatibility characteristics [63]. In biodegradable implant such as Mg, bare

substrates without any surface modifications show few round shapes of cells on its surface. These

attributed to many factors which mainly show corrosion behavior with combined hydrogen gas

and induce toxicity to surround tissues. Moreover, surface tribology has additional effect, for

example, a rough surface has more cell attachment comparing to smooth one in nanoscale, which

behaves as accommodation for cells [64]. In addition, biomimetic nanostructure on the implant

surface can enhance biocompatibility and cell proliferation. The Mg substrate that employed to

surface modifications using the anodization/hydrothermal process with nanoplate structure

shows flat and well-spread features among the nanoplates, as shown in Figure 9. Cell prolifera-

tion of the extraction of HA nanoplates on theMg alloy surface finds higher cell proliferation. This

can conclude that cells canmodify their morphology to match the surface topography as shown in

the inset images in Figure 9. These findings indicate that how surface modification can influence

Figure 9. Figure shows the cell viability of anodized/hydrothermal treated Mg samples using cck-8 (a). FESEM images

show cell attachment after 5 days (b); naked (c); (SBF-HA) (d); and (SBF-HA)/HT samples. Cell proliferation is presented

in means ± STD (n = 4) based on ANOVA one-way test (*indicates p < 0.05).
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surface bioactivity and cell adhesion to the implant interface. Implant surface adheres with the

cells and eliminates the mismatch between the surface of the biomaterials and the connected

tissue [65]. Extraction of anodized layers shows more cell viability and proliferation as shows in

Figure 10 using confocal microscopic images comparing to the bare substrates extraction.

7. Conclusions

Magnesium and its alloys are exhibit biodegradable in physiological media as well as its stiffness

close to bone. In addition characteristics of Mg such as lowweight, high specific strength and good

biocompatibility bring a revolution in medical field toward new generation of biomaterials. How-

ever, the high degradation is accompanied by the hydrogen gas effect on the healing of the

surrounded tissues. During its healing period, Mg implants lose their mechanical integrity before

the bone heals due to the high degradation process. To overcome these limitations, different

methods and techniques have been proposed to control the degradation rate of Mg to acceptable

levels. Anodization as one of the surface modification techniques finds to increase the surface

bioactivity and control degradation rate. In bone substituteMg acts as amechanical support during

the healing process; moreover, the presence of apatite film on the surface of implant materials can

enhance osseointegration of the defected bone. Furthermore, more research studies are devoted to

Mg to be used in the future as implant materials in clinical application.

Figure 10. Microscopic florescent images for the live/dead cells of the (a) negative control, (b) positive control, (c) bare

sample, (d) AZ31 Mg alloy anodized in SBF at 37°C.
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