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Abstract

This chapter describes the implementation on field programmable gate array (FPGA) of
a turbo decoder for 3GPP long-term evolution (LTE) standard, respectively, for IEEE
802.16-based WiMAX systems. We initially present the serial decoding architectures for
the two systems. The same approach is used; although for WiMAX the scheme imple-
ments a duo-binary code, while for LTE a binary code is included. The proposed LTE
serial decoding scheme is adapted for parallel transformation. Then, considering the
LTE high throughput requirements, a parallel decoding solution is proposed. Consider-
ing a parallelization with N = 2p levels, the parallel approach reduces the decoding
latency N times versus the serial decoding one. For parallel approach the decoding
performance suffers a small degradation, but we propose a solution that almost elimi-
nates this degradation, by performing an overlapped data block split. Moreover, consid-
ering the native properties of the LTE quadratic permutation polynomial (QPP)
interleaver, we propose a simplified parallel decoder architecture. The novelty of this
scheme is that only one interleaver module is used, no matter the value of N, by
introducing an even-odd merge sorting network. We propose for it a recursive approach
that uses only comparators and subtractors.

Keywords: LTE, WiMAX, turbo decoder, single interleaver, Max LOG MAP, parallel
architecture, FPGA

1. Introduction

The channel coding theory was intensively studied during the last decades, but the interest on this

topic increased even more following the pioneering work of Berrou et al. on turbo codes [1–3].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In their early existence, the turbo codes proved to obtain great decoding performances, so that

they were used in many standards as recommendations. They transformed into a more

appealing solution once the processing capacity increased for the field programmable gate

array (FPGA) and digital signal processor (DSP). Their implementation complexity was not

prohibitive anymore, this allowing them to become mandatory.

In this context, the Third-Generation Partnership Project (3GPP) organization early proposed

these novel coding techniques. It should be mentioned that turbo codes were introduced in

standard by the first version of Universal Mobile Telecommunications System (UMTS) tech-

nology (in 1999). Moreover, the next UMTS releases (the following high-speed packet access)

contributed with new and interesting features, while turbo coding remained still unchanged.

Furthermore, several modifications were introduced by the long-term evolution (LTE) stan-

dard. Even if they were not significant as volume, their importance arose in terms of concept.

In this framework, the 3GPP proposed for LTE a new interleaver scheme, while maintaining

exactly the same coding structure as in UMTS. Also, the turbo codes were introduced by the

Institute of Electrical and Electronics Engineers (IEEE) in 802.16 standards, known as the base

for WiMAX systems.

In Ref. [4], an UMTS dedicated turbo decoding binary scheme is developed, whereas for

WiMAX systems a similar duo-binary architecture is presented in Refs. [5] and [6]. Thanks to

the new LTE/LTE-advanced (LTE-A) interleaver, the decoding performances are improved, as

compared to the ones corresponding to the UMTS standard. In addition, the new LTE

interleaver comes with native properties suited for a parallel decoding approach inside the

algorithm, thus taking advantage on the main idea brought by turbo decoders (i.e., exchanging

the extrinsic values between the two decoding units). In Ref. [7], a serial decoding scheme

implemented on FPGA is presented. However, parallelization is still required when high

throughput is required, as in the particular case of LTE systems using diversity techniques.

In the past years, many interesting parallel decoder schemes were studied by the researchers. In

this context, the obtained results are measured on two directions. The direction number 1 is

represented by the decoding performance degradation between the parallel and the serial solu-

tions. The direction number 2 is the hardware resources occupied for such parallel decoder

implementation. In Ref. [8], a first group of parallel decoding solutions is presented. It is based

on the classical maximum a posteriori (MAP) algorithm. This method passes through the trellis

twice, first time to compute the forward state metrics (FSM) and the second time to obtain the

backward state metrics (BSM) and simultaneously the log likelihood ratios (LLR). Following this

approach, several approaches were developed in order to reduce the theoretical latency of the

decoding process of 2K clock periods for each semi-iteration (where K is the data block length).

In Refs. [9] and [10], a second set of parallel architectures that take advantage of the quadratic

permutation polynomial (QPP) interleaver algebraic-geometric properties is described. In

these works, efficient hardware implementations of the QPP interleaver are proposed. How-

ever, the parallelization factor N still represents the number of used interleavers in the devel-

oped architectures.

In Ref. [11], a third approach was reported, which consists in using a folded memory. All the

data needed for parallel processing are stored on the same time. On the other hand, the main
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challenge of this kind of implementation is to correctly distribute the data to each decoding

unit, once a memory location containing all N values is read. In order to solve this issue, an

architecture based on two Batcher sorting networks was proposed. However, even in this

approach, N interleavers are still needed to generate all the interleaved addresses that input

the master network.

In this chapter, we present the optimized implementations for serial architectures for WiMAX

and LTE turbo decoding schemes. Then, for LTE systems, we describe a parallel decoding

architecture introduced in Refs. [12] and [13], which also relies on a folded memory-based

approach. Nevertheless, the main difference as compared to the already existing solutions

presented above is that our proposed approach includes only one interleaver. Additionally,

with an even-odd merge sorting unit [14, 15], the parallel architecture maintains the same

structure as the serial one, the only difference being given by the fact that the soft-input soft-

output (SISO) decoding unit is included N times in the scheme. The block memory number

and dimensions remain unchanged between the two proposed decoding structures. In terms of

decoding performance, the obtained results for the serial and parallel approaches are almost

similar. We propose an overlapped data block split that reduces the small degradation intro-

duced by the parallel architecture.

Finally, we present throughput and speed results obtained when targeting a XC5VFX70T

[16] chip on Xilinx ML507 [17] board. Moreover, we provide simulation curves for the three

considered cases, i.e., serial decoding, parallel decoding and parallel decoding with overlap.

2. The coding scheme

2.1. WiMAX systems

Section 8.4 from 802.16 standard [18] presents the coding scheme on the basis of which the

proposed decoder is implemented. Figure 1 shows the duo-binary encoder. The native coding

rate is 1/3. In order to obtain other coding rates, a puncturing block must be used. Accordingly,

a depuncturing block must be added to the receiver architecture.

Figure 1. (a) 802-16e turbo coding scheme; (b) constituent encoder.
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Let us define the following parameters: coding rate R; block dimension (in pairs of bits, i.e., di-

bits) K, which is computed independent of a coding rate, as a function of the uncoded block

size; the number of iterations L, i.e., the latency Latency (in clock periods); information bits rate

Rb [Mbps]; and system clock frequency Fclk [MHz].

As mentioned in Ref. [6], the main problem of a convolutional turbo code (CTC) decoder

implementation is represented by the amount of required hardware resources. Moreover, in

order to reach the targeted high data rate, the system clock has to be fast. Equation (1) presents

the decoding throughput.

Rb ¼
2K

Latency Tclk
(1)

For a fixed latency algorithm, according to Eq. (1), the output throughput is improved when

achieving a higher clock frequency. Another way is to reduce latency using a parallel architec-

ture; however, this increases the occupied area and may lead to a smaller clock frequency due

to longer routes. Moreover, another direct constraint is the significant memory needed for

storing data. This issue also affects the frequency, since a large number of used memory blocks

leads to a large resource spread on chip and, obviously, longer routes.

Taking into account the previously mentioned aspects, we can conclude that all the

parameters presented above are related, so that a global optimization is not possible.

Consequently, we have chosen to balance each direction in order to meet throughput

requirements.

2.2. LTE systems

A classic turbo coding scheme is presented in the 3GPP LTE specification, including two

constituent encoders and one interleaver module (Figure 2). The data block Ck can be observed

at the input of the LTE turbo encoder. The K bits from this input data block are transferred at

the output, as systematic bits, in the steam Xk. At the same time, the first constituent encoder

processes the input data block, resulting the parity bits Zk, whereas the second constituent

encoder processes the interleaved data block C
0

k, resulting the parity bits Z
0

k. Combining the

systematic bits and the two streams of parity bits, we obtain the following sequence (at the

output of the encoder): X1, Z1, Z’1, X2, Z2, Z’2,…, XK, ZK, Z’K.

In order to drive back the constituent encoders to the initial state (at the end of the coding

process), the switches from Figure 2 are moved from position A to position B. Since the final

states of the two constituent encoders are not the same (different input data blocks produce

different final state), this switching procedure generates tail bits for each encoder. These tail

bits are sent together with the systematic and parity bits, thus resulting the following final

sequence: XK+1, ZK+1, XK+2, ZK+2, XK+3, ZK+3, X’K+1, Z’K+1, X’K+2, Z’K+2, X’K+3, Z’K+3.

As it was previously mentioned and discussed in Ref. [7], the LTE turbo coding scheme

introduces a new interleaving structure. Thus, the input sequence is rearranged at the

output using:
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C′

i ¼ C
πðiÞ, i ¼ 1, 2,…,K , (2)

where the interliving function π applied over the output index i is defined as

πðiÞ ¼ ðf 1 � iþ f 2 � i
2ÞmodK (3)

The input block length K and the parameters f1 and f2 are provided in Table 5.1.3-3 in Ref. [19].

3. The decoding algorithm

3.1. WiMAX systems

The decoding architecture consists of two decoding units called constituent decoders. Each

such unit receives systematic bits (in natural order or interleaved) and parity bits, as shown in

Figure 1.

The block diagram implements a maximum-logarithmic-maximum A posteriori (Max-Log-

MAP) algorithm. For the case of turbo binary codes, the decoder scheme will represent, in

the log likelihood ratio (LLR) space, each binary symbol as a single likelihood ratio. But in

the situation of turbo duo-binary codes, the decoding unit requires three likelihood ratios

in the same space. If we consider the duo-binary pair Ak and Bk, the LLRs may be

computed as:

Figure 2. LTE turbo coding scheme.
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Λa,b ¼ ðAk,BkÞ ¼ log
PðAk ¼ a,Bk ¼ bÞ

PðAk ¼ 0,Bk ¼ 0Þ
(4)

where (a,b) are (0,1), (1,0), or (1,1). The ratio set is updated by each decoding unit (constituent

decoder) for each input pair, using the corresponding LLRs and parity bits, also seen as LLRs.

Then, the output LLRs minus the input LLRs provides the extrinsic values. The trellis for a

duo-binary code contains eight states, each such state with four inputs and four outputs, as

presented in Figure 3. Using the systematic and parity pairs LLRs, for each branch, the metric

γkðSi ! SjÞ is computed, i.e.,

γkðSi ! SjÞ ¼ Λi
a,bðAk,BkÞ þ wΛðWkÞ þ yΛðYkÞ (5)

The constituent decoder (Figure 4) performs the corresponding processing forward and back-

ward over the trellis. When moving forward, the decoder computes the unnormalized metric

α
0

kþ1ðSjÞ corresponding to each computed normalized metric αkðSiÞ associated with state Si,

using (Figure 4)

α′

kþ1ðSjÞ ¼ max
Si!Sj

fαkðSiÞ þ γkðSi ! SjÞg (6)

Figure 3. WiMAX decoder trellis.
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where the operator “maximum” is executed over all four branches entering the state Sj at the

time stamp k + 1. Once the metrics for all states are updated at time stamp k + 1, the normali-

zation versus the state S0 value is made by the decoder. Analogously to forward processing, for

backward moving, the decoder computes:

β
0

kðSiÞ ¼ max
Si!Sj

fβkþ1ðSjÞ þ γkðSi ! SjÞg (7)

where the operator “maximum” and the normalization method are similar to Eq. (6).

The initialization with null values is carried out for all the forward and backward metrics at all

states. Once the new values are computing and stored, the decoding unit executes the second

step in the decoding procedure, i.e., the LLRs computing as in Eq. (4). The decoding unit starts

by computing the likelihood ratio for each branch

ZkðSi ! SjÞ ¼ αkðSiÞ þ γkðSi ! SjÞ þ βkþ1ðSjÞ (8)

and continues with the value

tkða, bÞ ¼ max
Si!Sj:ða, bÞ

fZkg (9)

where the operator “maximum” is computed over all eight branches generated by the pair

(a, b). At the end, the output LLR is computed as

Λo
a,bðAk,BkÞ ¼ tkða, bÞ−tkð0, 0Þ (10)

The decoding procedure is executed for a decided number of iterations or until a convergence

criterion is reached. Then, a final decision is taken over the bits. This is achieved by computing

for each bit from the pair (Ak, Bk) the corresponding LLR:

ΛðAkÞ ¼ maxfΛo
1,0ðAk,BkÞ,Λ

o
1,1ðAk,BkÞg−maxfΛo

0,0ðAk,BkÞ,Λ
o
0,1ðAk,BkÞg (11)

ΛðBkÞ ¼ maxfΛo
0,1ðAk,BkÞ,Λ

o
1,1ðAk,BkÞg−maxfΛo

0,0ðAk,BkÞ,Λ
o
1,0ðAk,BkÞg, (12)

Figure 4. Decoder block scheme.
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where Λo
0,0ðAk,BkÞ ¼ 0. Finally, by comparing each LLR with a null threshold, i.e., looking at

the sign, the hard decision is made.

3.2. LTE systems

The decoding architecture for the LTE systems is presented in Figure 5. The two decoding

units called recursive systematic convolutional (RSC) use theoretically the MAP algorithm. The

MAP solution, a classical one, ensures the best decoding performances. Unfortunately, at the

same time, it is characterized by an increased implementation complexity and also it may

include variables with a large dynamic range. These are the reasons why the classical solution

with the MAP algorithm is used only as a reference for the expected decoding performance.

When it comes to real implementation, new suboptimal algorithms have been studied: Loga-

rithmic MAP (Log MAP) [20], Max Log MAP, Constant Log MAP (Const Log MAP) [21] and

Linear Log MAP (Lin Log MAP) [22].

For the LTE systems, we consider a decoding architecture based on the Max Log MAP algo-

rithm. This suboptimal algorithm overcomes the problems of implementation complexity and

dynamic range by paying the price of lower decoding performance when compared with the

MAP algorithm. However, this degradation can be maintained inside some accepted limits.

Starting from the Jacobi logarithm, only the first term is used by the Max Log MAP algorithm,

i.e.,

max�ðx, yÞ ¼ lnðex þ eyÞ ¼ maxðx, yÞ þ lnð1þ e−jy−xjÞ ≈maxðx, yÞ : (13)

The trellis diagram for the turbo decoding architecture of the LTE systems contains eight

states, as presented in Figure 6. Each state of the diagram has two inputs and two outputs.

The branch metric between the states Si and Sj is

Figure 5. LTE turbo decoder.
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Figure 6. LTE turbo coder trellis.
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γij ¼ VðXkÞXði, jÞ þ ΛiðZkÞZði, jÞ , (14)

where X(i,j) and Z(i,j) are the data, respectively, the parity bits, both associated with one

branch and ΛiðZkÞ is the LLR for the input parity bit. For SISO 1 decoding unit, this input

LLR is ΛiðZkÞ, whereas for SISO 2 it becomes ΛiðZ
0

kÞ. For SISO 1, VðXkÞ ¼ V1ðXkÞ

¼ ΛiðXkÞ þWðXkÞ, whereas for SISO 2, VðXkÞ ¼ V2ðX
0

kÞ ¼ ILfΛo
1ðXkÞ þWðXkÞg, where “IL”

operator denotes the interleaving procedure. In Figure 5, W(Xk) is the extrinsic information,

whereas Λo
1ðXkÞ and Λo

2ðX
0

kÞ are the output LLRs generated by the two SISOs.

Looking at the LTE turbo encoder trellis, one can notice that between two states, there are four

possible values for the branch metrics:

γ0 ¼ 0
γ1 ¼ VðXkÞ

γ2 ¼ ΛiðZkÞ

γ2 ¼ VðXkÞ þ ΛiðZkÞ :

(15)

The LTE decoding process follows a similar approach as for WiMAX systems, i.e., it moves

forward and backward through the trellis.

3.2.1. Backward recursion

The algorithm moves backward over the trellis computing the metrics. The obtained values for

each node are stored in a normalized manner. They will be used for the LLR computation once

the algorithm will start moving forward through the trellis. We name βkðSiÞ the backward

metric computed at the kth stage, for the state Si, where 2 ≤ k ≤ K þ 3 and 0 ≤ i ≤ 7. For the

backward recursion, the initialization βKþ3ðSiÞ ¼ 0, 0 ≤ i ≤ 7 is used at the stage k = K + 3. For

the rest of the stages 2 ≤ k ≤ K + 2, the computed backward metrics are

β̂kðSiÞ ¼ maxf
�

βkþ1ðSj1Þ þ γij1

�

,
�

βkþ1ðSj2Þ þ γij2

�

g , (16)

where Sj1 and Sj2 are the two states from stage k + 1 connected to the state Si from stage k and

β̂kðSiÞ represents the unnormalized metric. Once the unnormalized metric β̂kðS0Þ is computed

for state S0, all the backward metrics for states S1…S7 are normalized as

βkðSiÞ ¼ β̂kðSiÞ−β̂kðS0Þ (17)

and then stored in the dedicated memory.

3.2.2. Forward recursion

When the backward recursion is finished, the algorithm moves forward through the trellis in

the normal direction. This specific phase of the decoding is similar to the one for Viterbi

algorithm. In this case, the storing procedure is needed only for the previous stage metrics,
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i.e., for computing the current stage kmetrics, only the forward metrics from the last stage k − 1

are needed. We will name αkðSiÞ the forward metric corresponding to state at the stage k, where

0 ≤ k ≤K − 1 and 0 ≤ i ≤ 7. For the forward recursion, the initialization α0ðSiÞ ¼ 0, 0 ≤ i ≤ 7 is used

at the stage k = 0. For the rest of the stages 1 ≤ k ≤ K, the unnormalized forward metrics are

computed as

α̂kðSjÞ ¼ max
�

αk−1ðSi1Þ þ γi1j

�

,
�

αk−1ðSi2Þ þ γi2j

�n o

, (18)

where Si1 and Si2 are the two states from stage k − 1 connected to the state Sj from stage k. Once

the unnormalized metric α̂kðS0Þ is computed for state S0, all the forward metrics for states

S1…S7 are normalized as

αkðSiÞ ¼ α̂kðSiÞ−α̂kðS0Þ : (19)

The decoding algorithm can obtain now an LLR estimated for the data bits Xk since it has for

each stage k the forward metrics just computed and also the backward metrics stored in the

memory. For the first time, this LLR is obtained by computing the likelihood of the connection

between the state Si at stage k − 1 and the state Sj at stage k as

ZkðSi ! SjÞ ¼ αk−1ðSiÞ þ γij þ βkðSjÞ : (20)

The likelihood of having a bit equal to 0 (or 1) is when the Jacobi logarithm of all the branch

likelihood corresponds to 0 (or 1) and thus:

ΛoðXkÞ ¼ max
ðSi!SjÞ:Xi¼1

{ZkðSi ! SjÞ}− max
ðSi!SjÞ:Xi¼0

{ZkðSi ! SjÞ} , (21)

where “max” operator is recursively computed over the branches, which have at the input a bit

of 1 fðSi ! SjÞ : Xi ¼ 1g or a bit 0 fðSi ! SjÞ : Xi ¼ 0g.

4. Proposed serial decoding scheme

4.1. WiMAX systems

One important remark about the decoding algorithm is that the outputs of one constituent

decoder represent the inputs for the other constituent decoder. At the same time, knowing that

the interleaver and deinterleaver procedures apply over the data blocks (so the complete block

is needed) in a nonoverlapping manner will allow the usage of a single constituent decoder.

This decoding unit operates time multiplexed and the corresponding proposed scheme is

presented in Figure 7.

In Figure 7, we can identify storing requirements: the memory blocks that store data from

one semi-iteration to another and the memory blocks used from one iteration to another.

IL stands for the interleaver/deinterleaver procedure, while CONTROL is the management

unit, controlling the decoder functionalities. This module provides the addresses used for

Efficient FPGA Implementation of a CTC Turbo Decoder for WiMAX/LTE Mobile Systems
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read and write, the signals used to trigger the forward and backward movements through

the trellis, the selection for one of the two SISO units and also the control of MUX and

DEMUX blocks. The input buffer is also selected since the decoding architecture can

accept a new-encoded data block while still processing the previous one. The most impor-

tant module shown in Figure 7 is the SISO unit, which is the decoding structure. Figure 8

depicts the block scheme of this decoding unit. One can observe the unnormalized metric

computing modules BETA (backward) and ALPHA (forward) and the module GAMMA

that computes the transition metric. This last one ensures also the normalization: the

metrics values obtained for state S0 are subtracted from the metrics values obtained for

the states S1…S7. The output LLRs are computed inside the L module and normalized

inside the NORM module. The MUX-MAX module provides the correct inputs when

moving forward or backward through the trellis. It also computes the maximum function.

The backward metrics are stored in MEM BETA memory during backwards recursion,

their values being read when executing the forward recursion, in order to compute the

estimated LLRs.

It is important to mention that some studies have been conducted regarding the normalization

function. Trying to increase the system frequency (in order to reduce the decoding latency and

Figure 7. Proposed decoder scheme.
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so, to increase the decoded data throughput), one may think of removing the normalization

and so to reduce the amount of logic on the critical path. This solution is not applicable because

five extra bits would be needed for metrics values. From here more the memory blocks and

more the complex arithmetic. Finally, all these will lead to a lower system frequency, so no

benefit on this approach. On the other hand, we propose a dedicated approach to implement

the metric computation blocks (ALPHA, BETA and GAMMA). Based on the trellis state, we

identified the relations for each metric, 32 equations being used for transition metric computa-

tion (we remind that for each of the eight trellis states we have four possible transitions).

Moreover, only 16 are distinct (the other 16 are the same) and from these 16, some are null.

Using this approach, a complexity decrease is obtained.

Figure 9 depicts the timing diagram for the proposed SISO. This corresponds to the scenario

with one SISO unit and some MUX and DEMUX blocks replacing the two SISO units from the

theoretical decoding architecture (see Figure 7).

In Figure 9, R/W (K − 1:0) means reading/writing memory from addresses K − 1 to 0, R/W {IL

(K − 1:0)} means reading/writing memory from interleaved addresses K − 1 to 0 and COM-

PUTE means that the block is processing the input data.

4.2. LTE systems

The same remark about the two SISO units from Figure 5 working in a nonoverlapping

manner applies for LTE systems as for WiMAX ones. The same approach is used, i.e., the

proposed decoding architecture includes only one SISO unit and some MUX and DEMUX

blocks. Figure 10 depicts the block scheme of the proposed decoding architecture.

Figure 8. SISO block scheme.
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One can observe the memory blocks in Figure 10. Some are used to store data between two

successive semi-iterations, respectively, between two successive iterations. Others, in dotted-line,

are virtual memories used just to clarify the introduced notations. Moreover, the interleaver and

deinterleaver modules are distinctively introduced in the scheme, but in fact they are the same.

Both include a block memory called ILM (interleaver memory) and an interleaver. The novelty of

this approach compared to the previous serial implementationproposed inRef. [7] is the ILM.This

memory will allow a fast transition to a parallel decoding architecture. The input data memories

Figure 9. Time utilization for one turbo iteration.

Figure 10. Proposed serial turbo decoder block scheme.
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(on the left side in Figure 10) and the ILM are switched buffers, allowing new data to be written

while the previous block is still decoded. The ILM is filled with the interleaved addresses; at the

same time, the new data are stored in the input memories. The saved addresses are then used as

read addresses for the interleaver unit and as write addresses for the deinterleaver unit. Here, we

detail the way the architecture from Figure 10works. The vectors V1ðXkÞ ¼ Λ
iðXkÞ þWðXkÞ and

Λ
iðZ

k
Þ are read from the corresponding memories by SISO 1. For the first semi-iteration, the

memories are read in both directions, in order to ensure the forward and backward movements

on the trellis.When thisdecodingphase is completed, the second semi-iteration starts, SISO2 reads

in both directions the memories storing the vectors V2ðX
0

k
Þ ¼ ILfV2ðXkÞg ¼ ILfΛo

1ðXkÞ�WðXkÞg

andΛiðZ
0

k
Þ. IL stands again for the interleaver process.

In detail, SISO 1 reads the input memories and starts the decoding process, outputting the

computed LLRs. Having the LLRs available and the extrinsic values, the vector V2(Xk) is

computed and then stored in a normal order in the memory. The ILM content read in the

normal order provides the reading addresses for V2(Xk) memory, emulating the interleaver

process. The reordered LLRs V2(X’k) are available, the corresponding values for the three tail

bits X’K+1, X’K+2 and X’K+3 being added at the end of this sequence. The same SISO unit acts

now as SISO 2, this time reading data inputs from the other memory blocks. The two switching

mechanisms from Figure 10 change the position between these two semi-iterations (when in

position 1, V1(Xk) and Λ
iðZkÞ memories are active, while in position 2, V2(X’k) and Λ

iðZ
0

k
Þ

memories are used).

The SISO unit provides at the end of each semi-iteration K values for the LLRs. The LLRs

obtained after the second semi-iteration are stored in the Λo

2ðX
0

k
Þ memory (the content of ILM,

already available for the V2(Xk) interleaver process, is used also as writing address for Λo

2ðX
0

k
Þ

memory, after a delay is added).

The memories Λo

2ðX
0

k
Þ and V2(Xk) are read in the normal order to allow W(Xk) computation;

W(Xk) is written in the corresponding memory and at the same time it is used for a new semi-

iterations. In other words, the memory for W(Xk) is updated during a semi-iteration. The

time diagram for the proposed serial decoding architecture is presented in Figure 11, the

intervals colored with gray indicating the writing periods for W(Xk) memory. As mentioned

in this chapter, the input memories and the ILM (the upper four memory blocks in the

image) are switched buffers and they are filled with new data while the previous-coded

block passes the last phase of its decoding process. The same notations as shown in Figure 9

are used.

All the memory blocks in Figure 10 have 6144 locations, this being the maximum coded data

block length defined by the standard. Only the memory blocks with the input data for SISO

units have 6144 + 3 locations because they store also the tail bits. All locations contain 10 bits.

Using a Matlab simulator in finite precision, it has been observed that six bits are needed for

the integer part, in order to cover the dynamic range of the variables and three bits are needed

for the fractional part to maintain the decoding performance close to the theoretical one, with a

certain accepted level of degradation. The 10th bit is for sign.
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The SISO decoding unit is similar to the one depicted in Figure 8. ALPHA and BETA modules

compute the unnormalized forward metrics and the unnormalized backward metrics, respec-

tively. The GAMMA module computes the transition metrics and executes also the normaliza-

tion (the metrics for state S0 are subtracted from the metrics corresponding to states S1,…, S7).

The output LLRs are computed inside the L module and normalized by the NORM module.

The selection of the inputs for forward and backward moving on the trellis and also the

maximum function are executed by the MUX-MAX module. Finally, the MEM BETA module

stores the backward metrics.

The L module produces the output log likelihood ratios. These are then normalized inside the

NORM module. The MUX-MAX makes the inputs selection (for forward or backward trellis

runs) and implements also the maximum operator. The MEM BETA module keeps the back-

ward metrics corresponding values into the memory.

Using the same approach for both WiMAX and LTE proposed serial decoding architectures,

the same remarks apply. So, for the LTE turbo decoder also, the normalization function allows

Figure 11. Time diagram for a serial turbo decoder.
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a reduced dynamic range for the variables. Trying to eliminate it, in order to reduce the

number of logic levels on the critical path, will not lead to a higher system frequency because

again, more memory blocks are required, more complex arithmetic (since variables are

expressed on more bits) is used and finally, as an overall consequence, lower clock frequency

is reported for the design.

And for ALPHA, BETA and GAMMA modules inside the SISO decoding unit, again the

dedicated equations are used to compute the metrics. Sixteen such relations are implemented

for transition metric computation (eight states in trellis with two possible transitions each). In

fact, only four equations are distinct (as indicated in Eq. (15)]. And from these four equations,

one of them is null. This way the computational effort is minimized for this proposed architec-

ture.

The interleaving and deinterleaving procedures implement the same equation. The interleaved

index is computed using a modified form of Eq. (3), i.e.,

πðiÞ ¼ {½ðf 1 þ f 2 � iÞmod K� � i}mod K (22)

For the interleaving process, the data are written in the memory block in the natural order and

then it is read in the interleaved order, while for the deinterleaver process the data are written

in the interleaved order and then it is read in the natural order.

The computation in Eq. (22) is executed in three phases. First, the value for ðf 1 þ f 2 � iÞmodK is

obtained. The index i (describing the natural order) multiplies this partial result and the

obtained value is passed once again through modulo K block. And as a remark for this

computation: the formula is increased with f2 for consecutive values of index i. So a register

adds f2 for each new index. If the register current value is higher than K, K is subtracted and the

result is placed back in the register. This processing requires one system clock period, the

results being generated in a continuous manner.

5. Proposed parallel decoding scheme

The serial architecture described in Figure 10 for LTE systems can be reorganized in a parallel

setup, by instantiating the RSC SISO module N times in the structure. We propose a configu-

ration that concatenates the N values associated with the N RSCs and employs a single

memory location for all the memories in the scheme. The K locations with 10 bits per location

(corresponding to the serial architecture) are replaced by K/N positions with 10N bits per

position (working for the parallel format).

The most important benefit brought by the proposed serial decoding scheme is the single

usage of the interleaver module before the decoding stage. The ILM is updated, each time a

new data block enters the decoder, while the previous block is still being decoded. This

approach prepares a fast and simple transition to the parallel scheme. Considering that the

factor N is known, the ILM will have K/N locations, with N values being written at each

location (i.e., the ILM can be prepared for the parallel processing that follows). As
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mentioned in Ref. [16], a Virtex 5 block memory can be organized from a configuration of

32k locations · 1 bit to a setup of 512 locations · 72 bits. In the costliest scenario (i.e., K =

6144), based on the N values and representing the stored values on 10 bits, the parallel ILM

can be employed as:

• 768 locations · 80 bits

• 1536 locations · 40 bits

• 3072 locations · 20 bits

• 6144 locations · 10 bits

Only two BRAMs are used, the same as in the case of serial ILM.

Figure 12 shows the ILM working principle. As one can observe, during the writing proce-

dure, each index i from 0 to K – 1 generates a corresponding interleaved value. All the

computed values are stored in the ILM, in the same order. We will consider the ILM as a

matrix, the rows being the memory locations and the columns being the positions on each

location. The first K/N interleaved values are placed on the first column. The second set of K/N

values is stored on the second column and the procedure continues. In order to perform the

described method, a true dual port BRAM is selected. In Figure 12, each time a new value is

added on row WA at column WP (near the already existing content at columns till WP-1), the

content of row WA + 1 is also read from the memory. In the next clock period, a new value is

added at row WA + 1 at column WP (near the already existing content at columns till WP − 1),

while reading also the content of row WA + 2. And so on. When the interleaver function is

used, the ILM is read in a normal way and the N interleaved values from a row are employed

as reading addresses for the V2(Xk) memory. Furthermore, the new LTE interleaver module

(with the QPP algebraic properties) will always place at the same row the N values that should

be read in the interleaved order from ILM. The only additional task is a reordering process

needed to match the corresponding RSCs. An example is presented in Figure 13 for the values

K = 40 and N = 8. On the left side, the content of the V2(Xk) memory is shown. Each column is

composed of the outputs generated by one of the N RSC SISOs. On the right side, the content

of ILM memory is described. Each minimum value from a line of the ILM represents the line

address for the V2(Xk) memory (see the gray color circle in the illustration). By using a

reordering module, each position from the outputted line is directed to its corresponding SISO.

For example, position c from the first read line (index 10) is sent to SISO g, whereas position c

from the second read line (index 13) is sent to SISO a. The same procedure applies also for the

deinterleaving process, only that the write addresses are extracted from ILM, while the reading

ones are used in the natural order.

For the reordering module, an even-odd merge sorting network is applied. The corresponding

method was introduced by Batcher in Ref. [14] and is part of the sorting network group that

includes several sorting approaches. One such example is the bubble sorting, which sorts in a

repeated manner the adjacent pairs of elements. Another example is the shell sorting, which

groups the input data into an array and then performs the array’s column sorting (also in a

repeating manner). After each associated iteration, the array becomes one column smaller. A

third example is the even-odd transposition sorting, which sorts alternatively the odd-indexed
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Figure 12. ILM memory writing procedure.

Figure 13. Virtual parallel interleaver.
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and the adjacent even-indexed elements, respectively, the even-indexed elements and the

adjacent odd-indexed values. The fourth example is the bitonic sorting. The two halves of the

input data are sorted in opposite directions and then jointly processed to produce one com-

plete sorted sequence.

The even-odd merge sorting method is based on a theorem saying that any list of a = 4b (b

natural) elements can be sorted if the following steps are applied: first, separate sorting is

executed over the two halves of the list. After this step, the elements with odd index and

the ones with even index are sorted separately. The last step consists in a comparing and

switching procedure executed over all the elements 2n and 2n + 1 (n = 1,…, a/2 − 1). The

demonstration of this theorem is available in Ref. [23]. An example for N = 8 is depicted in a

graphical format shown in Figure 14. From a timing point of view, Figure 15 depicts the

case when N = 2 is used. Same comments as the ones for Figure 11 apply.

In combination with the presented parallel decoding architecture, we also propose a simplified

implementation for the interleaver block. As seen from Eq. (3), the arithmetic requirements for

the computation of the memory addresses πðiÞ consist of three multipliers, one adder and one

divider (used for the extraction of the remainder associated with the modulo operation). For all

possible K values associated with the division, the quotients range is very large, since the

numerator and the denominator can have very big values (and often situated in different

numerical ranges—up to billions). We propose an efficient method to reduce the arithmetic

complexity associated with Eq. (3).

By introducing the notation

Figure 14. Even-odd merge sorting for N = 8.
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pðiÞ ¼ f 1iþ f 2i
2 (23)

it can be observed that

Figure 15. Time diagram for parallel turbo decoder (N = 2).
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pð0Þ ¼ 0,
pðiÞ ¼ pði−1Þ þ s1 þ s2ðiÞ, i > 0,

(24)

where

s1 ¼ f 1 and

s2ðiÞ ¼

( 0, i ¼ 0,

f 2, i ¼ 1,

s2ði−1Þ þ 2f 2, i > 1

(25)

We can rewrite Eq. (3) using Eqs. (23) and (24)

πðiÞ ¼ pðiÞ mod K ¼ ½pði−1Þ þ s1 þ s2ðiÞ� mod K (26)

The multiplications are replaced by additions, which require less hardware resources. Never-

theless, the division is still necessary for the modulo operation. If we consider the modulo

operator applied to a sum of elements expressed as

∑
k
ck

� �

mod K ¼ ∑
k
ck mod K

� �

mod K (27)

we can decrease the arithmetic effort needed to obtain πðiÞ in Eq. (26). The number of

modulo operations becomes bigger, but the overall complexity of the corresponding divisions

is reduced since smaller quotients are used. Consequently, using Eqs. (25)–(27), one can

write:

s3ðiÞ ¼ s1 þ s2ðiÞ ¼

0, i ¼ 0,

f 1 þ f 2, i ¼ 1,

s3ði−1Þ þ 2f 2, i > 1

8

>

<

>

:

(28)

Using Eq. (29) in Eq. (26), the result is

πðiÞ ¼ pðiÞ mod K ¼ ½pði−1Þ þ s3ðiÞ� mod K

¼ ½pði−1Þ þ s3ði−1Þ þ 2f 2Þ� mod K

¼ ½πði−1Þ þ s3ði−1Þ mod K þ 2f 2 mod K� mod K

(29)

All of the numerical values added in the last stage of Eq. (29) are lower than K and available

recursively (during the processing of a distinct frame), such as πði−1Þ and s3ði−1Þmod K or

they can be predetermined and stored, like the case of 2f 2 mod K:. The overall arithmetic

complexity is reduced to 2K additions and 2K simplified modulo operations (i.e., each is

resolvable using a comparison and a subtraction) for the address generation module. The

method improves the solutions presented in [24, 25], by eliminating any multiplications or

divisions. Additionally, the lower numerical range of the operators (with values lower than 2K;

i.e., values in the range of thousands) allows the usage of minimal resources for the represen-

tation of binary values.
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6. Implementation results

6.1. WiMAX systems

The estimated system frequency when implementing the decoding structure on a Xilinx

XC4VLX80-11FF1148 chip using the Xilinx ISE 11.1 tool is 125 MHz. The reserved chip area is

around 3000 (8.37%) slices from a total of 35,840. The results are comparable with the assess-

ments presented in [26].

The decoding latency and decoding rate corresponding to the above-mentioned clock fre-

quency (see Table 1) are

Latency ¼ 2Lð2K þ 10Þ (30)

Rb ¼
2K

2Lð2K þ 10ÞTclk
(31)

The implementation delay is represented by 10 clock periods per iteration and is added to the

theoretical latency of the MAP algorithm (which is 4KN clock periods).

In Figure 16, the decoding performances are presented for a quadrature phase shift keying

(QPSK) modulation, ½ rate, 1–4 iterations, a block size of 6 bytes (the smallest possible) and a

transmission simulated through an additive white Gaussian noise (AWGN) channel. The

results are depicted for the worst case scenarios, considering that the test was performed for

the smallest block size.

6.2. LTE systems

Figures 11 and 15 show that the decoding latency is reduced in the case of parallel decoding

with a factor almost equal to N. The presented implementation has an 11 clock period Delay,

which is added for each forward trellis run (when the LLRs are computed). As a consequence,

two such values must be considered during each iteration.

For serial decoding, the native latency is computed as follows: at the first semi-iterations, K

clock periods required for the backward trellis run and another (K + Delay) clock periods for

the forward trellis run and LLR computation. The value is then considered twice in order to

take into account the second semi-iteration. By denoting L the number of executed iterations,

Fclk [MHz] K [di-bits]

Latency [μs] Rb [Mbps]

L = 3 L = 4 L = 5 L = 3 L = 4 L = 5

125 24 2.78 3.71 4.64 17.24 12.93 10.34

125 240 23.52 31.36 39.2 20.41 15.31 12.24

125 2400 230.9 307.8 384.8 20.79 15.59 12.47

Table 1. Latency and throughput.
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the numbers of clock periods required for a serial, respectively, a parallel block decoding

operation result as:

Latency_s ¼ ð4K þ 2DelayÞL (32)

Latency_p ¼ ð4K=N þ 2DelayÞL (33)

When performing tests for the parallel decoding performances, a certain level of degradation

was observed, since the forward and backward metrics are altered at the data block bound-

aries. In order to have similar performance as in the serial decoding case, a small overhead is

accepted. By introducing an overlap at each parallel block boarder, the metrics computation

gains a training phase. The minimum overlap window length is selected to cover the minimum

standard defined data block (in this case Kmin = 40 bits).

Figure 17 shows this situation, for the N = 2 setup. If we consider N > 2, which leads to

blocks with Kmin at both the left and right sides, the corresponding latency can be expressed

as:

Latency_po ¼
�

4ðK=N þ 2KminÞ þ 2Delay
�

L (34)

For even-odd merge sorting network implementation, we can study the configuration K = 40

bits and N = 8. The input of the ILM content is represented by the 40 interleaved addresses

organized in five memory locations and eight addresses for each location. The minimum-

detected value for each ILM location (i.e., the natural-order memory location that will be

Figure 16. The impact of the number of iterations on decoding performances.
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accessed) is contained in the output of the sorting unit. Also, the module provides the order

which will be used to send data read from natural-order memory location to the N decoding

units. In this example, at the third clock period, the second ILM location is read, i.e., the

addresses 6, 31, 36, 21, 26, 11, 16 and 1. The sorting module labels these addresses with an

index, obtaining the pairs: (6, 0), (31, 1), (36, 2), (21, 3), (26, 4), (11, 5), (16, 6) and (1, 7). Then the

addresses are arranges in an increasing order: (1, 7), (6, 0), (11, 5), (16, 6), (21, 3), (26, 4), (31, 1)

and (36, 2). At the same time, the minimum address found at this location is sent at the output,

1 in this example. In conclusion, location number 1 is read from the natural-order data

memory. The eight samples from the location 1 are distributed to the eight decoding units as

indicated by the output index. The first sample from this location is sent to decoder unit 7, the

second sample to decoder unit 0, the third one to decoder unit 5 and so on. As Figure 18 shows

that at the register transfer level (RTL), besides flip flops, the sorting unit includes only basic

selection elements.

It can be seen in Figure 19 that the sorting unit allows a pipeline data processing.

Consequently, with a certain implementation delay (7 clock periods in the proposed

scheme), the module provides a value belonging to the set of sorted indexes at each

clock cycle.

Figure 17. (a) Non overlapping split; (b) overlapping split.

Figure 18. Basic selection element for binary inputs.
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It is important to mention that the even-odd merge sorting was selected because it allows a

pipeline functioning, consuming also lower resources than the other listed methods. Some

comparative results were provided in [11, 27] in terms of used resources for the application-

specific integrated circuit (ASIC).

In order to evaluate the performances, we used the very high speed hardware description

language (VHDL), programming language. The code was tested using ModelSIM 6.5. For the

generation of RAM/ROM memory blocks, Xilinx Core Generator 14.7 was employed and the

synthesis process was accomplished using Xilinx XST from Xilinx ISE 14.7. Using the above-

mentioned tools, the resulted values for the decoding structure when implemented on a Xilinx

XC5VFX70T-FFG1136 are the following [28]: frequency of 310 MHz and 664 flip flops and 568

LUTs for the sorting unit, respectively, a frequency of 300 MHz, 1578 flip flop registers and

1708 LUTs for the interleaver.

The values listed in Table 2 are obtained using Eqs. (32)–(34), when N = 8 is considered. One

can observe that the overhead introduced by the overlapping split method is less important for

bigger values of K, this being the scenario when a parallel approach is usually applied. The

achieved overall system frequency is 210 MHz, with the longest signal propagation time

required for the SISO unit.

Table 3 provides the corresponding throughput rate when the values from Table 2 are used.

Figure 19. Even-odd merge sort – ModelSim simulation.

Latency_s [μs] Latency_p [μs] Latency_po [μs]

K L

3 4 3 4 3 4

1536 88.08 117.4 11.28 15.04 15.85 21.14

4096 234.3 312.5 29.57 39.42 34.14 45.52

6144 351.4 468.5 44.2 58.9 48.7 56.02

Table 2. Latency values for N = 8, L = 3 or 4 and K = 1536, 4096 or 6144.
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As one can observe from Table 3, the serial decoding performance is similar to the theoretical

one. Let us consider, for example, the case L = 3 and K = 6144. Considering the theoretical

latency of 4KL clock periods, the theoretical throughput is 17.5 Mbps. After implementation,

the obtained result for the proposed serial architecture is 17.48 Mbps.

The following performance graphs were obtained using a finite precision Matlab simulator.

This approach was selected because the same outputs as the ModelSIM simulator are obtained

in Matlab, while the testing time is considerably smaller.

All the simulation results were generated for the Max Log MAP algorithm. The illustrations

present the bit error rate (BER) versus signal-to-noise ratio (SNR) expressed as the ratio

between the energy per bit and the noise power spectral density.

Figure 20 presents the attained performances for the case of K = 512, N = 2, L = 3 and QPSK

modulation, using the three discussed decoding methods, i.e., the serial one, the parallel

without overlapped split one and the parallel with overlapped split one. Figure 21 depicts the

same performance comparison, this time for K = 1024 and N = 4.

Tput_s [Mbps] Tput_p [Mbps] Tput_po [Mbps]

K L

3 4 3 4 3 4

1536 17.43 13.07 136.1 102.0 96.86 72.64

4096 17.47 13.10 138.5 103.8 119.9 89.9

6144 17.48 13.11 139 104.2 125.9 94.4

Table 3. Throughput values for N = 8, L = 3 or 4 and K = 1536, 4096 or 6144.

Figure 20. Comparative decoding results for QPSK, L = 3, K = 512, N = 2.
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Analyzing the results presented in Figures 20 and 21, one can conclude that the decoding

performance obtained, when parallel decoding with the overlapped split method is used, is

almost similar to the one for serial decoding. In contrast, the parallel decoding without the

overlapped split method generates some loss in performance when compared to the serial

decoding. This degradation is dependent on the parallelization factor N.

7. Conclusions

This chapter presented the most important aspects related to the FPGA implementation of a

turbo decoder for WiMAX and LTE systems. The serial turbo decoder architectures for the two

systems have been developed and efficiently implemented, important results being obtained

especially for the proposed architectures of the interleaver/deinterleaver. For LTE systems, the

interleaver memory ILM has been introduced. In this manner, the interleaver process effec-

tively works only outside the decoding process itself.

The ILM has been written together with the input data, while the previous block was still

under decoding. It should be outlined that this solution allows the transition from the serial to

the parallel decoder in an efficient manner, involving only values that are concatenated at

same memory locations. The parallel approach requires the same storing capacity (the number

of BRAMs) and a single interleaver, thus adding only an even-odd merge sorting network. This

unique interleaver has been implemented in an efficient configuration that uses only compar-

ators and subtractors and no multipliers and dividers

Figure 21. Comparative decoding results for QPSK, L = 3, K = 1024, N = 4.
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The parallel decoding performances have been compared with the serial ones. In this

context, certain degradation has been observed. In order to eliminate this degradation, a

small overhead is accepted by the overlapping split that is applied to the parallel data

blocks.
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